
RANDOMIZATION AND SUBLINEAR ALGORITHMS

SIDDHANT CHAUDHARY

These are my notes for the Advanced Algorithms course. The main theme cov-
ered in the course was randomization. My favorite reference book for randomization
is: Probability and Computing, Randomized Algorithms and Probabilistic Analysis by
Michael Mitzenmacher and Eli Upfal.

Contents

1. Introduction . 2
1.1. Polynomial Identity Testing . 2
1.2. Max-cut in a graph. 2
1.3. Karger’s Min Cut Algorithm. 3
1.4. Coupon Collector’s Problem . 5
1.5. Parallel Algorithm for Bipartite Perfect Matchings 7
1.6. Network Reliability . 11
1.7. DNF Counting . 14
1.8. Improving success for 2-sided errors: Medians of Means. 17

2. Probabilistic Method . 18
2.1. An example: k-SAT . 18
2.2. Lovasz Local Lemma . 19

3. Sublinear Algorithms . 20
3.1. Outputting index of an even number . 21
3.2. Diameter of a point set . 21
3.3. Two types of approximations . 22
3.4. Property Testing algorithm for connectedness . 22
3.5. Estimating the number of connected components . 24
3.6. Testing sortedness of array . 24
3.7. Witness Lemma . 25
3.8. Testing monotonocity of boolean functions over the hypercube 25
3.9. Lp testing . 27
3.10. L1-testing monotonicity of functions on a grid. 27
3.11. The Reverse Markov Inequality . 28
3.12. Monotonicity testing of boolean functions over the general grid 29
3.13. An even better strategy for boolean functions . 30

4. Streaming Algorithms in the Data Streaming Model . 31
4.1. The Streaming Model of Computation . 31
4.2. Reservoir Sampling . 31
4.3. Counting number of distinct elements in a stream . 32
4.4. k-wise independent hash families . 34
4.5. L2 norm estimation of frequency vector . 35
4.6. Morris Counter . 37

5. Lower Bounds . 39
Date: 21 September, 2021.

1

2 SIDDHANT CHAUDHARY

5.1. Yao’s Minimax Principle. 39

1. Introduction

1.1. Polynomial Identity Testing. I have covered this nicely in my notes for a talk
I gave at PROMYS 2021; the content should be available on my website.

1.2. Max-cut in a graph. Let us consider the max-cut problem. Given a graph G =
(V,E), we need to find the cardinality of the maximum cut of the graph. This problem
is known to be NP-complete, and hence one cannot expect to find a polynomial time
algorithm to solve this problem. Instead, we can use randomization. The algorithm
description is given below.

(1) We maintain two sets S1 and S2, each initialised as empty sets.
(2) For each v ∈ V , toss a fair coin; depending upon the outcome, put v in the set

S1 or S2. Do the same for each vertex independently.
Note that the maximum possible value of the max-cut in G is |E|. Now, for each
edge e ∈ E, define an indicator random variable Xe as follows: Xe = 1 if after the
algorithm, e is a cut edge, otherwise 0. Clearly,

P [e is a cut edge] = 1

2
for each edge e. Hence,

E [Xe] =
1

2
So, it follows that the expected value of the number of cut edges is

E
[∑
e∈E

Xe

]
=
∑
e∈E

E [Xe] =
|E|
2

So, our output is 1

2
of the optimum value in expectation. Such algorithms are called

half-approximate algorithms.

1.2.1. Derandomization using conditional Expectation. We will now derandomize our
algorithm using the notion of conditional expectations.

In the previous discussion, let C(S1, S2) denote the size of the cut. We showed that

E [C(S1, S2)] =
|E|
2

This means that there exists some cut in the graph with size atleast |E|/2. We now
give a deterministic algorithm which finds such a cut in the graph.

Suppose the vertices of the graph are v1, ..., vn. Our algorithm will decide the
placement of each vi in either S1 or S2. Call these placement x1, ..., xn, where each
xi ∈ {A,B}. First we note a bunch of observations.

• We have that
E [C(S1, S2) | x1 = S1] = E [C(S1, S2) | x1 = S2]

This is intuitive to see because if we interchange S1, S2 in our algorithm, the
expected values shouldn’t change. Formally, this can proved by considering
n-tuples (x1, ..., xn), although I won’t do that here. This means that

E [C(S1, S2)] = E [C(S1, S2) | x1 = S1] = E [C(S1, S2) | x1 = S2]

RANDOMIZATION AND SUBLINEAR ALGORITHMS 3

• Let 1 ≤ i < n− 1. Then, we have the following simple equation.

E [C(S1, S2) | x1 = s1, x2 = s2, ..., xi = si] =
2∑

j=1

1

2
E [C(S1, S2) | x1 = s1, ..., xi = si, xi+1 = Sj]

Also, we have the following.

E [C(S1, S2) | x1 = s1, x2 = s2, ..., xn−1 = sn−1] =
2∑

j=1

1

2
CutSize(x1 = s1, ..., xn−1 = sn−1, xn = Sj)

The above equation simply means that if the placements of v1, ..., vn−1 are
decided, then the expectation can be easily computed.

The first of the two formulas above also shows the following.
E [C(S1, S2) | x1 = s1, ..., xi = si] ≤ maxj=1,2 (E [C(S1, S2) | x1 = s1, ..., xi = si, xi+1 = Sj])

This inequality gives us a simple algorithm to find a cut with ≥ |E|/2 edges.
The algorithms works as follows: suppose that the placements x1, ..., xi have
been decided, for some i. Then, compute the two expectations given above
(the ones over which the maximum is chosen), and go with the choice of xk+1

that has the larger expectation.
• The only thing that remains now is to figure out how to compute the given

expectations. Suppose we want to compute the expectation
E [C(S1, S2) | x1 = s1, ..., xi = si, xi+1 = Sj]

where j ∈ {1, 2}. Note that in this expectation, the placements of the vertices
x1, ..., xi+1 have already been decided; so, we can compute easily how much
these vertices among themselves contribute to the cut. Now, consider all the
other edges, which have atleast one endpoint not among {v1, ..., vi+1}. It is
easy to see that all these edges contribute 1/2 to this expectation. So, the
expectation can be easily calculated in time O(E).
• We can do even better; instead of calculating the expectations for j = 1, 2,

note that we only need to decide which one is larger. Observe that this is only
dependent on the placement of vertex vi+1; we only need to count how many
edges this vertex has with vertices {v1, ..., vi} when Sj = A,B. We go by that
choice which has a higher count of such edges.

So, we have obtained a greedy deterministic algorithm which gives us the required cut.

1.3. Karger’s Min Cut Algorithm. Now we will see a randomized algorithm for
finding a minimum cut in a graph. This algorithm is called Karger’s algorithm. Here
is how the algorithm works.

• An edge of the graph G is picked uniformly at random. After picking an edge,
the edge is contracted. Multi-edges are maintained, and there are never any
self loops.
• The algorithm is repeated until there are only two vertices left. Then, the

number of (multi) edges between the two vertices is output.
We now analyze this algorithm. We begin with a two simple observations.
Lemma 1.1. Once two vertices are merged, the algorithm never outputs a cut sepa-
rating them.
Proof. When an edge is contracted, we are effectively deleting that edge from our
output. So, a cut separating the two vertices can never be output. ■

4 SIDDHANT CHAUDHARY

Lemma 1.2. Any cut set of an intermediate graph is a cut set of the original graph.
Hence, the algorithm always outputs some cut set of the graph.
Proof. This is trivially true; given a cut set of some intermediate graph, we can get a
cut set of the original graph by partitioning the vertices in the original graph according
to the partition in the intermediate graph. ■

Next, compute the probability that a minimum cut is output. To do this, fix some
minimum cut C in G. In what event is C output by our algorithm? C is output only if
the algorithm never contracts an edge belonging to C. We use this crucial observation
to prove the following theorem.
Theorem 1.3. Let C be a minimum cut of G. Then the cut C is output by the
algorithm with probability atleast 2

n(n− 1)
, where n is the number of vertices.

Proof. Let |C| = k. Note that the total number of iterations in the algorithm is n− 2.
Let Ei be the event that the edge contracted in iteration i is not in C. Let Fi =⋂i
j=1 Ei, i.e Fi is the event that no edge of C has been contracted till iteration i. We

need to give a lower bound on Fn−2.
First, consider the event E1 = F1. Since the minimum cut has size k, each vertex

has degree atleast k. Hence,
|E| ≥ nk

2
So, the probability that no edge of C is chosen in the first iteration is(

1− 2k

nk

)
=

n− 2

n

Now, observe that we have
P [Fi] = P [Ei | Fi−1]

In the ith stage, there are n− i+1 vertices. If we assume the event Fi−1, then clearly
the size of the min cut is still k, and hence each vertex has degree atleast k. So, the
number of edges at the ith stage is bounded below by

k(n− i+ 1)

2
So, it follows that

P [Fi] = P [Ei | Fi−1] ≥
(
1− 2k

k(n− i+ 1)

)
=

n− i− 1

(n− i+ 1)

So, it follows that
P [Fn−2] = P [En−2 | Fn−1]

≥ 1

3
P [Fn−1]

...

≥
(
1

3

)(
2

4

)(
3

5

)
· · ·
(
n− 3

n− 1

)(
n− 2

n

)
=

2

n(n− 1)

This proves the claim. ■

RANDOMIZATION AND SUBLINEAR ALGORITHMS 5

Corollary 1.3.1. If G is any graph with n vertices, then the number of minimum cuts
in the graph is upper bounded by

(
n
2

)
.

Proof. Let C1, ..., CM be all the min cuts in G. We want to bouny the previous claim,
we see that

P [Ci survives] ≥ 2

n(n− 1)
=

1(
n
2

)
The above is true for each i. Also, note that the events {Ci survives} and {Cj survives}
are disjoint, if i ̸= j. So, we see that

P [some min cut survives] =
M∑
i=1

P [Ci survives] ≥ M(
n
2

)
Since a probability can’t be greater than 1, the claim follows. ■

A detailed discussion of this problem can be found at this link: https://www.cs.
cmu.edu/~avrim/451f13/lectures/lect0905.pdf.

1.4. Coupon Collector’s Problem. In this problem, there are n different types of
coupons. In each trial, we get exactly one coupon. The question is to figure out what
is the number of trials required to get all of the coupons. It is assumed that each trial
gives us coupons with uniform probability (i.e each coupon has the same probability
of being picked up).

Let X denote the number of trials required to obtain all the different n coupons.
Similarly, let Xi denote the number of trials to get the ith distinct coupon, provided
that we already have i− 1 distinct coupons. Clearly, we have the following.

X =
n∑

i=1

Xi

Let us figure out what E [X] is.
Suppose currently we have i−1 distinct coupons. Let pi be the probability of finding

the ith distinct coupon in the next trial. Clearly,

pi =
n− i+ 1

n

So,

P [Xi = k] =

(
i− 1

n

)k−1(
n− i+ 1

n

)
= (1− pi)

k−1pi

https://www.cs.cmu.edu/~avrim/451f13/lectures/lect0905.pdf
https://www.cs.cmu.edu/~avrim/451f13/lectures/lect0905.pdf

6 SIDDHANT CHAUDHARY

So, Xi is a geometric random variable. So,

E [X] =
n∑

i=1

E [Xi]

=
n∑

i=1

1

pi

= n

n∑
i=1

1

n− i+ 1

= n
n∑

i=1

1

i

= n(lnn+Θ(1))

= Θ(n lnn)

Hence, we require around n lnn trials to get all the coupons.

