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Abstract. In this document, I discuss topics in linear algebra. I have also included
solutions to some selected exercises from the book Linear Algebra (Third Edition)
by Serge Lang.

I, §1. Exercises

1. Let V be a vector space over a field K. Let c ∈ K. We show that c0 = 0. The
proof is as follows:

c0 = c(0 + 0)

= c0 + c0

and by adding the inverse of c0 on both sides, we may obtain the required equality.

2. Suppose c ∈ K such that c 6= 0, and let v ∈ V . Also, suppose cv = 0. Then, by
multiplying c−1 on both sides (K is a field), we may obtain that v = 0.

6. Before solving this problem, we prove a theorem: Let V be a vector space over
some field K, and let U , W be K-subspaces of V . Then, U ∩W is a K-subspace of V .

Proof : It is clear to see that 0 ∈ U ∩W . If u and v are vectors in U ∩W , so is
u+v. If c ∈ K, and if u is a vector in U ∩W , so is cu. Hence, U ∩W is a K-subspace
of V .

This problem now directly follows from this theorem.

A Few Points About Dimension

Here, I won’t prove any theorem about the dimension of a vector space. But, I
just want to plot a chain of reasoning which leads to beautiful statements about the
dimension. If V is a vector space over a field K, and suppose it is finite dimensional,
we denote its dimension by dimK V

(1) Suppose {v1, v2, v3, ...vn} is a basis for V . Then, any subset of V the size
of which is greater than n must be linearly dependent. The proof of this
fact has the following sketch: assume that the subset is linearly independent,
and show that a smaller subset of that subset generates V , thereby getting a
contradiction.

(2) This means that any two bases of V must have the same size. This is why the
dimension is a well-defined number.

(3) Any maximal subset of linearly independent elements of V constitutes a basis.

Extension to Infinite Dimensional Spaces

Here, we’ll try to extend the notion of a basis even to infinite dimensional spaces.
First, let’s start with a definition.
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Definition: Suppose V is a vector space over a field K, and suppose X ⊆ V . We
denote by 〈X〉 the smallest subspace of V that contains X, and call it the span of X.

We will now show that 〈X〉 always exists.

Theorem 0.1. Given X ⊆ V such that X is non-empty, 〈X〉 exists.
Proof: Let S be the set of all subspaces of V that contain X. Clearly, V ∈ S, and

thus S is non-empty. Then, it is not hard to see that the set M defined by

M =
⋂
W∈S

W

is a subspace and contains X. Also, if W is a subspace that contains X, then M ⊆ W ,
and so the theorem is proved.

If X is finite, 〈X〉 cooincides with the usual definition of span, which we prove in
the next theorem.

Theorem 0.2. Let X ⊆ V be a finite set, say {v1, v2, ..., vn}. Then, 〈X〉 is the set of
all linear combinations of elements of X.

Proof: Consider the set Q = {a1v1 + a2v2 + ... + anvn : ai ∈ K}. Clearly, Q is a
subspace that contains X. So, 〈X〉 ⊆ Q. Now, by definition, note that vi ∈ 〈X〉 for
each i, and since 〈X〉 is a subspace, it follows that

a1v1 + a2v2 + ...+ anvn ∈ 〈X〉
for any constants ai ∈ K. This means that Q ⊆ 〈X〉, and hence we have

Q = 〈X〉.

The next theorem is a beautiful way of thinking about what the span of an infinite
set X is.

Theorem 0.3. Suppose X ⊆ V , X is non-empty, and let P be the set of all finite
subsets of X. Then,

〈X〉 =
⋃
Y ∈P

〈Y 〉

Proof: Set M =
⋃
Y ∈P
〈Y 〉. First, lets show that M is a subspace. Let x and y be in

M . Then, x ∈ 〈Y1〉 for some finite subset Y1 of X, and similarly y ∈ 〈Y2〉 for some
finite subset Y2 of X. Let Y1 = {v1, v2, ..., vs} and let Y2 = {u1, u2, ..., ut}. Then, by
Theorem 0.2, x is a linear combination of elements of Y1, and y is a linear combination
of elements of Y2. This means that x+y is a linear combination of elements of Y1∪Y2.
But, Y1 ∪ Y2 is a finite subset of X, and hence x + y ∈ 〈Y1 ∪ Y2〉, which means that
x + y ∈ M . Similarly, it may be proved that cx ∈ M , where c ∈ K. Now, it is
clear that M contains X. This means that 〈X〉 ⊆ M . Also, if x ∈ M , then x is a
linear combination of finitely many elements of X. Since 〈X〉 is a subspace containing
each of those elements, it follows that x ∈ 〈X〉, which means that M ⊆ 〈X〉. Hence,
M = 〈X〉.

The above theorem means that the span of a set X is the set of all linear combina-
tions of finitely many elements of X. This is a great way of extending the meaning of
span to infinite sets.

Observe that the definition of Linear Independence remains that same for a finite
subset X of V . For an infinite subset X, we say that X is linearly independent if
every finite subset of X is linearly independent. The definition of a maximal linearly
independent set remains the same. Now, we introduce another definition.
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Definition: Let V be a vector space, and let X ⊆ V . We say that X is a minimal
spanning/generating set of V if 〈X〉 = V and if Y is a proper subset of X, then
〈Y 〉 6= V .

Now, we give a theorem which generalises the notion of a basis to arbitrary vector
spaces, finite or infinite dimensional.

Theorem 0.4. Let V be a vector space, and let X ⊆ V . Then, the following state-
ments are equivalent.

(1) X is a maximal linearly independent set of V .
(2) X is a minimal spanning set of V .
(3) X is linearly independent and 〈X〉 = V .
(4) Every v ∈ V is uniquely representable as

v = a1v1 + a2v2 + ...+ anvn

where ai ∈ K, and v1, v2, ..., vn are some elements of X.

Proof: We will show that (1) =⇒ (2) =⇒ (3) =⇒ (4) =⇒ (1), which will
complete the proof.

First, lets show that (1) =⇒ (2). Suppose X is a maximal linearly independent
set in V . Let y ∈ V . Then, if y ∈ X, then by definition, y ∈ 〈X〉. If y /∈ X, then
the set X ∪ {y} is linearly dependent. So, there exist some v1, v2, ..., vn in X and
a1, a2, ..., an, an+1 in K not all zero such that

a1v1 + a2v2 + ...anvn + an+1y = O

and we know that an+1 6= 0. Hence,

y = − a1
an+1

v1 −
a2
an+1

v2 − ...−
an
an+1

vn

and hence 〈X〉 = V . Now, let Y be a proper subset of X, and let v ∈ X − Y . Then,
v cannot be represented as a finite linear combination of elements of Y (because X is
linearly independent), and hence v /∈ 〈Y 〉, and hence 〈Y 〉 6= V . So, X is a minimal
spanning set of V .

Now lets prove that (2) =⇒ (3). So, let X be a minimal spanning set of V .
Then, by definition, 〈X〉 = V , and we only need to show that X is linearly indepen-
dent. Suppose, on the contrary, that X is linearly dependent. Then, there exist some
v1, v2, ..., vn in X and a1, a2, ..., an in K not all zero such that

a1v1 + a2v2 + ...+ anvn = O

Without loss of generality, suppose a1 6= 0, and thus v1 is a linear combination of
v2, v3, ..., vn. But, this means that the set X − {v1} spans V , which is not possible
since X is a minimal spanning set of V . Thus, our assumption is wrong, and hence X
must be linearly independent.

Lets show that (3) =⇒ (4). Suppose X is linearly independent and 〈X〉 = V .
Let v be a non-zero element of V . It is clear that v is a linear combination of finitely
many elements of X. We need to prove that this representation is unique. So, let
a1, a2, ..., an, b1, b2, ..., bm be in K, and let v1, v2, ..., vn, u1, u2, ..., um be in X such that
each ai and bi is non-zero, and

v = a1v1 + a2v2 + ...+ anvn = b1u1 + b2u2 + ...+ bmum

which means that

a1v1 + a2v2 + ...+ anvn − b1u1 − b2u2 − ...− bmum = O
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Now, we show that u1 = vi for some i. If that is not the case, then it would imply
that b1 = 0, since X is linearly independent, which is a contradiction. So, without loss
of generality, suppose u1 = v1. We can continue this method and argue that u2 = v2,
u3 = v3 and in fact m = n, and un = vn. So, it follows that

(b1 − a1)v1 + (b2 − a2)v2 + ...(bn − an)vn = 0

and since X is linearly independent this implies that bi = ai. Thus, each v ∈ V has a
unique linear representation.

Finally, let’s prove that (4) =⇒ (1). Suppose every non-zero v can be uniquely
written as

v = a1v1 + a2v2 + ...+ anvn

for some a1, a2, ..., an in K and some v1, v2, ..., vn in X. First, observe that O /∈ X,
because otherwise representations will not be unique. Now, we show that X is linearly
independent. If X was linearly dependent, there would be some v, v1, v2, ..., vn in X
and a1, a2, ..., an not all zero in K such that

v = a1v1 + a2v2 + ...+ anvn

Note that 1v = v is also a representation of v. Thus, this shows that the representation
of v is not unique, and hence our assumption was wrong. So, X must be linearly
independent.

To show that X is a maximal linearly independent set, suppose there is some y ∈
V − X, and consider the set X ∪ {y}. If y = O, then the set if clearly linearly
dependent. If y 6= O, then y can be uniquely written as

y = a1v1 + a2v2 + ...+ anvn

for some a1, a2, ..., an in K, and some v1, v2, ..., vn in X, and note that vi 6= y. Also,
since y 6= O, this means that one of ai is non-zero. And this gives us linear dependence
for the set X ∪ {Y }. So, X is a maximal linearly independent set.