1.4.1. How likely do we need a large number of trials? Even though the above com-
putation gave us an average number of trials required, nothing guarantees that the
number of trials needed is not huge. So now, we will try to bound the likelihood
of requiring a large number of trials to get all the coupons. To do this, we will use
Markov’s and Chebyshev’s inequalities.

Again, let X be the same random variable as above. For any c > 0, we have by
Markov’s Inequality

P [X ≥ cE [X]] ≤ E [X]

cE [X]
=

1

c

So, if we put c = 2, we see that the chance that we need more than 2nHn trials (here
Hn is the nth harmonic number) is no more than half.

Next, let us try to apply Chebyshev’s inequality to X. To do that, we need to find
Var (X). Observe that the random variables Xi are all independent. So,

Var (X) =
n∑

i=1

Var (Xi)

Now, Xi’s are all geometric random variables, and we know that the variance of a
geometry random variable Y with parameter p is

Var (Y) =
1− p

p2
≤ 1

p2

So, we see that

Var (X) =
n∑

i=1

Var (Xi) ≤
n∑

i=1

(
n

n− i+ 1

)2

= n2

n∑
i=1

1

i2
≤ π2n2

6

So by Chebyshev’s Inequality we see that for any c > 0,

P [|X − nHn| ≥ c] ≤ π2n2

6c2

In particular, for c = nHn, we have

P [|X − nHn| ≥ nHn] = O

(
1

ln2n

)

RANDOMIZATION AND SUBLINEAR ALGORITHMS 7

This is a fairly weak bound. Using a trivial union bound, we can do even better.
Consider the probability of not obtaining the ith distinct coupon even after n lnn+

cn steps. This probability is simply the following.(
i− 1

n

)n(lnn+c)

≤
(
1− 1

n

)n(lnn+c)

≤ e−(lnn+c) =
1

nec

By a simple union bound, we see that the probability that some coupon has not been
obtained even after n lnn + cn steps is only e−c. This is much better than what we
obtained via Chebyshev’s or Markov’s inequalities.

1.5. Parallel Algorithm for Bipartite Perfect Matchings. In this section, we
will assume the following: the determinant of an n × n matrix can be computed in
parallel with O(n3.5) processors and O(log2n) time. Also, we will be assuming the
knowledge of the polynomial identity testing problem and its application to bipartite
perfect matchings.

First, let us assume that we have an oracle A that, given a graph G, tells us whether
A has a perfect matching or not. Also, assume that the oracle uses a parallel algorithm
with O(n) processors and O(log2n) time.

First, assume that we are dealing with only those graphs which either don’t have
perfect matchings, or have unique perfect matchings. Let G be such a graph. The
following lemma is easy to see.
Lemma 1.4. Let G be a graph with a unique perfect matching. Then, the edge (u, v)
belongs to the perfect matching iff. G \ {u, v} has a perfect matching.
Proof. First, suppose (u, v) is an edge of the perfect matching. Then clearly, G\{u, v}
has a perfect matching as well.

Conversely, suppose G\{u, v} has a perfect matching. Since G has a unique perfect
matching, it must be the case that (u, v) belongs to the perfect matching. ■

The above claim gives us a very simple parallel algorithm. We will use n2 processors
(one for every edge, since there at potentially O(n2) edges). The processors are denoted
P1, ..., Pn2 . Suppose the edges are e1, ..., en2 . The following is the description of the
algorithm for processor Pi. Also, suppose the oracle A returns true if the input graph
has a perfect matching, and false otherwise. Clearly, this is a valid parallel algorithm

Algorithm 1 Algorithm Description for Processor i

1: Input: A graph G which has a unique perfect matching (if it has one at all), oracle A
2: (u, v)← ei
3: if A(G \ {u, v}) = true then
4: Add ei to the perfect matching
5: else
6: Don’t add ei to the perfect matching
7: end if

to find a perfect matching of such inputs G.
Now, let us deal with the cases where G need not have a unique perfect matching.

In this case, we take the following strategy. The idea is to get a minimum weight
perfect matching by assigning weights to edges randomly.

(1) If e is an edge, assign a weight to e, where the weight is picked uniformly at
random from the set {1, 2, ..., 2|E|}.

8 SIDDHANT CHAUDHARY

(2) What is the probability that the minimum weight perfect matching is unique?
Clearly, we still can’t guarantee the uniqueness of the minimum weight match-
ing.

(3) How do the processors find the minimum weight perfect matching in parallel?
Let us consider point number (3) first. Suppose we have been lucky enough to bypass
point number (2) and get a unique minimum weight perfect matching by assigning
weights randomly. Let this matching be M . How do the processors find it?

Define a matrix D as follows (the definition is very similar to the symbolic adjacency
matrix/Tutte matrix).

Dij =

{
2Wij , if (i, j) is an edge
0 , otherwise

where Wij is the weight of the edge (i, j). The question now is: if the minimum weight
matching is unique, then is det(D) = 0? The answer is no, as we prove below.

Lemma 1.5. Let D be the matrix as above. If G the minimum weight matching in G
is unique, then det(D) ̸= 0.

Proof. We know that

det(D) =
∑
σ

ϵ(σ)
n∏

i=1

Di,σ(i)

Clearly, the term corresponding to σ is non-zero if and only if σ is a perfect matching.
In that case, the term corresponding to sigma is the following.

2
∑n

i=1 Wi,σ(i)

Suppose Wmin is the weight of the minimum weight matching. Since this matching is
unique, we see that det(D) is of the following form.

det(D) = ±2Wmin ± C(2Wmin+1)

where C is some integer. So, the determinant is non-zero. ■

Continuing this forward, we have the following lemma.

Lemma 1.6. Let D and G be defined as above. Then the following are true.
(1) det(D) = 0 if G has no perfect matching.
(2) If M is a unique minimum weight perfect matching with weight W0 then W0 is

the largest power of 2 that divides det(D).
(3) If minimum weight perfect matching is not unique then either det(D) = 0 or

the largest power of 2 that divides the det(D) is ≥ W0.

Proof. (1) and (2) were more or less proved in the previous lemma. Let us prove
(3). Suppose the weight of the minimum weight perfect matching is W0. In addition,
suppose that det(D) ̸= 0. Then, two cases are possible:

• The terms corresponding to weight 2W0 all cancel out. In this case, since
det(D) ̸= 0, higher order terms are remaining, and clearly each higher order
term is > 2W0 .
• If the terms corresponding to weight 2W0 don’t cancel out, then the highest

power of 2 dividing det(D) is clearly W0.
■

RANDOMIZATION AND SUBLINEAR ALGORITHMS 9

So, provided that we have a unique minimum weight perfect matching, we can use
the following algorithm. We describe the role of processor Pij, for 1 ≤ i, j ≤ n. So,
given a graph G (with assigned weights to edges) such that G has atmost one minimum
weight perfect matching, Pij processes the edge (i, j) and returns true if this edge is
a part of the minimum weight perfect matching, and otherwise returns false. We now

Algorithm 2 Case of Unique Minimum Weight Perfect Matchings, Role of Processor
Pi

1: Input: G (has atmost one minimum weight perfect matching), Wij (weights), D
2: if det(D) = 0 then
3: There is no perfect matching
4: end if
5: Q0 ← Largest power of 2 dividing det(D)
6: Mij ← Matrix obtained by removing ith row and jth column in D
7: if det(Mij = 0) then
8: return false
9: else

10: Qij ← Largest power of 2 dividing det(Mij)
11: if Qij +Wij = Q0 then
12: return true
13: else
14: return false
15: end if
16: end if

prove the correctness of the algorithm.
Proposition 1.7. If the input G in the above algorithm has a unique minimum weight
perfect matching, then processor Pij returns true if and only if the edge (i, j) belongs
to the minimum weight perfect matching.
Proof. Since G has a unique minimum weight perfect matching, det(D) ̸= 0, which we
know by Lemma 1.5. Now, consider the processor Pij, where (i, j) is an edge of the
graph. Let Mij be the matrix obtained by removing the ith row and the jth column
in D. Clearly, Mij then describes the bipartite graph G \ {i, j}. If (i, j) is not part of
any perfect matching, then clearly det(Mij) = 0 (because if it was non-zero, it would
imply that G\{i, j} has a perfect matching, which would then imply that (i, j) is part
of some perfect matching). In that case, the algorithm returns false as required.

So suppose (i, j) is part of some perfect matching. Then, either (i, j) is part of the
unique minimum weight perfect matching, or it is part of some perfect matching whose
weight is strictly larger than this minimum weight matching. We deal with these two
cases separately.

(1) In the first caes, (i, j) is an edge of the unique minimum weight perfect matching
of G. Clearly, in that case, the graph G \ {i, j} has a unique minimum weight
perfect matching as well. Again, by Lemma 1.5, we see that det(Mij) ̸= 0.
Infact, by Lemma 1.6, we see that the largest power of 2 that divides det(Mij)
is infact that weight of the unique minimum weight matching of G \ {i, j}. So,
it clearly follows that

Qij +Wij = Q0

and hence the algorithm will return true as desired.

10 SIDDHANT CHAUDHARY

(2) In the second case, (i, j) is an edge of a perfect matching whose weight is strictly
greater than Q0, the weight of the unique minimum weight perfect matching.
In that case, by invoking Lemma 1.6, we see that

Qij +Wij > Q0

and hence the algorithm will return false.
This completes the proof. ■

So, as a consequence of Proposition parallelPMCorrectness, our algorithm will be
correct given that the randomized weights lead to a unique minimum weight perfect
matching. We will now find the probability that these weights lead to a minimum
weight perfect matching. To do this, we will prove the so called Isolation Lemma.
Theorem 1.8 (Isolation Lemma). Let S be any set with |S| = m, and let S1, ..., Sk ⊆
S be subsets of S. Suppose each x ∈ S is assigned a weight w(x) ∈ {1, 2, ..., n}
uniformly at random, where n is some natural number.

P [∃ a unique minimum weight set] ≥ 1− m

n

Proof. Suppose there are two sets Si, Sj of minimum weight. Since the sets are distinct,
wlog there is some element e ∈ Si such that e /∈ Sj. We call such an element a tied
element.

Now, let e ∈ S be any element. We will bound the probability of e being a tied
element. Suppose the weights of all elements other than e have been fixed. Now, define
the following.

A− := {Si | e /∈ Si}
A+ := {Si | e ∈ Si}

Next, define the following.
W− := min

Si∈A−
w(Si)

W+ := min
Sj∈A+

w(Sj)

where above, w(Sk) is the weight of the set Sk (the weight of a set is defined as the
sum of the weights of its elements). Also, in the calculation of W+, the element e is
not included in the weight calculation (since it’s weight has not been defined yet).

Now, suppose the weight of e is picked uniformly at random from the set {1, ..., N}.
Oberve that when e is picked, the minimum weight of any set in A+ will be W +w(e).
Also, for e to be a tied element, the following equation has to be true.

W+ + w(e) = W−

which implies
w(e) = W− −W+

So, the probability that e is a tied element is equal to the probability that w(e) =
W− −W+. Clearly,

P
w(e)

[
w(e) = W− −W+

]
≤ 1

n

Note that the probability is not equal to 1

N
because W− −W+ could be outside the

range {1, ..., n}.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 11

Now, observe that the minimum weight set is not unique if and only if atleast some
x ∈ S is a tied element. By a simple union bound, we therefore see that

P [Minimum weight set is not unique] ≤ m

n

and hence the claim follows. ■

Corollary 1.8.1. If the weights to edges in G are assigned uniformly at random
from the set {1, ..., 2|E|}, then with probability atleast 0.5, the minimum weight perfect
matching is unique.

Proof. This is just an application of Theorem 1.8 (Isolation Lemma); here the set
S is the set of all edges, and the subsets are the perfect matchings in the graph G. ■

Remark 1.8.1. Ofcourse, if we want a higher accuracy, we can replace the number
2|E| with c|E| where c is a large constant.

1.6. Network Reliability. In this section, we will study the network reliability prob-
lem. We are given a connected, undirected graph G = (V,E). Each edge of G fails
independently with probability p ∈ (0, 1). We want to estimate pfail, i.e the probability
that the graph gets disconnected. The following bound is trivially true.

Proposition 1.9. If the minimum cut size in G is c, then

pfail ≥ pc

Proof. Clearly, the graph gets disconnected if all the edges in the min cut fail. The
probability that all the edges of the min cut fail is pc. Hence the claim follows. ■

Our goal is to find a fully polynomial-time randomized approximation scheme (FPRAS)
for this problem. We now define what this means for thte network reliability problem.

Definition 1.1. A fully polynomial-time randomized approximation scheme (FPRAS)
is an algorithm such that on input (G, p, ϵ), outputs a value Z such that

P [(1− ϵ)pfail ≤ Z ≤ (1 + ϵ)pfail] ≥
3

4

and runs in time poly
(
n,

1

ϵ

)
.

To solve this problem, we will consider two cases.
(1) In the first case, we will have

pc ≥ 1

n4

In this case, we will use the unbiased estimator approach.
(2) In the second case, we have

pc <
1

n4

In this case, we will use a reduction to the DNF counting problem.
Let us analyze these two cases.

12 SIDDHANT CHAUDHARY

1.6.1. Case 1. In this case, we will follow the unbiased estimator approach. We will
do the following: remove each edge of G independently with probability p and check
if G is disconnected. Repeat this experiment t times.

For the ith experiment, we define the random variable Xi as follows.

Xi =

{
1 , if G gets disconnected in the ith experiment
0 , otherwise

Then, our estimate of pfail is the following quantity.

X =

∑t
i=1 Xi

t

Now, observe that
E [Xi] = pfail := µ

Also,
Var (Xi) = E

[
X2

i

]
− (E [Xi])

2 = µ− µ2 ≤ µ

Because all the Xi are independent, we see that

Var (X) =
Var (Xi)

t
=

µ− µ2

t

and that
E [X] =

tµ

t
= µ

By Chebyshev’s Inequality, we then see that

P [|X − µ| ≥ ϵµ] ≤ Var (X)

ϵ2µ2
≤ µ

tϵ2µ2
=

1

tϵ2µ

For an FPRAS, we want
1

tϵ2µ
≤ 1

4

which gives us the bound

t ≥ 4

ϵ2µ

Now, because we assumed that pfail = µ = Ω(1/n4), we clearly see that t = O(n4/ϵ2)
works.

1.6.2. Case 2. Now consider the second case, i.e

pc <
1

n4

The idea here is that most of the failure probability is due to smaller cuts (say of size
atmost αc), and that we can ignore large cuts. The goal is to pick α such that

P [Some cut ≥ αc fails] ≤ ϵpfail

Also, we face the question: how to bound the error for α-min cuts (i.e cuts with size
atmost αc).

Next, we claim that there are atmost n2α α-min cuts in any graph with n vertices.
For a proof, refer to Claim 11.3 in this link: https://people.eecs.berkeley.edu/
~sinclair/cs271/n11.pdf.

https://people.eecs.berkeley.edu/~sinclair/cs271/n11.pdf
https://people.eecs.berkeley.edu/~sinclair/cs271/n11.pdf

RANDOMIZATION AND SUBLINEAR ALGORITHMS 13

Now, suppose E1, ..., Et are the α-min cuts. For any edge e, define the random
variable Xe as follows.

Xe =

{
1 , if e fails
0 , otherwise

Then, define
Ci =

∧
e∈Ei

Xe

So, Ci will be 1 if and only if all the edges in the cut Ei fail. Now, let

Φ =
t∨

i=1

Ci

Clearly, Φ is a disjunction. So, clearly we see that
P [Some α-min cut fails] = Weighted Average of solutions to Φ

We will soon see an FPRAS for DNF counting (in the next section), i.e computing the
right hand side above.

Now, let us determine what α value to set. Let C1, ..., CN be cuts of size ≥ αc, and
let ci = |Ci|. Arrange c1, c2, ..., cN in non-decreasing order, i.e let

c1 ≤ c2 ≤ ... ≤ cN

Now, consider the first n2α cuts (if there are fewer such cuts, we get an even better
bound). Clearly,

P [Ci fails] ≤ pαc

and so

P
[
n2α∨
i=1

Ci fails
]
≤ n2αpαc

Now, because we know that
pc <

1

n4

this implies that for some δ > 2

pc ≤ n−(2+δ)

So, this implies that

P
[
n2α∨
i=1

Ci fails
]
≤ n2αpαc ≤ n2αn(−2−δ)α = n−δα

Now, for any β, we know that there are atmost n2β cuts of size ≤ βc. Now, again,
consider the list C1, ..., CN . For k = n2β, we clearly have that ck ≥ βc Now, let
β =

1

2

log k
log n (which means k = n2β). Then,

P [Ck fails] ≤ pβc ≤ p
c
2

log k
log n ≤ p−(2+δ)(logn k)/2 = k−(1+δ/2)

So, it follows that

P
[∨
i>n2α

]
≤
∑

k>n2α

k−(1+δ/2) ≤
∫ ∞

n2α

x−(1+δ/2)dx =
2

δ
n−δα < n−δα

14 SIDDHANT CHAUDHARY

Putting the above two bounds together, we see that

P [Some cut of size ≥ αc fails] ≤ 2n−δα

Finally, we want
2n−δα ≤ ϵpc ≤ ϵpfail

and so we can choose

α = 2 +
1

2
logn(2/ϵ)

1.7. DNF Counting. In this section, we will devise an FPRAS for the DNF Counting
problem. Let us first describe what the problem is about.

We have a logical formula Φ in Disjunctive Normal Form (DNF), i.e the formula
can be written as

Φ = T1 ∨ T2 ∨ · ∨ Tm

where each Ti is a conjunction, i.e it is an and over a certain number of literals. For
example, Φ could be the following.

Φ = (x1 ∧ x2 ∧ ¬x3) ∨ (¬x3 ∧ x5)

We will make the following assumptions.
• The formula Φ has m terms and n variables.
• No term Ti contains both x and ¬x, where x is some variable. If such a Ti

exists, it will never be satisfiable and can be safely removed from Φ.
The second assumption above implies that all the terms Ti in Φ have exactly one
satisfying assignment; to see this, note that to satisfy a conjunction, all of its literals
must be 1, and hence there is a unique assignment of variables in Ti that satisfies Ti.

Now, define the set Si as follows.

Si := Set of assignments of all variables satisfying the term Ti

The cardinality of Si can be easily counted.

|Si| = 2n−qi

where qi is the number of variables in Si. This is straightforward: there is a unique
assignment of variables in Si that satisfies Si; all the other variables of Φ can be set
independently to either 0 or 1. Our goal is to calculate the following cardinality.

c(Φ) =

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣
Clearly, the above cardinality is the total number of satisfying assignments of Φ.
Hence the problem is called DNF Counting. We will assume that each variable has
equal probability for being 0 or 1, i.e p = 1/2 (recall the Network Reliability problem
setting). We will see how to solve this problem when p is any number after solving
the problem for p = 1/2.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 15

1.7.1. The Naive Unbiased Estimator. To estimate the value of |
⋃m

i=1 Si|, we will do
the following: pick a random assignment, and check if it satisfies the formula Φ. Repeat
the experiment a number of times, and average out the result. Formally, suppose T is
the number of times we repeat the experiment. We will maintain a counter X which
is initialised to zero. Every time our random sample is a satisfying assignment for Φ,
we increment X by 1. Then, after T iterations, we output the number

Y =
X

T
2n

and we hope that this is a good approximation to the number of satisfying assignments
(note that 2n is the total number of possible assignments).

Now, for this method to be an FPRAS, it can be checked that we need the quantity
|
⋃m

i=1 Si| /2n to be polynomial in n. This is asking a lot, because this will mean that
the number of satisfying assignments for Φ is in the order of 2n, which means there
are a lot of satisfying assignments. We will next cover a much better algorithm for
this, which works in all cases.
1.7.2. Karp-Luby Algorithm. In this section, we will see how to sample uniformly at
random from the set c(Φ), i.e we will sample only satisfying assignments. This is not
obvious, but there is a nice way to do this. Define the set S as follows.

S := {(a, i) | Assignment a satisfies term Ti}
We immediately see that

|S| =
m∑
i=1

|Si|

and hence |S| is easy to compute, since we we can compute each |Si| easily. Let

r = c(Φ) =

∣∣∣∣∣
m⋃
i=1

Si

∣∣∣∣∣
and we want to approximate r. Let the satisying assignments of Φ be a1, ..., ar. Call
the pair (ai, j) to be special if j is the first term satisfied by ai. Clearly,

of special pairs = r

Since we wanted to approximate r, it is enough to approximate the number of special
pairs. To do this, we will use an unbiased estimator wherein we will sample points
uniformly at random from S (in a moment we will see how to do this). See the
pseudocode of the algorithm on the next page.

16 SIDDHANT CHAUDHARY

Algorithm 3 Karp-Luby Algorithm
1: X ← 0
2: for j = 1 to T do
3: Pick (a, i) uniformly at random from S ▷ We will show how to do this
4: if (a, i) is special then
5: X ← X + 1
6: end if
7: end for
8: Output X

T
· |S| ▷ Our estimate of the number of special pairs

Assume that we know how to pick (a, i) from the set S uniformly at random. Let
Xi be the random variable which is 1 if the pair picked at the ith step is special, and
0 otherwise. So, for each 1 ≤ i ≤ T , we see that

µ = E [Xi] = P [Xi = 1] =
of special pairs

|S|
=

r

|S|
Suppose

Y =
X

T
|S|

Then, we see that

E [Y] =
E [X] · |S|

T
=

Tµ

T
· |S| = µ|S| = r

Also, because the Xis are all independent, we see that

Var (Y) =
Var (X) · |S|2

T 2
=

∑T
i=1 Var (Xi) · |S|2

T 2
=

T (µ− µ2) · |S|2

T 2
≤ µ|S|2

T
=

r|S|
T

So, by Chebyshev’s Inequality, we see that

P [|Y − r| ≥ ϵr] ≤ Var (Y)

ϵ2r2
≤ r|S|

Tϵ2r2
≤ r2m

Tϵ2r2
=

m

Tϵ2

where in the above step, we have used the trivial fact that |S| ≤ rm. So, for an
FPRAS, we need

m

Tϵ2
≤ 1

4
which gives us the bound

T ≥ 4m

ϵ2

Clearly, the above algorithm is an FPRAS, because with probability ≥ 3/4, Y is in
the interval [(1− ϵ)r, (1 + ϵ)r].

Finally, we will now show how to sample points (a, i) uniformly at random from the
set S. This will be done as follows.