Next, we will show that every non-zero vector space has a basis. We will use what
is known as Zorn’s Lemma, which is equivalent to the Axiom of Choice. Before that,
let us introduce some definitions.
Definition: Let X be a partially ordered set. A subset C ⊆ X is called a chain if given
any x ∈ C and y ∈ C, either x ≥ y or y ≥ x. For a subset Y of X, an element x0 ∈ X
is called an upper bound of Y is y ≤ x0 for all y ∈ Y . An element x ∈ X is called a
maximal element of X if for any y ∈ X, y ≥ x implies that y = x.

The statement of Zorn’s Lemma is as follows:
Zorn’s Lemma: Let X be a poset, such that every chain C has an upper bound in
X. Then, X contains a maximal element.

Let’s now prove that every non-zero vector space has a basis.

Theorem 0.5. Let V be a vector space over some field K. Then, given a linearly
independent subset S of V , S is contained in some maximal linearly independent
subset of V .

Proof: Let S be a linearly independent subset of V . Define

X := {T ⊆ V : T is linearly independent, S ⊆ T}
Since S ∈ X, X is non-empty. Let’s define a partial order in X. For T1 and T2 in

X, we say that T1 ≤ T2 if T1 ⊆ T2. It is not hard to see why this is a partial order.
If we show that X has a maximal element w.r.t this partial order, then that maximal

element will be linearly dependent, and it will contain S. Also, this maximal element
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will also be a maximal linearly independent subset of V . So, let’s show that X has a
maximal element w.r.t the partial order.

Let C be a chain in X. Put
M =

⋃
T∈C

T

Let us show that M is linearly independent. Suppose not. Then, there exist elements
v1, v2, ..., vn in M and scalars a1, a2, ..., an not all zero such that

a1v1 + a2v2 + ...+ anvn = O

Also, v1 ∈ T1, v2 ∈ T2, ..., vn ∈ Tn for some T1, T2, ..., Tn in C. Since C is a chain,
this means that there is some 1 ≤ i ≤ n such that v1, v2, ..., vn are in Ti. But, this is a
contradiction because Ti is a linearly independent subset of V . So, M must be linearly
independent. Also, observe that for any T ∈ C, T ≤ M , which shows that C has an
upper bound. So, every chain in X has an upper bound, and thus X has a maximal
element. This maximal element of X is a maximal linearly independent subset of V
that contains S.

As a corollary to this theorem, we can immediately conclude that every non-zero
vector space has a basis.

Next, let us show that every spanning set of a vector space contains a basis.

Theorem 0.6. Let V be a vector space over a field K, such that V 6= {O}. Let S be
a spanning set of V . Then, S contains a basis of V .

Proof: We will do a very similar proof as we did in Theorem 0.5.
If S is linearly independent then we are done. So, assume that S is not linearly

independent. Define the poset

X := {U ⊆ S : U is linearly independent}
It is clear that X is non-empty. Again, the partial order in X is defined as: if T1

and T2 are in X, we say that T1 ≤ T2 if T1 ⊆ T2. We will show that X contains a
maximal element w.r.t this partial order. Then, it can be easily shown that the span
of this maximal element is V , which will mean that this maximal element is a basis of
V , and at the same time this maximal element is a subset of S, which will complete
the proof of the theorem.

Let C be a chain in X. Then, define

M =
⋃
T∈C

T

That M ⊆ S is clear. We will show that M is also linearly independent, which will
give us an upper bound for this chain C. Suppose M is linearly dependent. Then,
there are v1, v2, ..., vn in M and a1, a2, .., an in K not all zero such that

a1v1 + a2v2 + ...+ anvn = O

Also, vi ∈ Ti, for each 1 ≤ i ≤ n, where Ti is in C. Since C is a chain, this means
that each vi is in Tj, for some 1 ≤ j ≤ n. But, this already gives us a contradiction,
because Tj is a linearly independent set. Hence, M must be linearly independent. So,
M ∈ X, and this is the upper bound for C.

By Zorn’s Lemma, this means that X must contain a maximal element. Let this
maximal element be H. Since H is linearly independent, the set S −H is non-empty
(because S is linearly dependent). So, take any v ∈ S −H, and consider the set

H ∪ {v}
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Since H is a maximal element of X w.r.t the partial order, it must be true that H∪{v}
is linearly dependent. But, this means that v is a linear combination of finitely many
elements of H. So, this means that every element of S is a linear combination of
finitely many elements of H. Since the span of S was V , this means that the span of
H is also V , thereby proving that H is a basis of V .

Let’s prove a stronger version of the previous theorem.

Theorem 0.7. Let V be a vector space over a field K. Suppose S2 is a spanning set
of V , and S1 is a linearly independent subset of V such that S1 ⊆ S2. Then, there is
a basis β of V such that S1 ⊆ β ⊆ S2.

Proof: If S2 is linearly independent then there is nothing to prove. So, let’s assume
that S2 is linearly dependent. Now, define the set

X := {U ⊆ S2 : S1 ⊆ U, U is linearly independent}

Clearly, S1 ∈ X, and so X is non-empty. Again, our partial order on X remains the
same. We will show that X has a maximal element w.r.t this partial order, and we
will show that this maximal element is a basis of V .

Let C be a chain in X. Define

M =
⋃
T∈C

T

Clearly S1 ⊆M , and M ⊆ S2. By the same reasoning as we did in Theorem 0.6, M
is linearly independent. So, M ∈ X, and M is an upper bound for this chain C.

By Zorn’s Lemma, X has a maximal element w.r.t this partial order. Let the
maximal element be H. So, H is a maximal element of X. By similar reasoning as we
did in Theorem 0.6, it follows that H is a basis of V . So, the theorem is proved.

II, §3. Exercises

18. Let A be a square matrix.

(a): Suppose A2 = O. Now, observe that

(I − A)(I + A) = I2 − A2 = I

so that (I − A) is invertible.
(b): We can extend this trick. Suppose A3 = O. Then, observe that

(I − A)(I + A+ A2) = I3 − A3 = I

which again means that (I − A) is invertible.
(c): In general, if An = O, then we have

(I − A)(I + A+ A2 + ...+ An−1) = In − An = I

so that (I − A) is invertible.
(d): Suppose A2 + 2A + I = O. This means that I = −2A − A2, which means

that I = A(−2I − A), which means that A is invertible.
(e): Suppose that A3 − A + I = O, and by using a similar argument, we can

show that A is invertible.
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27. Let A and B be n× n matrices given by:

A =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
an1 an2 ... ann

 , B =


b11 b12 ... b1n
b21 b22 ... b2n
... ... ... ...
bn1 bn2 ... bnn


Now, a diagonal element [AB]ii is given by

[AB]ii =
n∑
j=1

aijbji

and a diagonal element [BA]ii is given by

[BA]ii =
n∑
j=1

bijaji

Note that if we sum over the diagonal elements of AB and BA, we get the same
result. Hence, tr(AB) = tr(BA).

30. Let A be a diagonal matrix given by:

A =


a11 0 ... 0
0 a22 ... 0
... ... ... ...
0 0 ... ann


Then, it is very clearly observable that

Ak =


ak11 0 ... 0
0 ak22 ... 0
... ... ... ...
0 0 ... aknn


Proving this is just induction.

34. Let A be a diagonal matrix such that [A]ii = aii, such that all diagonal elements
are non-zero. Then, it is not hard to see that the diagonal matrix given by [A′]ii = a−1ii
is the inverse of A. So, all such matrices A are invertible.

III, §2. Exercises

2. Let V and W be vector spaces, and let T : V → W be a linear map. Observe that

T (2OV ) = 2T (OV )

But we know that 2OV = OV , which means that

T (OV ) = 2T (OV )

and by adding the inverse of T (OV ) on both sides, we get

OW = T (OV )

which proves the claim.
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7. Let V and W be vector spaces, and let F : V → W be a linear map. Define

U := {v ∈ V : F (v) = OW}

First, observe that F (OV ) = OW , so OV ∈ U . Next, suppose u and v are in U . Then,

F (u+ v) = F (u) + F (v) = OW

which means that u + v ∈ U . Finally, if c ∈ K, then F (cu) = cF (u) = cOW = OW

which means that cu ∈ U . Thus, U is a subspace of V .

15. Suppose that w1, w2, ..., wn are linearly independent elements of W , and suppose
F (vi) = wi. Also, suppose that the equation

a1v1 + a2v2 + ...+ anvn = OV

holds for some numbers a1, a2, ..., an in K. Then, observe that

F (a1v1 + a2v2 + ...+ anvn) = F (OV ) = OW

which means that

a1F (v1) + a2F (v2) + ...+ anF (vn) = OW

However, the last equation implies that

a1 = a2 = a3 = ... = an = 0

because w1, w2, ..., wn are linearly independent. Hence, v1, v2, ..., vn are linearly inde-
pendent.

16. Let v0 be an element of V that does not lie in W . So, F (v0) is a non-zero real
number. Now, let v ∈ V . If v ∈ W , then we can write v = v+ 0 · v0, and we are done.
So, suppose v /∈ W . So, F (v) 6= 0. Now, we can write

F (v) = (F (v)F (v0)
−1)F (v0) = cF (v0)

where c = F (v)F (v0)
−1. But, F is a linear map, so we can write

F (v) = F (cv0)

which means that

F (v − cv0) = 0

and thus v − cv0 ∈ W . So, let w = v − cv0, and thus we can write

v = w + cv0.

17. In exercise 14 we showed that W is a subspace of V . Now, if {v1, v2, ..., vn} is a
basis of W , then using exercise 16, it follows that {v0, v1, v2, ..., vn} is a basis of V .