(1) Pick term i (Ti) with probability
|Si|∑m
i=1 |Si|

i.e we are picking a term with probability proportional to it’s size.
(2) Set variables in the term Ti so that they satisfy Ti (as we have noted before,

there is precisely one such assignment of these variables), and pick values for
the rest of the variables uniformly at random.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 17

Let us show that this is really sampling points from S using the uniform distribution
on S. But this is clear; if (a, i) ∈ S, then clearly the probability of picking (a, i) is
simply the probability of picking term Ti multiplied by the probability of picking the
values of a on the rest of the variables (which as we know is just 1/2n−qi), which is
equal to

|Si|∑m
i=1 |Si|

1

2n−qi
=

1∑m
i=1 |Si|

=
1

|S|

and hence we are done.

1.8. Improving success for 2-sided errors: Medians of Means. In this section,
we will consider again the FPRAS we devised for the DNF Counting problem in the
last section. We will see how to efficiently improve the error probability, even though
we have a two-sided error in this case. The method we will use is called the median
of means method.

Recall the random variable Y from the last section. We showed that

P [|Y − r| ≥ ϵr] ≤ m

Tϵ2

Let δ > 0 be the error that we want. So, we want

m

Tϵ2
< δ

which gives us the following bound on T .

T >
m

δϵ2

So, we will need O(1/δ) steps to get a small error. If δ = 1/2n (exponentially small
error), we will need O(2n) steps to get this small error; this is clearly not fast. We
want to do better.

To optimize our solution, we will use the so called median of means method. The
idea is simple: we will run the estimator for 2s+ 1 steps, where s will be determined
in a moment. Then, we will output the median of the 2s+1 outputs that we get. Let
Oi be the outputs for 1 ≤ i ≤ 2s+ 1, and suppose they are ordered, i.e

O1 ≤ O2 ≤ · · · ≤ O2s+1

Our output will be Os+1. Now, we will estimate

P [Os+1 /∈ [(1− ϵ)r, (1 + ϵ)r]]

Clearly, the event Os+1 /∈ [(1−ϵ)r, (1+ϵ)r] is a subset of the event that s+1 outcomes
are not in the given interval; this is true because if Os+1 is not in the given interval,
then either {O1, ..., Os} are not in the interval, or {Os+2, ..., O2s+1} are not in the given

18 SIDDHANT CHAUDHARY

interval. So, using the independence of the 2s+ 1 trials, we have the following.

P [Os+1 /∈ [(1− ϵ)r, (1 + ϵ)r]] ≤ P [≥ s+ 1 values are outside the interval]

≤
∑
i≥s+1

(
2s+ 1

i

)(
1

4

)i(
3

4

)2s+1−i

≤
(
1

4

)s+1(
3

4

)s ∑
i≥s+1

(
2s+ 1

i

)

≤
(
1

4

)s+1(
3

4

)s

22s+1

≤
(
3

4

)s

Now, we want (
3

4

)s

< δ

which gives us the bound
s log(3/4) < log(δ)

which gives us
s log(4/3) > log(1/δ)

which gives us

s >
log(1/δ)
log(4/3)

and hence we now need only O(log(1/δ)) steps to get a small error bound.

2. Probabilistic Method

2.1. An example: k-SAT. In this section, we will see how powerful and simple the
probabilistic method can be to show the existence of certain structures.

Consider a k-SAT formula ϕ, i.e

ϕ = C1 ∧ C2 ∧ · · · ∧ Cm

where each Ci is a disjunction of k literals. Also, suppose there are k variables. If we
take a random assignment a to the variables, we see that

P [a does not satisfy Cj] =
1

2k

So, using a simple union bound, we see that

P [a does not satisfy ϕ] ≤ m

2k

If m < 2k, then we see that the above probability is strictly less than 1. In that case,
we see that

P [a satisfies ϕ] > 0

and hence, since the probability is non-zero, there is some satisfying assignment for ϕ.
This is known as the probabilistic argument/probabilistic method.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 19

2.2. Lovasz Local Lemma. In this section, we will state and prove a very useful
tool to be applied in the probabilistic method.

Theorem 2.1 (Lovasz Local Lemma). Let E1, ..., En be a set of bad events associated
to a random experiment, such that the following hold.

(1) P [Ei] ≤ p < 1 for all i.
(2) Each Ei depends on atmost d other Ejs.
(3) p(d+ 1) ≤ 1/e, where e is Euler’s constant.

Then,

P
[

n⋂
i=1

Ei

]
> 0

Remark 2.1.1. Condition (3) above can also be replaced by the condition 4dp ≤ 1;
the proof of that statement is given in the book.

Proof. First, using induction, we will show the following: for any S ⊆ [n] and i ∈ [n],
we have

P
[
Ei |

⋂
j∈S

Ej

]
≤ 1

d+ 1
(2.1)

Having proven this, the statement of the theorem will follows; to see this, using the
above inequality, we have the following.

P
[

n⋂
i=1

Ei

]
= P

[
E1 |

n⋂
i=2

Ei

]
·P
[

n⋂
i=2

Ei

]
...

=
n−1∏
i=1

P
[
Ei |

n⋂
j=i+1

Ej

]
·P
[
En

]
≥
(
1− 1

d+ 1

)n−1

· (1− p)

≥
(
1− 1

d+ 1

)n

> 0

where in the second last step, we used the fact that

1− p ≥ 1− 1

d+ 1

So, it is enough to prove inequality (2.1). We will do this now, and we will prove this
using induction on |S|. For the base case, suppose |S| = 0. In that case, the inequality
is trivial, since

P [Ei] = p ≤ 1

(d+ 1)e
<

1

d+ 1

So, assume that the statement holds for all sets S with |S| < m, and we will show
that statement for |S| = m.

20 SIDDHANT CHAUDHARY

Now, write S = S1 ∪S2, where S2 consists of those j for which Ej is independent of
Ei. Now, we have the following.

P
[
Ei |

⋂
j∈S

Ej

]
=

P
[
Ei ∩ (

⋂
j∈S1

Ej) |
⋂

j∈S2
Ej

]
P
[⋂

j∈S1
Ej |

⋂
j∈S2

Ej

]
We will give an upper bound on the numerator of the LHS and a lower bound on the
denominator of the LHS. First, consider the numerator. We bound it as follows.

P
[
Ei ∩ (

⋂
j∈S1

Ej) |
⋂
j∈S2

Ej

]
≤ P

[
Ei |

⋂
j∈S2

Ej

]
= P [Ei]

where the first step is the trivial bound, and in the second step we used independence.
Second, let us consider the denominator. Without loss of generality, suppose S1 =
{1, ..., r}, and let S2 = {r + 1, ..., n}. Then, we have the following.

P
[⋂
j∈S1

Ej |
⋂
j∈S2

Ej

]
=

r∏
k=1

P
[
Ek |

r⋂
j=k+1

Ej ∩
⋂
j∈S2

Ej

]

=
r∏

k=1

(
1−P

[
Ek |

r⋂
j=k+1

Ej ∩
⋂
j∈S2

Ej

])

Now, by induction hypothesis, each term in the product on the RHS can be bounded
below by 1− 1

d+1
. So, we see the following.

P
[⋂
j∈S1

Ej |
⋂
j∈S2

Ej

]
≥
(
1− 1

d+ 1

)r

≥
(
1− 1

d+ 1

)d

where above we are using the fact that r ≤ d, since each Ei depends on atmost d other
Ejs. Finally, note that (

1− 1

d+ 1

)d

≥ 1

e

and this is the lower bound we’ll use for the denominator. Finally, putting everything
together, we have the following.

P
[
Ei |

⋂
j∈S

Ej

]
≤

P [Ei]

1

e

= eP [Ei] ≤ ep ≤ 1

d+ 1

and hence the claim follows by induction. This completes the proof of the claim. ■

3. Sublinear Algorithms

We will begin this section by looking at some examples.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 21

3.1. Outputting index of an even number. Suppose we are given an array A
containing a permutation of numbers in the set [n]. Our goal is to come up with an
algorithm that outputs an index containing an even number. First, we will show that
there is no deterministic algorithm that can solve this in sublinear time.

Proposition 3.1. There is no deterministic algorithm that solves the above problem
in o(n) time.

Proof. Let S ⊆ [n] be the set of indexes that the algorithm queries. Also, assume
that |S| ≤ n/2. Clearly, an adversary can give an input array in which all the indexes
in S have odd numbers, and all other indexes have even numbers. In that case, the
algorithm will have to query atleast n/2 + 1 numbers. This proves the claim. ■

Let us now consider bringing in randomization. So, let us look at the following
simple algorithm.

(1) Pick an index i ∈ [n] uniformly at random.
(2) Repeat the above constantly many times until you get an even number.

Note that for an index i,
P [A[i] is even] = 1

2
So, we can just choose some constant T such that the success probability in T trials
is atleast 99 percent. Clearly, this algorithm runs in time O(1), i.e this is a sublinear
algorithm.

3.2. Diameter of a point set. We are given a set of m points, and we are given
pairwise distances between the points satisfying the triangle inequality. Using this
information, we want to determine the diameter of the set. Just as a note, observe
that here the input has size Ω(m2).

The first question we ask is: can we solve this problem exactly in sublinear time
using a deterministic algorithm? In the following claim, we prove that this is not
possible.

Proposition 3.2. There is no deterministic algorithm that solves the above problem
in exactly sublinear time, i.e in time o(m2).

Proof. To be completed. ■
Motivated by the above claim, we will seek an approximate answer to the problem.

So, consider the following deterministic algorithm.
(1) Pick a point i ∈ [m].
(2) Determine the farthest point k ∈ [m] from l.
(3) Output lik, i.e the distance between i and k.

Proposition 3.3. The above algorithm approximates the diameter by a factor of 2.
The running time of the algorithm is O(m).

Proof. To prove this, suppose luv is the diameter of the set, where u, v ∈ [m]. We want
to show that

luv ≤ 2lik

To prove this, consider the edges ui and iv. By the triangle inequality, we know that
luv ≤ lui + liv

≤ lik + lik = 2lik

22 SIDDHANT CHAUDHARY

Clearly, the running time of the algorithm is O(m), because we need to scan all the
distances from i to any other vertex to pick the farthest vertex. ■

3.3. Two types of approximations. Let us now look at the two types of approxi-
mations in the literature of approximation algorithms.

• Classical Approximation. When the true answer is t, the output is t̃ such that
(1) t

α
≤ t̃ ≤ αt (multiplicative)

(2) t− β ≤ t̃ ≤ t+ β (additive)
• Property testing. This is usually studied in the realm of decision problems. In

the classical setting of decision problems, we want to accept the YES instances
of the problem with probability ≥ 2/3 and we want to reject the NO instances
of the problem with probability ≥ 2/3. In the setting of property testing, we
don’t care about no instances which are close to being YES instances (we’ll
make this formal).

Formally, an input is ϵ-far from YES if it has to be changed in ≥ ϵ fraction
of positions to become YES, where ϵ ∈ (0, 1)

Example 3.1. Suppose our universe is all arrays of length n. Also, suppose the set
of YES instances is the set of all sorted arrays of length n. By our definition, arrays
which have to be changed in ϵn values to make them sorted are said to be ϵ-far from
YES. In this case, we can say that an array is ϵ-far from YES if it’s Hamming distance
from every sorted array is ≥ ϵn.