The Rank-Nullity Theorem

In this section, I will attempt a proof of the so called Rank-Nullity theorem, one of
the central results of linear algebra. Its a relatively simple proof.
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Theorem(Rank-Nullity): Suppose V and W are vector spaces, and let L : V → W
be a linear map. Let KerL be the kernel of L, and let imL be the image of V under
L. Then,

dimV = dim KerL+ dim imL

Proof: Let dim KerL = q and dim imL = s. Note that if imL = {O}, then there is
nothing to prove. So, let us assume that s > 0. We first look at the case where the
kernel of L is not {O}.

Let {w1, w2, ..., ws} be a basis of imL, and let {u1, u2, ..., uq} be a basis of KerL. Let
{v1, v2, ..., vs} be elements of V such that L(vi) = wi for each 1 ≤ i ≤ s. We will show
that {v1, v2, ..., vs, u1, u2, ..., uq} is a basis of V , proving the theorem for this case.

Let v ∈ V . Then, there are elements a1, a2, ..., as in K such that

L(v) = a1w1 + a2w2 + ...+ asws

which could also be written as

L(v) = a1L(v1) + a2L(v2) + ...+ asL(vs)

and since L is linear, it follows that

v − a1v1 − a2v2 − ...− asvs ∈ KerL

which in addition means that there are numbers b1, b2, ..., bq in K such that

v − a1v1 − a2v2 − ...− asvs = b1u1 + b2u2 + ...+ bquq

and so it follows that every v ∈ V can be written as a linear combination of {v1, v2, ..., vs, u1, u2, ..., uq}.
Now, we will show that this set of vectors is also linearly independent.

Suppose that there are numbers x1, x2, ..., xs and y1, y2, ..., yq in K such that

x1v1 + x2v2 + ...+ xsvs + y1u1 + y2u2 + ...+ yquq = O

Applying L to the above equation, we see that

x1w1 + x2w2 + ...+ xsws = O

which by our assumption implies that

x1 = x2 = ... = xs = 0

and thus at the same time implies that

y1 = y2 = ... = yq = 0.

This completes the prove for this case.
Now, suppose KerL = {O}. Then, suppose {w1, w2, ..., ws} is a basis of imL. Again,

if {v1, v2, ..., vs} are in V such that L(vi) = wi, it is not hard to show that {v1, v2, ..., vs}
is a basis of V . So, the proof is even simpler in this case.

III, §3. Exercises

1. Let A and B be a basis of R2, and let F : R2 → Rn be linear. Then, by the
Rank-Nullity theorem, we have

2 = dim KerF + dim imF

Now, three cases are possible. If KerF = {O}, then observe that F (A) and F (B)
form a basis of imF , and thus they are linearly independent. If KerF is not {O},
then it has a non-zero dimension. If dim KerF = 1, it follows that dim imF = 1. If
dim KerF = 2, then KerF = R2, and thus imF = {O}.
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3. Define a linear map F : R4 → R2 given by

F (x1, x2, x3, x4) = (x1 + 2x2, x3 − 15x4)

The problem now reduces to finding the dimension of KerF . Observe that, imF is R2,
which is very clearly observable. So, by Rank-Nullity, it follows that dim KerF = 2.

9. (a) Suppose f ∈ KerL. Then, it follows that

f ′(x) = f(x)

for all x ∈ R. Every solution of this equation is of the form cex, where c ∈ R.
(b) If we rather have to find the kernel of the map D − aI, then it consists of all

functions f of the form ceax, where c ∈ R.

10. (a) Define the map L : Kn → K by the formula

L(a1, a2, ..., an) = a1 + a2 + ...+ an

It is not difficult to see that L is linear. Now, the problem reduces to finding the
dimension of KerF . Observe that imF = K, and hence by Rank-Nullity, we see that
dim KerF = n− 1.
(b) Consider the space of n × n matrices with entries in K. Let’s denote this space

by Mn(K). Then, we have that

dimMn(K) = n2

Now, we sum of the diagonal elements is just the trace (tr : Mn(K) → K) of the
matrix, which is a linear map. So, the subspace of Mn(K) such that the trace of a
matrix in this subspace is 0 is just Ker tr. Applying Rank-Nullity, we see that

dim Ker tr = n2 − 1

11. We have already shown earlier that tr is a linear map, and that

tr(AB) = tr(BA)

for any two square matrices A and B.
(c) Suppose B is invertible. Then,

tr(B−1AB) = tr(B−1(AB))

= tr((AB)B−1)

= tr(A(BB−1))

= tr(A)

(d) Let A and B be in Mn(K), and define

〈A,B〉 = tr(AB)

First, it is clear that 〈A,B〉 = 〈B,A〉. Second, it is also clear that 〈A,B + C〉 =
〈A,B〉 + 〈A,C〉. The third property regarding scalar multiplication is also clear. So,
this is a scalar product.
(e) Consider the equation

AB −BA = In
where A and B are elements of Mn(K). Taking the trace of the left hand side, we see
that

tr(AB −BA) = tr(AB)− tr(BA) = 0

However, the trace of In is non-zero. So, this means that there are no matrices A, B
which satisfy this equation.
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12. Consider S, the set of symmetric n × n matrices. Let’s verify the vector space
axioms for S (assume that the entries are in a field K). In the following, A, B and C
are any three symmetric matrices, a and b are any scalars in K.

(1) We have that (A+B) + C = A+ (B + C)
(2) We have A+B = B + A
(3) The zero matrix O satisfies O + A = A+O = A
(4) For every A, there is a −A such that A+ (−A) = O = (−A) + A
(5) We have a(A+B) = aA+ aB
(6) We have (a+ b)A = aA+ bA
(7) We have a(bA) = (ab)A
(8) We have 1A = A

and thus S is indeed a vector space.
Let us try to determine the dimension of S. Since these matrices are symmetric

about their diagonals, it follows that

dimS =
n∑
i=1

i =
n(n+ 1)

2

For example, when n = 2, a possible basis is:{(
1 0
0 0

)
,

(
0 1
1 0

)
,

(
0 0
0 1

)}
and when n = 3, a possible basis is:

1 0 0
0 0 0
0 0 0

 ,

0 1 0
1 0 0
0 0 0

 ,

0 0 1
0 0 0
1 0 0

 ,

0 0 0
0 1 0
0 0 0

 ,

0 0 0
0 0 1
0 1 0

 ,

0 0 0
0 0 0
0 0 1


14. Let A be a matrix in Mn(K). Observe that

(A+ At)t = At + A = A+ At

which means that A+ At is symmetric. Also,

(A− At)t = At − A = −(A− At)
which means that A− At is skew symmetric. Finally, write

A =
A+ At

2
+
A− At

2
We can also show that this representation is unique. Let

A = B + C = B1 + C1

where both B and B1 are symmetric, and C and C1 are skew symmetric. So, we have

B −B1 = C1 − C
Take the transpose of both sides to get

(B −B1)
t = (C1 − C)t

which means that
B −B1 = Ct

1 − Ct = C − C1

which means that
2(B −B1) = O

which implies that B = B1. And from there, we can conclude that C = C1.
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15. Define P : Mn(K)→Mn(K) by the formula

P (A) =
A+ At

2

(a) Let A, B be in Mn(K) and let c ∈ K. Then,

P (A+B) =
A+B + (A+B)t

2
=
A+ At

2
+
B +Bt

2
= P (A) + P (B)

and

P (cA) =
cA+ (cA)t

2
=
cA+ cAt

2
= c

A+ At

2
= cP (A)

which means that P is linear.
(b) Suppose P (S) = O for some S ∈Mn(K). This means that

S + St

2
= O

which implies that
S = −St

and hence KerP is the space of skew-symmetric matrices in Mn(K).

(c) Now, A+At

2
is always a symmetric matrix, and hence imP is the subspace of all

symmetric matrices in Mn(K), whose dimension is n(n+1)
2

. Applying Rank-Nullity, we
see that

dim KerP = n2 − n(n+ 1)

2
=
n(n− 1)

2
or in simple words, the dimension of the subspace of skew-symmetric matrices in

Mn(K) is n(n−1)
2

.

17. (b) Let U and W be two vector spaces of dimension n and m respectively. It is
easy to see that the dimension of U ×W is n+m. To see this, let {u1, u2, ..., un} be a
basis of U , and let {w1, w2, ..., wm} be a basis of W . Now, any element (u,w) ∈ U×W
can be written as

(u,w) = a1(u1, 0) + a2(u2, 0) + ...+ an(un, 0) + b1(0, w1) + b2(0, w2) + ...+ bm(0, wm)

III, §4. Exercises

1. Suppose L : R2 → R2 is a linear map such that L 6= O and L2 = O. Since L 6= O,
there is some A ∈ R2 such that

L(A) = B

for some B 6= O. It is clear that

L(B) = L(L(A)) = O.

We will show that A and B are linearly independent, thus implying that they form a
basis of R2.

Suppose x and y are real numbers such that

xA+ yB = O.

Applying L to both sides, we get

xL(A) + yL(B) = O

But since L(B) = O, it means that

xL(A) = O
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which means that x = 0(because L(A) = B 6= O). Also, it means that y = 0. Hence,
A and B are linearly independent, meaning that they form a basis of R2.

10. Let v ∈ V . Write v as

v = v − P (v) + P (v)

Observe that

P (v − P (v)) = P (v)− P (P (v)) = P (v)− P (v) = O

which means that v − P (v) ∈ KerP . Next, let x ∈ KerP ∩ imP . Then,

P (x) = O and x = P (y)

for some y ∈ V . But, this means that

P (P (y)) = P (y) = P (x) = O = x

and thus KerP ∩ imP = {O}.

16. Let V and W be vector spaces over a field K, both of dimension n. For any v ∈ V ,
we can find numbers a1, a2, ..., an in K such that

v = a1v1 + a2v2 + ...+ anvn

and these numbers are unique. So, consider the map L : V → W given by:

L(v) = a1w1 + a2w2 + ...+ anwn

It is clear that L is linear. We will show that L is an isomorphism. First, let x ∈ KerL.
Then,

L(x) = O

If x = b1v1 + b2v2 + ...+ bnvn, this means that

L(x) = b1w1 + b2w2 + ...+ bnwn = O

which means that b1 = b2 = ... = bn = 0, since w1, w2, ..., wn are linearly independent.
So, KerL = {O}.