For instance, consider the following array.
A = [2, 1, 4, 3, · · · , n, n− 1]

This array is 1/2-far from being YES, because from every pair of consecutive elements,
atleast one must be changed. In fact, we can change the elements 1, 3, ..., n − 1 to
2, 4, ..., n to make the array sorted.

3.4. Property Testing algorithm for connectedness. In this section, we will look
at a property testing algorithm for testing connectedness of graphs. Clearly, there is
no deterministic algorithm which can test the connectedness of a graph exactly in
sublinear time.

Let us now describe the algorithm.
(1) Our input will be a graph G = (V,E) on n vertices and m edges.
(2) The goal is to distinguish with high probability between

(a) G is connected.
(b) G is ϵ-far from being connected, for ϵ ∈ (0, 1).

(3) The input representation in this problem will be adjacency lists. With this
input representation, G is ϵ-far from being connected if it differs from every
n-vertex connected graph on ≥ ϵm edges, i.e we need to add atleast ϵm edges
to the graph to make it connected (because it is useless to remove edges).

(4) The next question is: how do we access the input? After all, we are aiming for
a sublinear time algorithm. To do this, we allow two types of queries on the
graph.
(a) Neighbor queries. The input to this query will be (v, i), and the query will

return the ith neighbor of the vertex v. We assume that there is some
oracle doing this for us.

(b) Degree queries. The input here is a vertex v, and the output will be the
degree of v. Again, we assume that an oracle does this for us.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 23

It is easy to see that both of these queries take O(1) time.

Theorem 3.4. Connectedness of graphs can be ϵ-tested using O
((

1
ϵd

3
))

queries,
where d = 2m

n
.

Remark 3.4.1. Note the significance of the statement of the theorem; the complexity
is independent of the size of the input representation; it only depends on the ratio m

n
.

Proof. We will prove this in a sequence of steps. First, we make some simple observa-
tions.

Suppose G is ϵ-far from connected. An noticed before, this means atleast ϵm edges
need to be addded to G to make it connected. This clearly implies that G has atleast
ϵm + 1 CCs; this is true because adding one edge decreases the number of CCs by
atmost 1.

Call a CC of G small if it has ≤ 2n
ϵm

= 4
ϵd

vertices. Otherwise, call the CC big.
With this definition, it is clear that the number of big CCs in G is < ϵm

2
. This is

clear because if x is the number of big CCs and if x ≥ ϵm
2

, then

x · ϵm
2

>
2n

ϵm
· ϵm
2

= n

which is a contradiction.
For the algorithm, look at the pseudocode in Algorithm 4. First, we claim that

if G is connected, then the algorithm always rejects, provided ϵ ≥ 2
m

. This is clear,
because in line 6 of the algorithm, we will never detect a CC, because we never explore
all the n vertices.

Next, we claim that if G is ϵ-far from connected, then the tester rejects with proba-
bility ≥ 2/3. So, our tester has only one-sided error. To prove this, suppose G is ϵ-far
from connected. Then, as we proved above, there stricly fewer than ϵm

2
big CCs; so,

this means there are ≥ ϵm+1− ϵm
2

= ϵm
2

small CCs. Because each of these small CCs
contains a vertex, we see that

P [Sampling a vertex from a small CC] ≥ ϵm/2

n
=

ϵm

2n
=

ϵd

4
This implies that

P [Not sampling a vertex from a small CC] ≤
(
1− ϵd

4

) 8
ϵd

≤ e−2 <
1

3

where we have used the inequality 1− x ≤ e−x. This means that with probabilty > 2
3
,

one of the sampled vertices falls into a small CC, i.e with probability > 2
3
, the tester

will reject. This proves the claim.
Let us now compute the query complexity of the tester. Observe that there are 8

ϵd

iterations. In each iteration, we do a BFS/DFS until seeing ≤ 4
ϵd

vertices. This means

that the number of queries is ≤
(

4
ϵd

)2
. Hence, the query complexity is

O

((
1

ϵd

)3
)

and this completes the proof of the claim. ■

24 SIDDHANT CHAUDHARY

Algorithm 4 ϵ-tester for connectedness
1: Input: ϵ ∈ (0, 1), n, m; query access to graph G
2:
3: for t = 1 to 8

ϵd
do

4: Sample a vertex v ∈ V u.a.r.
5: Run a BFS/DFS up until seeing ≤ 4

ϵd
= 2n

ϵm
vertices.

6: reject if a connected component is detected upon seeing these many vertices.
7: end for
8: accept

3.5. Estimating the number of connected components. We will now look at
an algorithm to estimate the number of connected components in the input graph.
The algorithm will be very similar to what we saw in the last section. Section to be
completed.

3.6. Testing sortedness of array. Suppose we have an array A of length n. Our
goal is to distinguish with high probability between the following two cases.

(1) A is sorted.
(2) ≥ ϵn values in A need to be changed to make it sorted.

Also, we are given query access to the array.

Theorem 3.5. ϵ-testing sortedness can be done in O
(logn

ϵ

)
queries, where ϵ ∈ (0, 1)

is called the proximity parameter. Moreover, there is a one-sided error tester that
achieves this bound.

Proof. We will use the following ideas to come up with a tester.
(1) Binary search always succeeds in a sorted array.
(2) Binary search fails w.h.p on a far from sorted array.

Look at Algorithm 5 for the pseudocode of our tester.
We first claim that if the array is sorted, then the tester always accepts. The proof

is clear, because binary search on a sorted array will always work.
Next, we claim that if array A is ϵ-far from sorted, then the tester will reject with

probability ≥ 2
3
. Let us now prove this. We will prove this in a bunch of steps.

First, for i ∈ [n], call A[i] good if binary search successfully finds A[i]. Otherwise,
call A[i] bad. We claim that A restricted to good values is sorted. To prove this,
suppose A[i] and A[j] are good elements, and suppose i ≤ j. We will show that
A[i] ≤ A[j]. To see this, recall how binary search works: on a given range, it considers
the middle element of the range, compares the value to be searched with the array
value of the middle element, and moves left/right accordingly. So, consider the implicit
binary search tree that is created by binary searching A[i] and A[j]. The root of the
tree is the element A[n/2]. Clearly, A[i], A[j] have a common ancestor (namely the
root), and hence they have a least common ancestor. Let A[k] be the least common
ancestor of A[i] and A[j]. Clearly, i lies to the left to k, while j lies to the right of
k, i.e i ≤ k ≤ j. Also, because binary search is successful for A[i] and A[j], it must
be true that A[i] ≤ A[k] and A[j] ≥ A[k], which clearly means that A[i] ≤ A[j]. This
proves our claim.

Now, we claim that we will “repair” A to make it a sorted array by changing it’s
values only on bad points. This is actually very easy to see. Suppose array A has good
points at indices i1 ≤ i2 ≤ · · · ik. Then, we can make array A sorted by changing the

RANDOMIZATION AND SUBLINEAR ALGORITHMS 25

values in the range (ij−1, ij) to A[j − 1] for every 2 ≤ j ≤ k, and by changing values
in the range [1, i1) to the value A[i1].

So, the above claim means that the distance of A to sortedness ≤ the number of
bad points in A. Because A was assumed to be ϵ-far from sortedness, we clearly see
that the number of bad points in A is ≥ ϵn.

Now we can compute the rejection probability, which is simply the probability of
picking a bad element in the array. In one iteration,

P [Tester rejects in one iteration] ≥ ϵn

n
= ϵ

So, if we put T = 2/ϵ, we have that

P [Tester rejects] ≥ 1− (1− ϵ)2/ϵ ≥ 1− e−2 ≥ 2

3
and hence this proves the claim.

Finally, let us compute the query complexity of the algorithm. In each iteration,
tester makes O(log n) queries. So, the total query complexity is O

(logn
ϵ

)
, and this

completes the proof of the theorem. ■

Algorithm 5 Tester for array sortedness
1: for t = 1 to T do
2: Pick i ∈ [n] u.a.r.
3: Perform a binary search for A[i].
4: reject if binary search fails.
5: end for
6: accept.

3.7. Witness Lemma. In this section, we will prove a handy lemma, which is called
the Witness Lemma (this is not a standard name).
Proposition 3.6 (Witness Lemma). Suppose there are n objects, out of which t are
faulty. Suppose we draw r objects u.a.r (with replacement) from these these objects.
Then,

P [Finding a faulty object] = 1−P [Not finding a faulty object]

= 1−
(
1− t

n

)r

So, to find a faulty object with probability atleast 2/3, it is enough to set r = 2n
t

.

Proof. The proof is trivial. Just use the inequality 1 − x ≤ e−x, and the fact that
e−2 < 1

3
. ■

3.8. Testing monotonocity of boolean functions over the hypercube. Let us
first describe the problem statement. Suppose we have a boolean function f : {0, 1}d →
{0, 1}. We have query access to the function. We also have some input ϵ ∈ (0, 1). The
goal is to distinguish with high probability between the following cases.

(1) f is monotone, i.e if x ⪯ y then f(x) ≤ f(y). Here ⪯ is the lexicographic
ordering.

(2) f is ϵ-far from being monotonic, i.e ≥ ϵ2d f -values must be changed to make
it monotonic.

26 SIDDHANT CHAUDHARY

Our algorithm will be the following.

Algorithm 6 Algorithm for testing monotonicity of boolean functions
1: Input: f , ϵ ∈ (0, 1), d ∈ N (dimension); query access to f .
2: for t = 1 to T = Θ

(
d
ϵ

)
do

3: Sample an edge of the boolean hypercube u.a.r.
4: If f violates monotonicity of f , reject.
5: end for
6: accept

By an edge of the boolean hypercube we just mean a pair of boolean vectors in
{0, 1}d which differ in exactly one coordinate. Also, f is said to violate an edge if it is
not monotonic on the vertices of the edge.

Clearly, the algorithm never rejects a monotonic function. So, this algorithm has
one-sided error. So, it only remains to show that if f is ϵ-far from monotonic, then
the tester rejects with high probability.
Proposition 3.7. If f is ϵ-far from monotone, then there are ≥ ϵ2d−1 edges in the
hypercube that violate monotonicity.
Proof. We will prove this by proving the contrapositive. So, suppose f violates mono-
tonicity on V Ef < ϵ2d−1 edges. Let V E

(i)
f denote the number of violated edges along

the ith dimension for i ∈ [d]. It is clear that

V Ef =
∑
i∈[d]

V E
(i)
f

We will now give a method to “repair” f , i.e a method to make f monotonic by
changing less than ϵ2d−1 edges, which will complete the proof.

We do the following.
(1) Iterate from i = 1 to i = d.
(2) For each i, “repair” the violated edges on dimension i. Here, “repair” means

just changing the values of f on the vertices which are connected by violating
edges along dimension i; suppose (x, y) is an edge along dimension i which is
violated such that y ≺ x but f(y) > f(x). Clearly, f(y) = 1 and f(x) = 0. We
can repair by either making f(x) = 1, or by making f(y) = 0, or by making
f(x) = 1 and f(y) = 0. Do any of these operations, but make sure to do the
same operation along all edges.

We now claim that repairing a dimension does not increase the number of violated
edges in other dimensions. The proof of this is really simple, and is done by case work.
More specifically, we can show that if i, j are dimensions such that i ̸= j, then repairing
dimension i does not increase the number of violations in dimension j. Complete the
cases. Draw a square, and just consider the total number of configurations of this
square. In every configuration, check that the repair function does not increase the
number of violations along the jth dimension.

So, it follows that the total number of repair operations will be ≤
∑

i∈[d] 2 · V E
(i)
f =

2·V Ef ; we multiply by 2 because for every edge, we change values of atmost 2 vertices.
Also, note that

2V Ef < ϵ2d

So, f can be made monotone by changing values on < ϵ2d vertices, which means that
f is not ϵ-far from monotone. ■

RANDOMIZATION AND SUBLINEAR ALGORITHMS 27

3.9. Lp testing. So far, we’ve defined ϵ-farness with respect to the Hamming distance,
which is simply the number of coordinates in which the input differs from a particular
property. But this notion of distance is not suitable for all problems. Instead, one can
study more meaningful distance measures, one of which are Lp distances. We will now
define these formally.

Definition 3.1. Suppose D is a finite domain, and let f, g : D → [0, 1]. For p ≥ 1,
we define

Lp(f, g) = ||f − g||p =

(∑
x∈D

|f(x)− g(x)|p
) 1

p

Also, we define the relative distance dp(f, g) as follows.

dp(f, g) =
||f − g||p
||1||p

where 1 is the all ones function. Just as before, property testing and ϵ-farness can be
defined in terms of Lp distances. Let P be any set of functions h : D → [0, 1]. The
distance dp(f,P) of f from P is defined in the most natural way.

dp(f,P) = inf
h∈P
{dp(f, h)}

Given a property P of functions h : D → [0, 1], the Lp-testing problem has the
following goal: given some input f : D → [0, 1], we want to distinguish with probability
≥ 2

3
between the following two cases.

(1) f ∈ P .
(2) dp(f,P) ≥ ϵ.

The farness parameter ϵ ∈ (0, 1) is given as input, along with oracle access to the
function f .

3.10. L1-testing monotonicity of functions on a grid. Let n, d be positive inte-
gers. Consider the grid [n]d. We can naturally define a partial order on this grid as
follows: given x, y ∈ [n]d, we say that x ⪯ y if xi ≤ yi for all 1 ≤ i ≤ d. A function
f : [n]d → [0, 1] is said to be monotone if x ⪯ y implies f(x) ≤ f(y). Let M denote
the class of monotone functions h : [n]d → [0, 1]. We will give an algorithm for L1

testing of the property M.

Theorem 3.8 (Characterization Theorem (Berman et. al)). Let f : [n]d → [0, 1]
and let t ∈ [0, 1]. Define

ft(x) =

{
1 , f(x) ≥ t

0 , f(x) < t

So, ft is a boolean function. Then,

L1(f,M) =

∫ 1

0

L1(ft,M) dt

Proof. See the proof of Lemma 2.1 in this paper: https://cs-people.bu.edu/
sofya/pubs/Lp-testing-stoc-published.pdf. ■
Corollary 3.8.1. If f and ft are defined as above, then

d1(f,M) =

∫ 1

0

d1(ft,M) dt

https://cs-people.bu.edu/sofya/pubs/Lp-testing-stoc-published.pdf
https://cs-people.bu.edu/sofya/pubs/Lp-testing-stoc-published.pdf

28 SIDDHANT CHAUDHARY

Proof. The proof is trivial and just follows from the definition. ■

Theorem 3.9. Suppose T is a non-adaptive 1-sided error tester for monotonicity of
functions of the form f : [n]d → {0, 1}, then T is also an L1-tester for monotonicty of
functions of the form f : [n]d → [0, 1].

Remark 3.9.1. This theorem essentially reduces the problem of monotonicity testing
of general real valued functions to monotonicity testing of boolean functions. This
technique is also called range reduction.

Proof. Recall that a tester is non-adaptive if a query made by the tester does not
depend upon answers to its previous queries. Hence, the tester can decide all of the
queries it wants to make before testing. So, the tester T works as follows.

(1) The tester samples Q ⊆ [n]d according to some distribution.
(2) It rejects only if there is a violation of monotonicity among f values in Q, i.e

only if there are x, y ∈ Q such that x ≺ y but f(x) > f(y).
So, we propose the following tester for real functions: just run T on input f with
oracle access to f . Note that the tester T itself does not use any property of boolean
functions; it just samples a bunch of points and tests for monotonocity over those
points. So, T will still work work the input f .

Now note that if f is monotone, then T will always accept f . This is clear from the
description of T .

So now suppose f is ϵ-far from monotone, i.e suppose d1(f,M) ≥ ϵ. We will show
that with probability ≥ 2

3
, the tester will reject. By Theorem 3.8 (Characterisation

Theorem), there exists some t∗ ∈ [0, 1] such that d1(ft∗ ,M) ≥ ϵ. Note that ft∗ is a
boolean function. Now, supposeM′ is the class of boolean monotone functions on D.
Clearly, we have that

d1(f
∗
t ,M′) ≥ d1(f

∗
t ,M) ≥ ϵ

where the above inequality is true because the infimum cannot grow if we take larger
sets. Moreover, observe that d1(f

∗
t ,M′) is just the Hamming distance between f and

M′. So, if T runs with query access to ft∗ , then with probability ≥ 2
3
, Q contains

x, y such that x ≺ y but ft∗(x) = 1 and ft∗(y) = 0. This clearly means that f(x) ≥ t
and f(y) < t, which implies that f(x) > f(y). So, the tester T will reject f with
probability ≥ 2/3, and this completes the proof of the claim. ■

3.11. The Reverse Markov Inequality. In this small section, we will prove a very
useful inequality.

Proposition 3.10 (Reverse Markov’s Inequality). Let X be a random variable
such that E [X] ≥ µ, and assume that X is bounded above by 1. Then,

P
[
X ≥ µ

2

]
≥ µ

2

Proof. The proof of this claim is very simple. First, using the fact that X is bounded
above by 1, we have the following.

µ ≤ E [X] ≤ P
[
X ≥ µ

2

]
· 1 + P

[
X <

µ

2

] µ
2
≤ P

[
X ≥ µ

2

]
+

µ

2

This proves the claim. ■

RANDOMIZATION AND SUBLINEAR ALGORITHMS 29

3.12. Monotonicity testing of boolean functions over the general grid. In-
spired from the previous section, we now only need to come up with a tester for testing
monotonicity of boolean functions of the form f : [n]d → {0, 1}.

We visualise the domain [n]d as an undirected graph as follows: the vertices are
simply all the points in [n]d; moreover, x, y ∈ [n]d have an edge iff. there is some
i ∈ [d] such that xi = yi + 1 and xj = yj for all j ̸= i. In simple words, two vertices
are connected iff. they differ by atmost one in exactly one coordinate, and they are
equal on all other coordinates.

An axis-parallel line is defined to be a set of points in [n]d that are identical on all
but one coordinate. Clearly, such a line will contain n points.
Theorem 3.11. ϵ-testing monotonicity of a function g : [n] → {0, 1} can be done in
O
(
1
ϵ

)
query complexity.

Proof. To be completed. ■
Theorem 3.12. Let M be the class of all monotone boolean functions on [n]d. For
f : [n]d → {0, 1},

E [d0(f |l,M)]
u.a.r axis parallel line l

≥ d0(f,M)

2d

The expectation above is taken is taken over all axis parallel lines taken uniformly at
random. As usual, d0 is the Hamming distance.
Proof. The proof was not covered in the course. ■
Corollary 3.12.1. If f : [n]d → {0, 1} is ϵ-far from M, then the expected (relative)
distance to M of f |l is ≥ ϵ

2d
.

Proof. Let X be the random variable
X := d0(f |l,M)

Clearly, X takes values in the range [0, 1]. By the previous theorem, we know that

E [X] ≥ d0(f,M)

2d
Now, f is ϵ-far from M, then we see that d0(f,M) ≥ ϵ, and hence

E [X] ≥ ϵ

2d
and this proves the claim. ■

From the above corollary, we can conclude something more. By Proposition 3.10
(Reverse Markov), we see that with probability ≥ ϵ

4d
, X ≥ ϵ

4d
, i.e the line l sampled

is ϵ
4d

-far from monotonocity. This fact motivates the following tester.

Algorithm 7 ϵ-tester for monotonocity of f : [n]d → {0, 1}
1: Input: ϵ, d, n; oracle access to f : [n]d → {0, 1}.
2: for t = 1 to t = 16d

ϵ
do

3: Sample a line l u.a.r from the hypergrid [n]d.
4: Test monotonocity of f |l : [n]→ {0, 1} with parameter ϵ

4d
.

5: reject only if the above test rejects.
6: end for

30 SIDDHANT CHAUDHARY

Theorem 3.13. The above tester is a one-sided error tester with query complexity
O
(

d2

ϵ2

)
.

Proof. It is clear that the tester has only one-sided error, i.e if f is monotonic, the
tester can never reject.

Now, suppose f is ϵ-far from M. The only way the tester rejects is if either of the
following occurs.

(1) The tester fails to sample a line that is ϵ
4d

-far from M. As noted in the
paragraph just above the pseudocode, the probability of this happening is
≤ 1− ϵ

4d
for one iteration; so, the probability of never sampling such a line is

≤
(
1− ϵ

4d

) 16d
ϵ ≤ e−4 ≤ 1

8
(2) So now, suppose that we sample a good line, i.e a line which is ϵ

4d
-far from

M in atleast one iteration. The failure possibility is that the test on the line
fails. By boosting our test (which can be done by not blowing up the query
complexity), we can ensure that the test on the line fails with probability ≤ 1

8
.

So, it follows that the failure probability is ≤ 1
8
+ 1

8
= 1

4
.

Using Theorem 3.11, it is clear that the query complexity is O
(

d2

ϵ2

)
. This completes

the proof. ■
3.13. An even better strategy for boolean functions. In this section, we will
expand on the previous section by coming up even a faster tester for ϵ-testing mono-
tonicity of functions f : [n]d → {0, 1} w.r.t the Hamming distance. Our result will
rely on the following theorem.
Theorem 3.14. Let X be a random variable taking values in [0, 1]. Suppose E [X] ≥ µ.
Let pi = P

[
X ≥ 1

2i

]
and let ki = Θ

(
1

2iµ

)
. Then,

log 4
µ∏

i=1

(1− pi)
ki ≤ 1

3

Proof. This was not proved in the course. ■

Algorithm 8 A new tester for the problem.
1: Input: ϵ, d, n; query access to f : [n]d → {0, 1}.
2: for i = 1 to i =

⌊
log 4

µ

⌋
do

3: Sample ki = Θ
(

1
2iµ

)
lines.

4: For each line, run a monotonicity tester with distance parameter 1
2i

.
5: reject only if any of the above tests reject.
6: end for

The proof of the correctness of this tester is very similar to the correctness proof of
the previous tester. Let us analyze the query complexity. Clearly, the query complexity
is

log 4
µ∑

i=1

Θ

(
1

2iµ

)
·O(2i) = O

(
1

µ
log 1

µ

)
= O

(
d

ϵ
log d

ϵ

)

RANDOMIZATION AND SUBLINEAR ALGORITHMS 31

A lot of details are missing from this proof.

4. Streaming Algorithms in the Data Streaming Model

4.1. The Streaming Model of Computation. Let us briefly describe the streaming
model of computation. In this model, there is an algorithm A which needs to output
something interesting from a given input. However, the way the input is presented to
the algorithm is a bit different.

(1) The input is given to the algorithm as a continuous stream, i.e the input data
points are available one at a time at each time step.

(2) The algorithm A can see each data element only once (a 1-pass).
(3) There is often a limited working memory, like being logarithmic in the size of

the input.
(4) The algorithm A must quickly process each element.