By the Rank-Nullity theorem, it follows that

dim ImL = dimV = dimW = n

which means that ImL = W .
Hence, L is both injective and surjective, and hence is bijective. So, its an isomor-

phism, and hence V and W are isomorphic.

Matrices and Linear Maps

In this section, I will prove that every linear map can be thought of as a matrix.
Let’s start with a special case.
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Theorem: Let K be a field, and let L : Kn → Km be a linear map. Then, there is
a unique m× n matrix A such that

L(X) = AX

for any column vector X in Kn. Here, AX is the matrix product of A and X.
Proof: Let E1, E2, ..., En be a basis of Kn, and let e1, e2, ..., em be a basis of Km.

Note that the values of L(E1), L(E2), ..., L(En) determine L. So, suppose

L(E1) = a11e1 + a21e2 + ...+ am1em

L(E2) = a12e1 + a22e2 + ...+ am2em

........

L(En) = a1ne1 + a2ne2 + ...+ amnem

So, if X = x1E1 + x2E2 + ...+ xnEn then

L(X) =x1(a11e1 + a21e2 + ...+ am1em)+

x2(a12e1 + a22e2 + ...+ am2em)+

......

+xn(a1ne1 + a2ne2 + ...+ amnem)

and writing in component form, we get:

L(X) =e1(a11x1 + a12x2 + ...+ a1nxn)+

e2(a21x1 + a22x2 + ...+ a2nxn)+

em(am1x1 + am2x2 + ...+ amnxn)+

or, in matrix multiplication form, we can write
a11 a12 ... a1n
a21 a12 ... a1n
... ... ... ...
am1 am2 ... amn



x1
x2
...
xn

 =


a11x1 a12x2 ... a1nxn
a21x1 a12x2 ... a1nxn
... ... ... ...

am1x1 am2x2 ... amnxn

 = L(X)

The uniqeness of A is very easy to prove.
NOTE: This proof also gives us a quick way to find the matrix of such a linear map.

Find numbers aij in K such that

L(E1) = a11e1 + a21e2 + ...+ am1em

L(E2) = a12e1 + a22e2 + ...+ am2em

........

L(En) = a1ne1 + a2ne2 + ...+ amnem

and the transpose of the matrix
a11 a21 ... am1

a12 a22 ... am2

... ... ... ...
a1n a2n ... amn


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will be the matrix associated with the map L.

IV, §2. Exercises

These exercises will be a very good practice to get familiar with how linear maps
and matrices are related to each other.

1. In these computations, the general method remains that same: find the co-ordinates
of the values at basis elements, and take the inverse of the coordinate matrix to get
the matrix of the linear map!
(a) F : R4 → R2 given by F (t(x1, x2, x3, x4)) =t (x1, x2): Here, let’s compute F at

the basis elements:

F (t(1, 0, 0, 0)) =t (1, 0)

F (t(0, 1, 0, 0)) =t (0, 1)

F (t(0, 0, 1, 0)) =t (0, 0)

F (t(0, 0, 0, 1)) =t (0, 0)

and thus the matrix associated with F is:(
1 0 0 0
0 1 0 0

)
(c) F : R2 → R2 given by F (t(x, y)) =t (3x, 3y). Again, F at the basis elements is

given by:

F (t(1, 0)) =t (3, 0)

F (t(0, 1)) =t (0, 3)

and so matrix is: (
3 0
0 3

)
(d) F : Rn → Rn given by F (X) = 7X. Here, F at the basis elements will look like:

F (1, 0, 0, ..., 0) = (7, 0, 0, ..., 0)

F (0, 1, 0, ..., 0) = (0, 7, 0, ..., 0)

....

F (0, 0, 0, ..., 1) = (0, 0, 0, ..., 7)

and thus the matrix of F will be given by:
7 0 0 ... 0
0 7 0 ... 0
0 0 7 ... 0
... ... ... ... ...
0 0 0 ... 7


which is the diagonal matrix with the all diagonal elements equal to 7.
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(f) F : R4 → R2 given by F (t(x1, x2, x3, x4)) =t (x1, x2, 0, 0). F at the basis elements
is given by:

F (1, 0, 0, 0) = (1, 0, 0, 0)

F (0, 1, 0, 0) = (0, 1, 0, 0)

F (0, 0, 1, 0) = (0, 0, 0, 0)

F (0, 0, 0, 1) = (0, 0, 0, 0)

and thus the matrix is: 
1 0 0 0
0 1 0 0
0 0 0 0
0 0 0 0


Matrices and General Linear Maps

In this section I’ll not prove anything, but I will discuss how we can relate any
general linear map to a matrix. Let V , W be vector spaces over some field K, and
let L : V → W be a linear map. In addition, suppose R = {v1, v2, ..., vn} is a basis
of V , and suppose R ′ = {w1, w2, ..., wm} be a basis of W . Note that the map L is
completely determined by the values of L(v1), L(v2), ..., L(vn). So, suppose there are
numbers aij in K such that

L(v1) = a11w1 + a21w2 + ...+ am1wm

L(v2) = a12w1 + a22w2 + ...+ am2wm

....

L(vn) = a1nw1 + a2nw2 + ...+ amnwm

Now, suppose v ∈ V . Then, it has coordinates with respect to the basis R. Let the
coordinate vector of v be denoted by XR(v). For example, if v = v1 + v2 + ... + vn,
then XR(v) = (1, 1, 1, ..., 1). Note that XR(v) ∈ Kn. So, using coordinate vectors, we
can say that

XR′(L(v)) =


a11 a12 ... a1n
a21 a22 ... a2n
... ... ... ...
am1 am2 ... amn

XR(v) = MR
R′(L)XR(v)

Note that the matrix MR
R′(L) is the transpose of the matrix

a11 a21 ... am1

a12 a22 ... am2

... ... ... ...
a1n a2n ... amn

 .

This is very similar to what we did for maps from Kn to Km.
We can also say that the space L (V,W ) of all linear maps from V toW is isomorphic

to the space of all m× n matrices over the field K under the isomorphism

f 7→MR
R′(f)
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This gives us a very powerful formula to describe any linear map. For instance,
let’s talk about converting from one basis to another. If R and R ′ are two basis of
a vector space V , then the map associated with the matrix MR

R′(id) converts a vector
represented in basis R to the same vector represented in basis R ′. Also, observe that

MR
R′(id)MR′

R (id) = In = MR′

R (id)MR
R′(id)

where In is the n× n identity matrix over the field K, and id is the identity map.

IV, §3. Exercises

1. (a) Here, we have R = {(1, 1, 0), (−1, 1, 1), (0, 1, 2)} and R ′ = {(2, 1, 1), (0, 0, 1), (−1, 1, 1)}
Now, we have

(1, 1, 0) =
2

3
(2, 1, 1)− (0, 0, 1) +

1

3
(−1, 1, 1)

(−1, 1, 1) = 0(2, 1, 1) + 0(0, 0, 1) + (−1, 1, 1)

(0, 1, 2) =
1

3
(2, 1, 1) + (0, 0, 1) +

2

3
(−1, 1, 1)

and thus

MR
R′(id) =

1

3

 2 0 1
−3 0 3
1 3 2


(b) Here we have R = {(3, 2, 1), (0,−2, 5), (1, 1, 2)} and R ′ = {(1, 1, 0), (−1, 2, 4), (2,−1, 1)}.

Now, we have

(3, 2, 1) =
11

5
(1, 1, 0) +

2

15
(−1, 2, 4) +

7

15
(2,−1, 1)

(0,−2, 5) =
−11

5
(1, 1, 0) +

13

15
(−1, 2, 4) +

23

15
(2,−1, 1)

(1, 1, 2) =
3

5
(1, 1, 0) +

2

5
(−1, 2, 4) +

2

5
(2,−1, 1)

and thus

MR
R′(id) =

1

15

33 −33 9
2 13 6
7 23 6


2. Suppose L : V → V is a linear map. Let R = {v1, v2, ..., vn} be a basis of V , such
that L(vi) = civi. Then,

MR
R =


c1 0 0 0 .... 0
0 c2 0 0 .... 0
0 0 c3 0 .... 0
0 0 0 c4 .... 0
... ... ... ... .... ...
0 0 0 0 .... cn


which means that L is diagonalisable.
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7. Let F be the rotation through an angle θ. Let {E1, E2} be the usual basis of R2.
Now, the rotated coordinate system has basis F (E1) and F (E2), which are given by:

F (E1) = (cos θ, sin θ)

F (E2) = (− sin θ, cos θ)

Now, if (x, y) are the coordinates of a point w.r.t the usual basis R = {E1, E2}, we
wish to determine the coordinates w.r.t the basis R ′ = {F (E1), F (E2)}, which is the
rotated coordinate system.