Example 4.1. Suppose we have a stream of m numbers from the universe [n].

⟨a1, a2, ..., am⟩ ∈ [n]m

In the streaming model, a desirable bound on the memory will be polylog(m,n); for
instance, we are only allowed to store upto log (m) data points at once. This is helpful
because in the real of streaming algorithms, we are dealing with really large streams.

We want to sample a uniformly random element from this stream. If we know
the length of the stream, i.e if we know m in advance, we can just do the following:
sample a point t ∈ [m] u.a.r, and output at. Clearly, the memory required to do this
is logm + log n, which satisfies our memory constraints. But the question is: what if
we don’t know m (which is the more realistic situation)? We will see the answer to
this in the next section.

4.2. Reservoir Sampling. Consider the last question posed in the example in the
previous section. We don’t know the length of the stream (m), and we want to sample
a data point from the stream uniformly at random. We will follow the following simple
strategy, known as reservoir sampling.

(1) Initially, we let s← a1.
(2) When the tth element arrives, we set s← at with probability 1/t.

Let us now see why this strategy works. Consider some time point t. For i ≤ t, we
have

P [s = ai] =
1

i
·
(
1− 1

i+ 1

)
· · ·
(
1− 1

t

)
=

1

i
· i

i+ 1
· · · t− 1

t

=
1

t

And this is exactly what we wanted. The space complexity for this algorithm is again
O(log n+ logm); the factor of log n is simply to store the data point ai, and the fact
logm comes from the fact that at each step t, we are tossing a t-sided die; since t ≤ m,
we need logm bits to store the result of this die.

32 SIDDHANT CHAUDHARY

4.3. Counting number of distinct elements in a stream. The problem is the
following: given a stream of data, we need to determine the number of distinct elements
in the stream. Again, suppose the data points come from the universe [n], and suppose
there are m data points.

There are some known lower bounds for the space complexity needed to solve this
problem.

• To solve this problem exactly (even by using randomization), we need Ω(n)
bits.
• To solve this problem deterministically (even up to an approximation), we need
Ω(m) bits.

So, we need to make use of both randomization and approximation to hope to solve
this problem better.

So we modify our goal: we want to estimate the number of distinct elements in
stream ⟨a1, ..., am⟩ up to a multiplicative factor 1 ± ϵ with probability ≥ 2

3
. We will

show an O
(logn

ϵ2

)
space algorithm for this problem.

Algorithm 9 Counting number of distinct elements in a stream
1: Input: ⟨a1, ..., am⟩.
2: Sample a random hash function h : [n]→ [n].
3: Apply h to each stream element.
4: Let X denote the tth smallest hash value seen where t = 10

ϵ2
.

5: return r̃ = n · t
X

.

Let r denote the number of distinct elements in the input stream. We will show
that

P [r̃ ≥ (1 + ϵ)r]

is a very small number. Let us now prove this. Let u1, ..., ur denote the distinct
elements of the stream. So,

P [r̃ ≥ (1 + ϵ)r] = P
[
tn

X
≥ (1 + ϵ)r

]
= P

[
X ≤ tn

(1 + ϵ)r

]
So, we want to bound the probability that the tth smallest hash value is ≤ tn

(1+ϵ)r
. For

each 1 ≤ i ≤ r, let

Yi = 1h(ui)≤ tn
(1+ϵ)r

and let

Y =
∑
i∈[r]

Yi

Now, note that

P
[
X ≤ tn

(1 + ϵ)r

]
= P [Y ≥ t](4.1)

RANDOMIZATION AND SUBLINEAR ALGORITHMS 33

Also, we see that
E [Y] =

∑
i∈[r]

E [Yi]

= rE [Y1]

= rP [Y1 = 1]

= rP
[
h(u1) ≤

tn

(1 + ϵ)r

]
≤ r · tn

(1 + ϵ)r
· 1
n

=
t

(1 + ϵ)

Above, we have used the fact that h hashes a particular element of [n] to any other
element of [n] with uniform probability.

Also, using the fact that Yi’s are all independent random variables, we have that
Var (Y) =

∑
i∈[r]

Var (Yi)

≤
∑
i∈[r]

E
[
Y 2
i

]
=
∑
i∈[r]

E [Yi]

= E [Y]

Above, we have also used the fact that Yis are 0-1 random variables. Now using the
fact that (1 + ϵ)E [Y] ≤ t, we see that

P [Y ≥ t] ≤ P [Y ≥ (1 + ϵ)E [Y]]

≤ P [|Y − E [Y] | ≥ ϵE [Y]]

≤ Var (Y)

ϵ2E [Y]2

≤ 1

ϵ2E [Y]

=
n

ϵ2r ·
⌊

tn
(1+ϵ)r

⌋
Complete the above inequality; show that the upper bound is 1/6. Similarly, it can
be shown that

P [r̃ ≤ (1− ϵ)r] ≤ 1

6

So, it follows that with probability ≥ 1 − 1
3
= 2

3
, r̃ ∈ [(1 − ϵ)r, (1 + ϵ)r] and this

completes the analysis of the algorithm.
Let us now analyze the space complexity of this algorithm. To find the (t = 10/ϵ)th

smallest element, we need O
(logn

ϵ2

)
memory. But note that to store the hash function,

we need O(n log n) memory, which is bad (recall we only want polylog(m,n) memory).

34 SIDDHANT CHAUDHARY

To fix this problem, we do the following: we sample h from a 2-wise independent
family H of hash functions. A family H of hash functions is said to be 2-wise inde-
pendent if for all distinct x, x′ ∈ [n] and for all distinct y, y′ ∈ [n],

P [h(x) = y, h(x′) = y′] =
1

n2

Let p be a prime larger than n. Sample a, b ∈ [p − 1] ∪ {0} u.a.r, and let h(x) =
ax+ b. In the next section, we wills show that this family of functions is indeed 2-wise
independent. So now, to compute h, all we need to store is the numbers a, b; this
requires only O(log p) = O(log n) bits.

4.4. k-wise independent hash families. We will first begin by introducing a new
definition.

Definition 4.1. Let H be a family of functions from [A]→ [B]. H is said to be 2-wise
independent if for all i1 ̸= i2 ∈ [A] and for all j1, j2 ∈ [B] it is true that

P
h∈H

[h(i1) = j1 ∧ h(i2) = j2] =
1

B2

Here the probability is taken over the uniform distribution over H. Similarly, H is said
to be k-wise independent if for all distinct i1, i2, ..., ik ∈ [A] and for all j1, j2, ..., jk ∈ [B],
it is true that

P
h∈H

[h(i1) = j1 ∧ · · · ∧ h(ik) = jk] =
1

Bk

It can be checked that in Algorithm 9, we can sample our hash function from a
2-wise independent family, and the same guarantees will hold (Check this.) The only
place where the proof of the analysis must be modified is when giving bounds on the
variance and the expectation of the random variable Y .

Proposition 4.1. k-wise independence implies (k − 1)-wise independence, and hence
it implies 1-wise independence, i.e for for all i ∈ [A] and j ∈ [B],

P
h∈H

[h(i) = j] =
1

B

Proof. We will only prove this for k = 2; the proof for general k is exactly the same.
Suppose the family H is 2-wise independent. Let i ∈ [A] and j ∈ [B] be fixed; take

some i′ ̸= i ∈ [A]. Then, we have the following.

P
h∈H

[h(i) = j] =
∑
j′∈[B]

P
h∈H

[h(i) = j ∧ h(′i) = j′]

=
B

B2

=
1

B

and this proves our claim. ■

4.4.1. Constructing 2-wise independent hash families. Let p be a prime number such
that n ≤ p < 2n (such a prime exists). Let a, b ∈ Fp, and define

ha,b(x) = ax+ b mod(p)
and let H be the family of all such functions.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 35

Proposition 4.2. H constructed above is a 2-wise independent family of functions
Fp → Fp.
Proof. Suppose x, y ∈ Fp such that x ̸= y, and let u, v ∈ Fp. So, we have the following.
Below, all equations are in the field Fp.

P
h∈H

[h(x) = u ∧ h(y) = v] = P
h∈H

[ax+ b = u ∧ ay + b = v]

= P
h∈H

[
a =

u− v

x− y
∧ b = u− (u− v)

x− y
x

]
=

1

p2

and this proves the claim. ■
We will now state a fact without proof that is essential in constructing k-wise inde-

pendent hash families.

Theorem 4.3. Let q be any prime power, and consider the finite field Fq of order q.
The set of all polynomials of degree ≤ k − 1 over Fq forms a k-wise independent hash
function family of functions Fq → Fq.
Remark 4.3.1. So we can see that we only need O(k log q) space to store a hash
function from such a family.

4.5. L2 norm estimation of frequency vector. In this section, we will see algo-
rithms to estimate the L2 norm of a frequency vector.
Definition 4.2. Let ⟨a1, ..., am⟩ be a stream, where ai ∈ [m]. The frequency vector
of the stream is defined as the vector F = (f1, ..., fn), where fi is the number of
occurrences of i in the stream.

Our goal is the following: given ϵ > 0, we want to estimate within 1± ϵ factor, the
L2 norm of F , i.e we want to estimate ||F ||2. Let

F2 := ||F ||22 =
∑
i∈[n]

f 2
i

We will devise an O
(logn+logm

ϵ2

)
-space algorithm for this problem. The algorithm is

called the AMS algorithm (Alon, Matthias, Szegedy).

Algorithm 10 AMS algorithm for estimating L2 norm of the frequency vector F

1: Sample a hash function h : [n]→ {−1, 1} from a 4-wise independent hash family.
2: Initialise X ← 0.
3: For each stream element a, do X ← X + h(a).
4: return X2.

4.5.1. How to sample such a hash function? Let us now see how to sample a hash
function of the given form. Let l be such that n ≤ 2l < 2n. We sample a 4-wise
independent hash function from F2l → F2l (using degree 3 polynomials). Suppose g is
this function. Then, we consider the function h : F2l → {−1, 1} defined as follows.

h(x) =

{
1 , if g(x) is even
−1 , otherwise

36 SIDDHANT CHAUDHARY

So the function h divides the set of outputs of g into two parts. This is how we sample
the function h in the algorithm. For simplicity, we will assume that n is a power of 2,
i.e n = 2l.

4.5.2. Computing the expectation. Let us now show that the algorithm is an unbiased
estimator for F2. To show this, we will show that E [X2] = F2. To that end, let zi be
the random variable zi = h(i) for i ∈ [n]. With this definition, note that

X =
∑
i∈[n]

fizi

So, we get the following.

E
[
X2
]
= E

∑
i∈[n]

fizi

2
= E

∑
i∈[n]

f 2
i z

2
i +

∑
i ̸=j∈[n]

fifjzizj


=
∑
i∈[n]

f 2
i E
[
z2i
]
+
∑

i ̸=j∈[n]

fifjE [zizj]

Now, observe that z2i can only take the value 1, and hence it’s expectation is 1.
Moreover, if i ̸= j, then note that

E [zizj] = E [zi]E [zj] = 0

where we are using 2-wise independence of the hash function family from which h is
sampled (it is 4-wise independent, and hence 2-wise independent). So, it follows that

E
[
X2
]
=
∑
i∈[n]

f 2
i = F2

and hence X2 is indeed an unbiased estimator.