Now, we have

(1, 0) = cos θ(cos θ, sin θ)− sin θ(− sin θ, cos θ)

(0, 1) = sin θ(cos θ, sin θ) + cos θ(− sin θ, cos θ)

and so the matrix MR
R′(id) is given by

MR
R′(id) =

(
cos θ sin θ
− sin θ cos θ

)
and so, the coordinates of the point (x, y) w.r.t the rotated system is given by:

t(x′, y′) = MR
R′(id)t(x, y) =t (x cos θ + y sin θ,−x sin θ + y cos θ)

8. In this exercise I will only describe how to do part (a), and the other parts have
the same method.
(a) Suppose R = {et, e2t}. Then, V is the vector space of all linear combinations of

these two functions. Let D : V → V be the derivative. We only need to find D at the
basis elements. So, observe that

D(et) = et + 0e2t

D(e2t) = 0et + 2e2t

and hence

MR
R (D) =

(
1 0
0 2

)
(b) We have

D(1) = 0(1) + 0t+ 0et + 0e2t + 0te2t

D(t) = 1 + 0t+ 0et + 0e2t + 0te2t

D(et) = 0(1) + 0t+ et + 0e2t + 0te2t

D(e2t) = 0(1) + 0t+ 0et + 2e2t + 0te2t

D(te2t) = 0(1) + 0t+ 0et + e2t + 2te2t

and hence

MR
R (D) =


0 1 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 2 1
0 0 0 0 2


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10. Let Pn be the vector space of all polynomials of degree ≤ n, and let D : Pn → Pn
be the derivative. Observe that, the map Dn is the O map, because the nth derivative
of a polynomial in Pn must be the zero polynomial. This means that D is actually
nilpotent.
(a) Observe that

(I −D2) ◦ (I +D2 +D4 + ...+D2n−2)

= I ◦ (I +D2 +D4 + ...+D2n−2)−D2 ◦ (I +D2 +D4 + ...+D2n−2)

= I +D2 + ...+D2n−2 −D2 −D4 − ...−D2n

= I −D2n

= I

because D2n is also the O map.
(b) We can extend this technique to a general map Dm − I. Here, observe that

(Dm − I) ◦ (−I −Dm −D2m − ...−D(n−1)m) = I −Dmn = I

because Dmn is the O map.

Scalar Products

Let V be a vector space over a field K. Then, the scalar product is simply a function
from that takes two vectors and returns a scalar. I won’t list the axioms here. For a
vector space over R, we say that a scalar product is positive definite if for every v ∈ V ,

〈v, v〉 ≥ 0

and if v 6= O, then the inequality is strict. Let’s prove two distance theorems:
Pythagoras Theorem: If v and w are perpendicular, then

||v + w||2 = ||v||2 + ||w||2

Proof: We have

||v + w||2 = 〈v + w, v + w〉
= 〈v + w, v〉+ 〈v + w,w〉
= 〈v, v〉+ 〈w, v〉+ 〈v, w〉+ 〈w,w〉
= ||v||2 + ||w||2

Parallelogram Law: For any v, w in V , we have

||v + w||2 + ||v − w||2 = 2||v||2 + 2||w||2

Proof: We have

||v + w||2 + ||v − w||2 = 〈v + w, v + w〉+ 〈v − w, v − w〉
= 2〈v, v〉+ 2〈w,w〉+ 2〈v, w〉 − 2〈v, w〉
= 2〈v, v〉+ 2〈w,w〉
= 2||v||2 + 2||w||2

There are two useful inequalities associated with norms and the scalar product (I am
not proving them here):
Cauchy-Schwarz Inequality: If V is a vector space with a positive-definite scalar
product, then

|〈v, w〉| ≤ ||v||||w||
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Triangle Inequality: If V is a vector space with a positive-definite scalar product,
then

||v + w|| ≤ ||v||+ ||w||

V,§1. Exercises

1. Suppose V is a vector space with a scalar product. Then, for any v ∈ V

〈O, v〉 = 〈O +O, v〉 = 〈O, v〉+ 〈O, v〉

which implies that 〈O, v〉 = 0.

2. Suppose that V has a positive definite scalar product. Let v1, v2, ..., vn be non-zero
elements that are mutually perpendicular. We will show that these vectors are linearly
independent. So, let a1, a2, ..., an be in K such that

a1v1 + a2v2 + ...+ anvn = O

Then, taking the scalar product of both sides with v1, we get

〈a1v1 + ...+ anvn, v1〉 = 〈O, v1〉 = 0

Also, we have

〈a1v1 + ...+ anvn, v〉 = a1〈v1, v1〉
which means that

a1〈v1, v1〉 = O

Since the scalar product is positive definite and v1 6= O, this means that a1 = 0.
Similarly, it can be proved that

a1 = a2 = ... = an = 0

and thus the vectors are linearly independent.

3. Let M be a symmetric n×n matrix. Let X and Y be column n-vectors, and define

〈X, Y 〉 = X tMY

Since X tMY is a 1× 1 matrix, it is symmetric, and thus

(X tMY )t = X tMY

which means that

Y tM tX = Y tMX = X tMY

and so 〈X, Y 〉 = 〈Y,X〉. The other two properties may also be easily verified, and
hence this is a scalar product.

Orthogonal and Orthonormal Basis

In this section, we will prove a very important theorem about the existence of
orthogonal basis.

Theorem 0.8. Suppose V is an n-dimensional vector space over R with a positive
definite scalar product. Suppose W is a subspace of V , and suppose {w1, w2, ..., wm}
is an orthogonal basis of W . If W 6= V , then there exist elements wm+1, ..., wn such
that {w1, w2, ..., wm, wm+1, .., wn} is an orthogonal basis of V .
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Note: In a way, this theorem is saying that if we start with a set of linearly inde-
pendent vectors which are also orthogonal to each other, we can always extend them
to form a basis of V .

Proof: We know that we can find elements vm+1, ..., vn such that

{w1, w2, ..., wm, vm+1, ..., vn}
is a basis of V . But, this basis may not be orthogonal. The idea is to replace vm+1

with some wm+1. Consider the vector

wm+1 = vm+1 − c1w1 − c2w2 − ...− cmwm

where ci =
〈vm+1, wi〉
〈wi, wi〉

, i.e ci is the component of vm+1 along wi. Note that, positive

definiteness is required for each ci to we well defined. Now, it is clear that wm+1 is
perpendicular to every wi. Also, we have

vm+1 = wm+1 + c1w1 + ...+ cmwm

which means that {w1, w2, ..., wm, wm+1, vm+2, .., vn} is a basis of V . We repeat this
step for vm+2, vm+3 till vn. Thus, we obtain an orthogonal basis.

A corollary of this theorem is that every finite dimensional vector space V that is
not equal to {O} and which has a positive definite scalar product has an orthogonal
basis. This proof also tells us how to construct one.

Given an orthogonal basis, we can find an orthonormal basis by dividing each vector
by its norm.
Exercise: As an exercise let’s find an orthonormal basis for the vector space generated
by the vectors v1 = (1, 1, 0, 1), v2 = (1,−2, 0, 0) and v3 = (1, 0,−1, 2). These vectors
are linearly independent. Now, orthogonalise the second vector w.r.t the first and get

v′2 = v2 −
〈v2, v1〉
〈v1, v1〉

v1 =

(
4

3
,
−5

3
, 0,

1

3

)
Then, orthogonalise v3 w.r.t v1 and v′2 to obtain

v′3 = v3 −
〈v3, v1〉
〈v1, v1〉

v1 −
〈v3, v′2〉
〈v′2, v′2〉

v′2 =

(
−4

7
,
−2

7
,−1,

6

7

)
So, the vectors v1, v

′
2, v
′
3 are an orthogonal basis. To get an orthonormal basis, divide

these vectors by their norms.
The next theorem gives is both theoretically and practically powerful:

Theorem 0.9. Suppose V is a vector space over R with a positive definite scalar
product, and let V have dimension n. Let W be a subspace of V of dimension r.
Denote by W⊥ the space of vectors perpendicular to W . Then, V is a direct sum of
W and W⊥, and W⊥ has dimension n− r.

Proof: If W = {O}, then W⊥ = V , and the theorem is true. If W = V , then
W⊥ = {O}, and again the theorem is true. So, let’s assume that W is not one of those
subspaces.

There exists an orthogonal basis of W ; let it be {w1, w2, ..., wr}. Then, by a previous
theorem, there are elements ur+1, ..., un of V such that

{w1, w2, ..., wr, ur+1, ..., un}
is an orthogonal basis of V . We will show that {ur+1, ur+2, ..., un} is an orgthogonal
basis of W⊥.
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Suppose w ∈ W⊥. Then, we can write w as

w = a1w1 + a2w2 + ...+ arwr + ar+1ur+1 + ...+ anun

Taking the scalar product of w with any wi, we obtain

〈w,wi〉 = 0 = ai〈wi, wi〉
which implies that ai = 0. So, ur+1, ..., un generate W⊥. Also, these elements are
mutually perpendicular and linearly independent, so they constitute an orthogonal
basis of W⊥. Also, it is clear that V is a direct sum of W and W⊥.

The importance of this theorem is that given any subspace, we can find the dimen-
sion of the space that is orthogonal to this space. W⊥ is also called the orthogonal
complement of W .

V, §2. Exercises

0. Let V = R6 and W be the space generated by the vectors (1, 1,−2, 3, 4, 5) and
(0, 0, 1, 1, 0, 7). Clearly, dimW = 2. We are interested in finding the dimension of
W⊥. We know that

dimV = dimW + dimW⊥

and it follows that dimW⊥ = 4.

1. We will only do one part of this problem.
(b) Consider the subspace of R3 spanned by the vectors A = (2, 1, 1) and B =

(1, 3,−1). One basis of this subspace is obviously {A,B}. However, A and B are not
perpendicular. So, let’s orthogonalise B with respect to A to obtain

B′ = B − B · A
A · A

A =

(
−1

3
,
7

3
,
−5

3

)
and thus {A,B′} is an orthogonal basis of the subspace. To get an orthonormal basis,
we just divide these vectors by their norm, and so an orthonormal basis is{

1√
6

(2, 1, 1),
1√
75

(−1, 7,−5)

}
3. For real-valued continuous functions on [0, 1], let’s define

〈f, g〉 =

∫ 1

0

f(t)g(t)dt

It is clear that
〈f, g〉 = 〈g, f〉

Also, we have∫ 1

0

(f(t) + g(t))h(t)dt =

∫ 1

0

f(t)h(t)dt+

∫ 1

0

g(t)h(t)dt

which gives us
〈f + g, h〉 = 〈f, h〉+ 〈g, h〉

Finally,

〈cf, g〉 =

∫ 1

0

cf(t)g(t)dt = c

∫ 1

0

f(t)g(t)dt = c〈f, g〉

and thus this is a well-defined scalar product. Also, it is not hard to see that this
scalar product is actually positive definite and non-degenerate.
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4. Let V be the subspace of functions generated by f(t) = t and g(t) = t2. It is then
clear that one basis of V is

{f, g}
However, we have

〈f, g〉 =

∫ 1

0

t3dt 6= 0

and hence this is not an orthonormal basis. So, let’s orthogonalise g with respect to
f and get

g′(t) = g(t)− 〈g, f〉
〈f, f〉

f(t) = t2 − 3t

4

(g′ is not the derivative!) and hence {g′, f} is an orthogonal basis of V . On dividing
by their norms, we observe that an orthonormal basis is{√

3t,
√

80

(
t2 − 3t

4

)}
5. Let V be the space of functions generated by f(t) = 1, g(t) = t and h(t) = t2. An
obvious basis is given by

{f, g, h}
Now we will do the exact same method as we did in 4. So,

g′(t) = g(t)− 〈g, f〉
〈f, f〉

f(t) = t− 1

2

and

h′(t) = h(t)− 〈h, f〉
〈f, f〉

f(t)− 〈h, g
′〉

〈g′, g′〉
g′(t) = t2 − 1

3
−
(
t− 1

2

)
= t2 − t+

1

6

and so

{f, g′, h′}
is an orthogonal basis of V . To get an orthonormal basis, we just divide by the norm
of these functions.

6. In this exercise, we will use the hermitian inner product.
(a) Let V be the space generated by A = (1, i, 0) and B = (1, 1, 1). So, a clear cut

basis of V is

{A,B}
However, this is not an orthonormal basis. Let’s orthogonalise B with respect to A to
get

B′ = B − 〈B,A〉
〈A,A〉

A =

(
1 + i

2
,
1− i

2
, 1

)
Now, observe that 〈A,B′〉 = 〈B′, A〉 = 0, and hence {A,B′} is an orthogonal basis of
V . So, an orthonormal basis is of V is{(

1√
2
,
i√
2
, 0

)
,

(
1 + i

2
√

2
,
1− i
2
√

2
,

1√
2

)}
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(b) Let V be the complex space generated by A = (1,−1,−i) and B = (i, 1, 2). So,
a basis of V is clearly

{A,B}

but this basis is clearly not orthogonal. Orthogonalising B with respect to A, we get

B′ = B − 〈B,A〉
〈A,A〉

A =

(
1

3
,
2 + 3i

3
,
3− i

3

)
and so {A,B′} is an orthogonal basis of V . So, an orthonormal basis is given by:{(

1√
3
,
−1√

3
,
−i√

3

)
,

(
1

2
√

6
,
2 + 3i

2
√

6
,
3− i
2
√

6

)}

7.
(a) We have already shown that for any n× n matrices A and B, it is true that

tr(A+B) = tr(A) + tr(B)

tr(AB) = tr(BA)

and hence this is a scalar product. To show that it is also non-degenerate, suppose
there is a matrix M such that

tr(MX) = 0

for all square matrices X. If Mi is the ith row of M , this means that

M1 ·X1 +M2 ·X2 + ...+Mn ·Xn = 0

where each X i is a column vector with n elements. So, this means that every entry of
M is 0, and hence M = O. So, the trace is a non-degenerate scalar product.
(b) Suppose A is a symmetric square matrix. Let Ai be the ith row vector of A, and

let Ai be the ith column vector of A. Now, we have

tr(A2) =
n∑
i=1

Ai · Ai

Since A is symmetric, we have that Ai = Ai. So, the trace is ≥ 0, and if A 6= O, then
the trace is strictly positive.

(c) The dimension of the space of symmetric n×n matrices is
n(n+ 1)

2
as we proved

earlier. Now, observe that if A is a matrix whose trace is 0, then it means that

a11 + a22 + ...+ ann = 0

Given any values of a11, a22 upto a(n−1)(n−1), a value of ann can be determined which
makes the trace 0. So, the dimension of W is

dimW = dimV − 1

and hence the dimension of the orthogonal complement of W is 1.
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Proof that Column Rank = Row Rank

Let A be an m × n matrix. The ’column’ rank of A is the dimension of the space
generated by the columns of A. Similar is the definition of the ’row’ rank. Now, we
will prove that the column rank is equal to the row rank for a matrix over a field K,
where in this discussion K is either R or C. Before giving a proof, we will make use
of the fact that if W is a subspace of Kn, then

dimW + dimW⊥ = n

Here, the associated scalar product is the normal dot · product. Note in this case of
C, the normal dot product is not positive definite. But, as we will prove later, this
theorem still remains true. For R, we have already proven this theorem because the
dot product is positive definite.

If A is a matrix over K, let LA be the linear map associated with it. So, LA : Kn →
Km is a linear map. We are interested with the kernel of LA. By Rank-Nullity, we
have

dim KerLA + dim ImLA = n

And the key observation is that

Column Rank of A = dim ImLA

Now, we can interpret KerLA in another way: if X ∈ KerLA, then

AX = O

which means that the dot product of X with every row of A is 0. In other words, if Q
is the space generated by the rows of A, then KerLA is the orthogonal complement of
Q with respect to the dot product. So, it follows that

dimQ+ dimKerLA = n

But, Row Rank of A = dimQ, and hence it follows that

Row Rank of A = Column Rank o A

Additionally, the dimension of the kernel of LA is n− Rank(A).

V , §3. Exercises

1. In this exercise, we will just compute the rank of some matrices. Nothing special
here, so I’ll not write all the steps involved.

(a) A =

(
2 1 3
7 2 0

)
and Rank(A) = 2

(b) A =

(
−1 2 −2
3 4 −5

)
and Rank(A) = 2

(c) A =

(
1 2 7
2 4 −1

)
and Rank(A) = 2

(d) A =


1 2 −3
−1 −2 3
4 8 −12
0 0 0

 and Rank(A) = 1

(e) A =

(
2 0
0 −5

)
and Rank(A) = 2
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2. Suppose A is an m×n matrix and B is an n×p matrix over some field K. Consider
the corresponding linear maps LA : Kn → Km and LB : Kp → Kn. Now, the matrix
AB is the matrix of the linear map LA ◦ LB : Kp → Km. Also, we have

Rank(AB) = dim imLA ◦ LB
Rank(A) = dim imLA

Rank(B) = dim imLB

Now, imLA ◦ LB ⊆ imLA, which means that dim imLA ◦ LB ≤ dim imLA, which
basically is saying that Rank(AB) ≤ Rank(A). Now, by Rank-Nullity theorem, we
have

dim KerLB + dim imLB = p

dim KerLA ◦ LB + dim imLA ◦ LB = p

Also, observe that KerLB ⊆ KerLA ◦LB, which means that dim KerLB ≤ dim KerLA ◦
LB, and so we conclude that

dim imLB ≥ dim imLA ◦ LB

which is basically saying that Rank(AB) ≤ Rank(B). So, it can be concluded that

Rank(AB) ≤ min(Rank(A),Rank(B))

3. Let A be an upper triangular square matrix with none of the diagonal elements 0,
i.e

A =


a11 a12 a13 ... a1n
0 a22 a23 ... a2n
0 0 a33 ... a3n
0 0 0 ... a4n
0 0 0 ... a5n


with aii 6= 0. Then, it is very easy to see that the rows of A are linearly independent,
and hence Rank(A) = n.

4. (d) The given system of equations is

x+ y + z = 0

x− y = 0

y + z = 0

We can write this in matrix form as1 1 1
1 −1 0
0 1 1

xy
z

 = O

Now, we know that

3 = dim Space of solutions + Rank(A)

which means that the dimension of the space of solutions is 0. So, the only solution
to this system is (0, 0, 0).
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5. (c) The given system of equations is:

2x− 3y + z = 0

x+ y − z = 0

3x+ 4y = 0

5x+ y + z = 0

which in matrix form can be written as:
2 −3 1
1 1 −1
3 4 0
5 1 1


xy
z

 = O

Again, we know that

3 = dim Space of solutions + Rank(A)

which means that the dimension of the space of solutions is 0, which means that the
only solution of this system is (0, 0, 0).

6. We need to find the dimension of the space of solutions of

X · A = P · A

which can also be written as

(X − P ) · A = 0

Note that, the dimension of the solution space of the above equation is equal to the
dimension of the space of solutions of the equation

X · A = 0

We can interpret A as a row matrix, and thus Rank(A) = 1. So, the dimension of the
space of solutions is n− 1.

Row Operations and Invertible Matrices

This is a section inspired from the book ”Algebra” by Michael Artin. Let A be an
n×p matrix. Then, there are three fundamental ”row” operations related to matrices:

(1) Add a multiple of the jth row to the ith row of A, where i 6= j.
(2) Switch the ith and jth rows of A.
(3) Multiply the ith row of A by a scalar c.

It turns out that these three operations can be carried out by multiplication with
suitable ’elementary matrices’. Corresponding to every elementary row operation,
there are three types of elementary matrices. Let eij be an n× n matrix, all of whose
entries are zero except the ijth entry.

(1) The first type of elementary matrix is given by the formula

E1 = In + ceij

where c is any scalar, and i 6= j. If A is any n×p matrix, then the matrix E1A
adds c times the jth row to the ith row of A. Note that E1 is an n× n square
matrix.
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(2) The second type of elementary matrix is given by the formula

E2 = In + eij + eji − eii − ejj
If A is an n× p matrix, then the effect of E2A will be to switch the ith and jth

rows of A. Again, E2 is a n× n square matrix.
(3) The third type of elementary matrix is given by formula

E3 = In + (c− 1)eii

and the effect of E3A is to multiply the ith row of A by a scalar c.