4.5.3. A bound on the variance. Now, we will prove that Var (X2) ≤ 2F 2
2 . Let us now

prove this. We know that

Var
(
X2
)
= E

[
X4
]
− (E

[
X2
]
)2

= E
[
X4
]
− F 2

2

By expanding out the expectation E [X4], the claim can be shown (show this).
At this point, if we simply apply Chebyshev’s Inequality, we will get that

P
[
|X2 − F2| ≥ ϵF2

]
≤ Var (X2)

ϵ2F 2
2

≤ 2F 2
2

ϵ2F 2
2

=
2

ϵ2

The above bound is not very strong. To fix this problem, we will repeat this algorithm
many times, as we will see next.

RANDOMIZATION AND SUBLINEAR ALGORITHMS 37

Algorithm 11 Modified AMS algorithm
1: Let c← 6

ϵ2
.

2: Run c independent and parallel copies of the earlier AMS algorithm.
3: Let X2

1 , X
2
2 , ..., X

2
c be their outputs.

4: return Y =
1

c

∑
i∈[c] X

2
i

4.5.4. Improving the variance bound by repetitions. Our new algorithm will be Algo-
rithm 11.

Let us analyze this new algorithm. First, note that

E [Y] =
1

c
E

∑
i∈[c]

E
[
X2

i

] =
1

c
· cF2 = F2

and again, Y is an unbiased estimator for F2.
Let us now bound the variance. Because the Xis are independent, we see that

Var (Y) =
1

c2

∑
i∈[c]

Var
(
X2

i

)
=

cVar (Xi)
2

c2
≤ 2F 2

2

c

Now, if we apply Chebyshev’s Inequality, we get that

P [|Y − F2| ≥ ϵF2] ≤
Var (Y)

ϵ2F 2
2

≤ 2F 2
2

ϵ2F 2
2 c

=
2

cϵ2
=

1

3

And hence, we see that our estimator gives a good estimation with probability ≥ 2
3
.

Let us finally analyze the space complexity of our algorithm. Note that to maintain
the values of Xi’s, we need O (c logm) bits, because Xi can be atmost m. Moreover,
note that we will have to maintain c hash functions too; each hash function needs
O(4 log n) space (as we need to maintain 4 coefficients), and hence the total space
required for maintaining the hash functions is O(c log n). So, the total space required
is

O (c logm+ c log n) = O

(logm+ log n
ϵ2

)
4.6. Morris Counter. In this section, we will see a new algorithm, which goes by the
name of Morris Counter, to approximate the length of a stream of unknown length.

Algorithm 12 Morris Counter for approximating unknown lengths
1: X ← 0.
2: When a new item arrives,

X =


X + 1 , with probability 1

2X

X , with probability 1− 1

2X

3: return 2X − 1 as the estimate.

Essentially, the idea behind this algorithm is to maintain the logarithm of the length
of the stream. Let us now analyze this algorithm.

38 SIDDHANT CHAUDHARY

Theorem 4.4. Let Y = 2X . Then, E [Y] = m + 1, where m is the length of the
stream.

Proof. We will prove this by induction on m. For i ≥ 0, let Xi be the random variable
denoting the value of the counter X once i items of the stream have arrived. Let
Yi = 2Xi .

For the base case, we have m = 1. In this case, note that X1 = 1 with probability
1 and 0 with probability 0. So, it follows that Y1 is 1 with probability 0 and 2 with
probablity 1; hence,

E [Y1] = 2 = 1 + 1

and hence the base case is true.
Now we focus on the inductive step. Suppose for all i < m, it is true that E [Yi] =

i+ 1. We will prove that this holds for i = m as well. Note that
E [Ym]

= E
[
2Xm

]
=

m∑
j=0

2jP [Xm = j]

=
m∑
j=0

2j
(

P [Xm = j | Xm−1 = j] ·P [Xm−1 = j] + P [Xm = j | Xm−1 = j − 1] ·P [Xm−1 = j − 1]
)

=
m∑
j=0

2j
((

1− 1

2j

)
P [Xm−1 = j] +

1

2j−1
P [Xm−1 = j − 1]

)

=
m∑
j=0

2jP [Xm−1 = j] +
m∑
j=0

(2P [Xm−1 = j − 1]−P [Xm−1 = j])

= E [Ym−1] + 2− 1

= E [Ym−1] + 1

= m+ 1

where in the last step above, we have used the inductive hypothesis. So this proves
the claim, and shows that our estimator is indeed unbiased. ■
Definition 4.3. A real valued function f : R→ R is convex if

f

(
x+ y

2

)
≤ f(x) + f(y)

2

Theorem 4.5 (Jensen’s Inequality). Let Z be a random variable with |E [Z] | <∞.
If f is convex, then

f(E [Z]) ≤ E [f(Z)]

We will use this to analyze E [Xm]. Note that Ym = 2Xm by definition. We know
that the function f(z) = 2z is convex. So by the above inequality, we know that

f(E [Xm]) ≤ E [f(Xm)]

which means that
2E[Xm] ≤ E [Ym] = m+ 1

RANDOMIZATION AND SUBLINEAR ALGORITHMS 39

and this means that E [Xm] ≤ log2(m+ 1). Therefore, the expected space complexity
needed to store X is O(log log (m+ 1)).

Theorem 4.6. Var (Ym) =
m(m− 1)

2

Proof. Reading exercise. ■
As before, if we directly apply Chebyshev’s Inquality, we won’t get a good bound

(just like in the analysis of the AMS algorithm). Instead, we do the following (the
same strategy used in the AMS algorithm): we run Θ

(
1
ϵ2

)
independent copies of the

Morris Counter, and output the average of the counters. It can be shown that this
strategy gives us a good estimator.

5. Lower Bounds

5.1. Yao’s Minimax Principle. In this section, we will explore a result from com-
plexity theory: Yao’s Minimax Principle.

Theorem 5.1 (Yao’s Minimax Principle). Let some problem be fixed. Then the
following are equivalent.

(1) There exists a probability distribution D over inputs of length n of the problem
such that every deterministic algorithm with query complexity q(n) fails with
probability > 1/3 .

(2) For all (randomized) algorithms with query complexity q(n), there exists an
input of size n on which the algorithm fails with probability > 1/3.

Remark 5.1.1. Intuitively, this theorem allows us to prove a global statement about
all randomized algorithms to a problem by generating a probability distribution on
inputs and analyzing that distribution on a fixed deterministic algorithm.

Proof. We will only prove (1) =⇒ (2), as that will be all we need. Let x1, ..., xt be
all inputs of size n. Let A1, ..., At be all deterministic algorithms for this problem;
note that in our case an algorithm is defined by the output it gives on inputs x1, ..., xt.
Since only finitely many combinations of outputs are possible, we see that there are
finitely many deterministic algorithms for these inputs.

Now, (1) implies that for all algorithms Ai above, it is true that

P
x∼D

[Ai(x) is wrong] > 1

3

So, this means that for every distribution A over the deterministic algorithms Ai, we
have

P
A∼A,x∼D

[A(x) is wrong] > 1

3

Now, any randomized algorithm over the inputs x1, ..., xt is really some probability
distribution over Ais; if we fix the random string that the randomized algorithm uses
(i.e the output of the random coins), the algorithm follows a fixed path, which is the
path taken by some deterministic algorithm.

So now fix a randomized algorithm, and interpret it as a distribution A on Ai. Now,
there must be some input x ∈ {x1, ..., xt} such that

P
A∼A

[A(x) is wrong] > 1

3

40 SIDDHANT CHAUDHARY

because otherwise, the previous inequality would not hold (this is a pigeonhole like
argument). This proves (2), and proves this direction. ■
Remark 5.1.2. This theorem holds for non-adaptive algorithms and one-sided error
algorithms as well.
Example 5.1. Let us now see an example of Yao’s Minimax Principle in action.

Consider the problem for ϵ-testing 0∗, i.e given an input string of length n, we want
to test whether the string is equal to 0n, or if the string is ϵ-far from 0∗ (which means
it contains atleast ϵn 1s).

We claim that every randomized tester to solve the above problem with probability
≥ 2/3 needs Ω(1/ϵ) queries. To prove this, we construct a distribution D on n-length
binary strings as follows.

(1) With probability 1/2, we choose the string 0n.
(2) With probability 1/2, we do the following: we divide our string into 1

ϵ
contin-

uous blocks, each of size ϵn. Call these blocks B1, ..., B 1
ϵ
. Then, we sample

i ∈ [1
ϵ
] uniformly at random, and the block Bi to all 1s, and set everything else

to 0.
It is clear that with the above distribution, we are sampling 0n with half probability,
and something which is ϵ-far from 0∗ with half probability.

Now, let A be a deterministic algorithm for this problem that makes < 1
3ϵ

queries
to the input. We will analyze the error probability of A on this distribution on the
inputs.

(1) Note that if A sees all 0s in all of its queries, then A has to accept; if not,
then it would mean that A rejects the all 0s string, i.e it fails with probability
≥ 1

2
> 1

3
.

(2) Next, let us analyze the error probability of A when it accepts seeing only 0s in
its queries. Clearly, A makes an error (if any) only on the inputs of the second
kind in our distribution. Because A makes < 1

3ϵ
queries, it can hit only < 1

3ϵ
blocks among blocks B1, ..., B 1

ϵ
. Now, because in this case A sees only 0s in

its queries and since A is deterministic, the indices of the points that A sees
are fixed; let these indices be i1, ..., iq, where q < 1

3ϵ
is the number of queries

that A makes. Clearly, there are > 1
ϵ
− 1

3ϵ
= 2

3ϵ
blocks that don’t contain these

indices. Any of these blocks can be the all 1s block, and hence A accepts > 2
3

of the inputs of the second kind. So, it follows that the failure probability of
A is > 1

2
· 2
3ϵ
· ϵ = 1

3
(and note that we are using the fact that the all 1s block

is a uniformly random block).
So in all cases, we have shown that A fails with probability > 2

3
on this distribution.

By Theorem 5.1 (Yao’s Minimax Principle), it follows that this problem needs
Ω(1/3ϵ) queries to be solved.

	1. Introduction
	1.1. Polynomial Identity Testing
	1.2. Max-cut in a graph
	1.3. Karger's Min Cut Algorithm
	1.4. Coupon Collector's Problem
	1.5. Parallel Algorithm for Bipartite Perfect Matchings
	1.6. Network Reliability
	1.7. DNF Counting
	1.8. Improving success for 2-sided errors: Medians of Means

	2. Probabilistic Method
	2.1. An example: k-SAT
	2.2. Lovasz Local Lemma

	3. Sublinear Algorithms
	3.1. Outputting index of an even number
	3.2. Diameter of a point set
	3.3. Two types of approximations
	3.4. Property Testing algorithm for connectedness
	3.5. Estimating the number of connected components
	3.6. Testing sortedness of array
	3.7. Witness Lemma
	3.8. Testing monotonocity of boolean functions over the hypercube
	3.9. Lp testing
	3.10. L1-testing monotonicity of functions on a grid
	3.11. The Reverse Markov Inequality
	3.12. Monotonicity testing of boolean functions over the general grid
	3.13. An even better strategy for boolean functions

	4. Streaming Algorithms in the Data Streaming Model
	4.1. The Streaming Model of Computation
	4.2. Reservoir Sampling
	4.3. Counting number of distinct elements in a stream
	4.4. k-wise independent hash families
	4.5. L2 norm estimation of frequency vector
	4.6. Morris Counter

	5. Lower Bounds
	5.1. Yao's Minimax Principle