All the three elementary matrices are invertible, which is not hard to see. If we apply
a sequence of elementary row operations E1, E2, ..., Ek to A, then the resultant matrix
is given by

Ek...E2E1A

It is also not hard to see that the product of elementary matrices is also invertible.
One advantage of using row reduction is to solve linear equations. Suppose we have

a system of m equations in n unknowns, then we can write the system as

AX = B

where A is an m × n matrix, and B is an m × 1 matrix. If we simultaneously do
row-reduction on A and B, and obtain matrices A′ and B′, then the key fact is that
the solutions of the system A′X = B′ will exactly be the same as the solutions of the
original system. Thus, row-reduction can help to easily solve linear equations.

Using row-reductions, given any m×n matrix, we can reduce to a form known as the
row echelon form. It is basically an m× n matrix, which has the following properties:

(1) The first non-zero entry of every row is 1. These entries are called the ’pivots’.
(2) The first non-zero entry of the (i+ 1)th row is to the right of the ith row.
(3) All entries above a pivot are zero.

Now, if A is a square matrix, then we can reduce it using elementary row operations,
to an echelon form. Also, if M is a square echelon matrix, it is not hard to see that
either it is the identity matrix, or its bottom row is zero. So, A is invertible if and
only if, it can be reduced to the identity matrix by a sequence of row operations, and
that is the case if and only if it is a product of elementary matrices.

Now, if A is invertible, then a sequence of row operations reduce it to In, i.e

Ek...E2E1A = I

and we have
Ek...E2E1I = A−1

Hence, applying the same operations to the identity matrix will give us the inverse of
A.

Determinants

We already know how to define determinants for 2× 2 and 3× 3 matrices. We can
inductively define determinants for an n × n matrix. We can view determinants as
a multilinear function of the columns of a square matrix. We will see from the next
theorem that determinants can be characterised by three properties. We will not give
a complete proof of the theorem.

Theorem 0.10. There exists a unique function D : Kn ×Kn × ...×Kn → K which
has the following properties:
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(1) D is multinlinear
(2) D is alternating, i.e

D(A1, ..., Aj, Aj, ..., An) = 0

which means that if two consecutive columns are equal, then D is zero.
(3) D(E1, E2, ..., En) = 0, where E1, E2, ..., En is the standard orthonormal basis

of Kn. We can also write it is D(I) = 0, where I is the identity square matrix.

Proof: We will not prove uniqueness here. We will only prove the existence, and we
will do so by induction.

Let us define

D(A) =
n∑
j=1

(−1)1+ja1jD(A1j)

where A1j is the (n − 1) × (n − 1) matrix obtained by removing the 1st row and the
jth column of A. We will show that this definition satisfies the three properties.

Let’s interpret D as a function of columns of A. Now, consider the term

(−1)1+ja1jD(A1j)

and consider the kth column of A. If j 6= k, then the term a1j is independent of the
column of A, and by induction hypothesis D(A1j) is linear in the kth column of A1j.
If j = k, then a1j is linear on the kth column of A, and D(A1j) is independent of this
column. So, every term is linear on the column, and so is D.

The second and third properties have simple proofs. I will not include them.
Now, we will prove some interesting properties of determinants. In the below dis-

cussion, A is a square n× n matrix.

Theorem 0.11. If consecutive columns of A are interchanged, then the determinant
changes sign.

Proof: Suppose columns Aj and Aj+1 are interchanged. Then,

D(A1, ..., Aj, Aj+1, ..., An)+D(A1, ..., Aj+1, Aj, ..., An) = D(A1, ..., Aj+Aj+1, Aj+1+Aj, ..., An)

and the last term is zero because two successive columns are equal. So the assertion
follows.

Theorem 0.12. If two columns of A are equal, then the determinant is 0.

Proof: Suppose the determinant is of the form

D(A) = D(A1, A2, ..., Ai, ..., Aj, ..., An)

where Ai = Aj. We keep on switching Ai with Ai+1, until we reach a situation where
two adjacent columns are equal. Since switching consecutive columns only changes
the sign of the determinant, it follows that the determinant must be 0.

Theorem 0.13. If two columns of A are interchanged, then the determinant changes
sign.

Proof: The proof is very similar to Theorem 0.11, and we just use Theorem
0.12.

Theorem 0.14. Adding a scalar multiple of one column to another column doesn’t
change the determinant.
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Proof: Let the required determinant be given by

D(A1, ..., Ai + tAj, ..., Aj, ..., An)

where i 6= j, and t ∈ K. Expanding this by linearity and taking out the constant t,
we get the required result.

VI, §3. Exercises

3. The determinant of a diagonal matrix is the product of its diagonal entries.

6. (i) In general, the determinant of an upper-triangular or lower-triangular matrix is
the product of its diagonal elements.

Determinants and Linear Independence

We will now prove a theorem that will tell us how to know if a set of vectors in Kn

is linearly independent or not:

Theorem 0.15. Suppose A1, ..., An are column vectors in the space Kn. If A1, ..., An

are linearly dependent, then
D(A1, ..., An) = 0

Proof: Suppose A1, ..., An are linearly dependent. So, there are numbers a1, ..., an
in K, not all zero, such that

a1A
1 + ...+ anA

n = O

Without loss of generality, suppose a1 6= 0. Then, we can write A1 as a linear combi-
nation of A2, ..., An, so let

A1 = x2A
2 + ...+ xnAn

Now, we see that

D(A1, ..., An) = D(x2A
2 + ...+ xnA

n, ..., An)

= x2D(A2, ..., An) + x3D(A3, ..., An) + ...+ xnD(An, ..., An)

= 0

because all the determinants on the right hand side have two equal columns. So, the
vectors must be linearly dependent.

As a corollary to this, we can say that vectors A1, ..., An are linearly independent if
the determinant of these vectors is non-zero. Later, we will prove that this is actually
an if and only if condition.

At this point, we will prove another important theorem about invertibility of square
matrices:

Theorem 0.16. Suppose A is an n×n matrix over some field K. Then, A is invertible
if and only if the columns of A are linearly independent.

Proof: First, suppose that the columns of A are linearly indepedent. So, this means
that there is a linear map T : Kn → Kn such that

T (A1) = E1

T (A2) = E2

... = ...

T (An) = En
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where {E1, E2, ..., En} is the standard orthonormal basis of Kn. Consider the matrix
corresponding to T , and denote it by MT . Then, we have

MTA
i = Ei

but this means that
MTA = I

and so A is invertible.
Conversely, suppose A is invertible. Then, the linear map LA associated with A is

also invertible. This means that KerLA = {O}. Also, observe that if X ∈ Kn such
that X = (x1, x2, ..., xn), then

LA(X) = x1A
1 + x2A

2 + ...+ xnA
n

and since KerLA = {O}, it follows that {A1, ..., An} are linearly independent. So the
proof is complete.

Next, we will prove a theorem about column equivalent matrices. We say that two
matrices A and B(over some field K) are column equivalent if B can be obtained from
A by a finite sequence of column operations.

Theorem 0.17. Suppose A and B are n× n column equivalent matrices. Then,

Rank(A) = Rank(B),

A is invertible if and only if B is invertible, and det(A) = 0 if and only if det(B) = 0.

Proof: Let A1, ..., An be the columns of A. If we interchange columns, then the
space generated by the columns still remains the same. If we multiply a column by a
(non-zero) constant, then again the space generated by the columns still remains the
same. Finally, adding a scalar multiple of one column to another doesn’t change the
space generated by the columns. So, it follows that the column ranks of A and B are
equal, and thus

Rank(A) = Rank(B)

Next, observe that column operations only change the sign of the determinant or scale
it by a non-zero constant. So, det(A) = 0 if and only if det(B) = 0.

Finally, if A is invertible, then

Rank(A) = n

(because A is invertible if and only if its columns are linearly independent) which
means that Rank(B) = n, and hence B is also invertible. Similarly if B is invertible
then A is invertible because the rank doesn’t change. Hence, the claim follows.

Theorem 0.18. Let A be an n × n matrix. Then, A is column equivalent to a
triangular matrix

B =


b11 0 0 ... 0
b21 b22 0 ... 0
b31 b32 b33 ... 0
... ... ... ... ...
bn1 bn2 bn3 ... bnn


Proof: The proof is by induction. If the first row of the matrix A is zero, then

inductively do column operations on the (n−1)×(n−1) submatrix to get the required
triangular matrix. If some element of the first row is non-zero, we can assume that
the first element of the first row is non-zero(by switching columns). Then, make all
elements of the first row except the first zero by adding a suitable scalar multiple of
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the first column to the other columns. Then, inductively do column operations on the
(n − 1) × (n − 1) submatrix. The required triangular matrix is thus obtained. Now,
let’s prove the most important theorem of this section:

Theorem 0.19. Suppose A = (A1, ..., An) is an n × n matrix. Then, the following
conditions are equivalent:

• A is invertible
• A1, ..., An are linearly independent
• det(A) 6= 0

Proof: We have already shown the equivalence of the first two conditions. Now, by
the previous theorem(Theorem 0.18), we can assume that A is a triangular matrix.
We have already shown that if det(A) 6= 0 then the columns of A are linearly indepen-
dent. Now, if the columns of A are linearly independent, then none of the diagonal
elements is zero. Also, for a triangular matrix, determinant is the product of diagonal
elements. Hence, det(A) 6= 0. So the proof is complete.

Permutations

Let’s start with some examples.

Example 1. We wish to express the permutation[
1 2 3
3 1 2

]
as a product of transpositions. It is not difficult to obtain this product:[

1 2 3
3 1 2

]
=

[
1 2 3
1 3 2

] [
1 2 3
2 1 3

]
Example 3. Lets express [

1 2 3 4
2 3 4 1

]
as a product of transpositions. Again, this is not difficult, and we obtain[

1 2 3 4
2 3 4 1

]
=

[
1 2 3 4
4 2 3 1

] [
1 2 3 4
3 2 1 4

] [
1 2 3 4
2 1 3 4

]
It can actually be proven that every permutation can be represented as a product of
transpositions. Lets prove that.

Theorem 0.20. Let σ be a permutation of {1, ..., n}. Then, σ can be expressed as a
product of transpositions.

Proof: We can prove this by induction. If n = 1 then there is nothing to prove. Now,
suppose σ is a permutation of {1, 2, ..., n}. Let σ(n) = k. Consider the transposition
τ such that τ(n) = k and τ(k) = n. So, the permutation τσ fixes n, and so it is a
permutation of {1, 2, ..., n − 1} that keeps n fixed. By induction hypothesis, we can
write

τσ = τ1τ2...τs
where each τi is a transposition, and thus

σ = τ−1τ1...τs = ττ1...τs

and the claim follows.
We will denote {1, ..., n} by the symbol [n]. We now prove an important theorem.
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Theorem 0.21. To every permutation σ of [n] we can assign a sign ε(σ), which is −1
or 1, and which satisfies the following properties:

• If τ is a transposition, then ε(τ) = −1
• If σ and σ′ are permutations then

ε(σσ′) = ε(σ)ε(σ′)

Proof: Let E1, E2, ..., En be the standard orthonormal basis of Kn. Let σ be any
permutation of [n]. We define

ε(σ) =
det(Eσ(1), Eσ(2), ..., Eσ(n))

det(E1, ..., En)

which we can also write as the equation

det(Eσ(1), Eσ(2), ..., Eσ(n)) = ε(σ) det(E1, ..., En)

It is then clear that if τ is a transposition, then ε(τ) = −1.
Next, let σ and σ′ be any two permutations. Then,

det(Eσσ′(1), Eσσ′(2), ..., Eσσ′(n) = ε(σσ′) det(E1, ..., En)

But, we can also write

det(Eσσ′(1), Eσσ′(2), ..., Eσσ′(n) = ε(σ′) det(Eσ(1), Eσ(2), ..., Eσ(n))

= ε(σ′)ε(σ) det(E1, ..., En)

and the equality ε(σσ′) = ε(σ)ε(σ′) immediately follows. Note: Using this theorem
and the fact that any permutation can be written as a product of transpositions, we
can easily compute the sign of a given permutation. Permutations with sign 1 are
called even, while those with sign −1 are called odd.

VI, §6. Exercises

1. In this exercise we will determine the sign of some permutations:

(b). ε

([
1 2 3
3 1 2

])
= (−1)2 = 1

(f). ε

([
1 2 3 4
3 2 4 1

])
= (−1)2 = 1

(g). ε

([
1 2 3 4
4 2 1 3

])
= (−1)2 = 1

3. We will show that the number of even permutations of [n] is equal to the number
of odd permutations. We will establish a bijection between the even and the odd
permutations.

First, let τ be any transposition. Then, consider the map given by σ 7→ τσ. Suppose
there are permutations σ1 and σ2 such that

τσ1 = τσ2

Then it is clear that σ1 = σ2, and so the map is injective. To show that the map is
surjective, observe that for any permutation σ, we have

τ(τ−1σ) = σ.

Finally, since τ is an odd permutation, for any even permutation σ, we have that τσ
is an odd permutation. So, this is a bijection between even and odd permutations.
Hence the claim follows.
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We will now use our knowledge of permutations to prove that any alternating mul-
tilinear function D (multinear on columns) such that D(E1, ..., En) = 1 is uniquely
determined by these three properties.

First, let’s try to prove it for the simpler 2× 2 case. Let(
a b
c d

)
be any 2× 2 matrix, and observe that

A1 = aE1 + cE2

A2 = bE1 + dE2

where E1 and E2 are the standard orthonormal column vectors. Then,

D(A1, A2) = D(aE1 + cE2, bE1 + dE2)

= aD(E1, bE1 + dE2) + cD(E2, bE1 + dE2)

= abD(E1, E1) + adD(E1, E2) + cbD(E2, E1) + cdD(E2, E2)

= ad− bc
Note that we used some additional properties of determinants which can be proven
using the three initial properties.

There was no mention of permutations here. But, let us see why this is ultimately
related to permutations. We will prove it as a general theorem for n × n matrices.
Before doing so, let’s make a quick remark. Let A be an n×n matrix with entries aij.
Then, we can write the columns of A as

A1 = a11E
1 + a21E

2 + ...an1E
n =

n∑
j1=1

aj11E
j1

A2 = a12E
1 + a22E

2 + ...an2E
n =

n∑
j2=1

aj22E
j1

.....

An = a1nE
1 + a2nE

2 + ...annE
n =

n∑
jn=1

ajnnE
jn

In the following theorem, we will replace E1, ..., En be any general column vectors
X1, ..., Xn.

Theorem 0.22. Suppose B is any n × n matrix with entries bij. Let X1, ..., Xn be
any column vectors. Define the columns

A1 = b11X
1 + b21X

2 + ...+ bn1X
n

A2 = b12X
1 + b22X

2 + ...+ bn2X
n

...

An = b1nX
1 + b2nX

2 + ...+ bnnX
n

Then,

D(A1, ..., An) =
∑
σ

ε(σ)bσ(1)1bσ(2)2...bσ(n)nD(X1, ..., Xn)

where the sum is taken over all permutations σ of [n].
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Proof: By the the definition of Ai, we can write

Ai =
n∑

ji=1

bjiiX
ji

Then, we use multilinearity of D to get

D(A1, ..., An) = D

(
n∑

j1=1

bj11X
j1 , ...,

n∑
jn=1

bjnnX
jn

)

=
n∑

j1=1

bj11D

(
Xji , ...,

n∑
jn=1

bjnnX
jn

)
= ...

=
n∑

ji=1

n∑
j2=1

...

n∑
jn=1

bj11bj22...bjnnD(Xj1 , ..., Xjn)

Now, in the above sum, j1, ..., jn can take any values from 1 to n, but we can only
focus on the cases where the jis are distinct. So, the sum becomes

D(A1, ..., An) =
∑
σ

bσ(1)1bσ(2)2...bσ(n)nD(Xσ(1), ..., Xσ(n))

=
∑
σ

ε(σ)bσ(1)1bσ(2)2...bσ(n)nD(X1, ..., Xn)

and so the formula is proven. Note that the only thing we used was multilinearity,
and the fact that D is alternating.

We can replace X1, ..., Xn by the vectors E1, ..., En to obtain that for any n × n
matrix A, we have

det(A) =
∑
σ

ε(σ)aσ(1)1aσ(2)2...aσ(n)n

and hence the determinant is uniquely determined by these properties.
Let’s now prove some more useful facts about determinants using this formula.

Theorem 0.23. Suppose A and B are n× n matrices. Then,

det(AB) = det(A) det(B)

Proof: Suppose C = AB. Then, the ith column of C is given by

Ci = b1iA
1 + b2iA

2 + ...+ bniA
n

So, by Theorem 0.22, we have

det(C) =
∑
σ

ε(σ)bσ(1)1bσ(2)2...bσ(n)nD(A1, ..., An) = det(A) det(B)

and so the claim follows.

Theorem 0.24. For any square matrix A,

det(A) = det(At)

Proof: For any permutation σ, consider the product

aσ(1)1...aσ(n)n
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Suppose σ(1) = k, so we can write

aσ(1)1 = akσ−1(k)

and so we can write
aσ(1)1...aσ(n)n = a1σ−1(1)...anσ−1(n)

and so
det(A) =

∑
σ

ε(σ−1)a1σ−1(1)...anσ−1(n)

As σ ranges over all permutations, so does σ−1. So, the second hand side of the last
equation is the determinant of Ay. So, the claim follows.

Now, let us prove a formula for the inverse of a non-singular matrix.

Theorem 0.25. Let A be an n× n matrix such that D(A) 6= 0. Then, the inverse of
A is given by a matrix B such that

Bij =
D(A1, ..., Ej, ..., An)

D(A)

where the vector Ej occurs at the ith column in the numerator.

Proof: To find the inverse of A, we need to find a matrix B such that AB = I, or
we can write

Ej = B1jA
1 + ...+BnjA

n

This is a system of n linear equations in n unknowns. The solution can be obtained
by using Cramer’s rule as

xij =
D(A1, ..., Ej, ..., An)

D(A)

and so the theorem is proved.
This shows that B is the right-inverse of A. Now we will show that B is also the

left inverse. Since D(A) = D(At), we can repeat the above process to obtain a matrix
Y such that

AtY = I

and taking the transpose on both sides, we get

Y tA = I

So,
BA = (Y tA)(BA) = Y t(AB)A = Y tA = I

and hence B is also the left-inverse of A.
Define Aij to be the matrix obtained after removing the ith row and the jth column

of A. So, observe that

Bij =
(−1)i+j det(Aji)

det(A)
and so we can say that the inverse of A is the transpose of the matrix of cofactors of
A divided by det(A).

The Binet-Cauchy Formula

In this section, we will see a generalisation of the product rule for determinants.

1. VI , §8. Exercises

1. As an exercise, we will compute the inverse of a matrix using the above formula.
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The matrix is 2 1 2
0 3 −1
4 1 1


and the inverse by the above formula is

−1

20

 4 1 −7
−4 −6 2
−7 2 6


Internal and External Direct Sums

Suppose V is a vector space over a field K. Let V1 and V2 be subspaces of V which
satisfy the following properties:

(1) V1 + V2 = V
(2) V1 ∩ V2 = {O}

Then we say that V is a direct sum of V1 and V2, and we write

V = V1 ⊕ V2
This is also called the internal direct sum, because V1 and V2 are subspaces of V .

Now, suppose V1 and V2 are abstract vector spaces over a field K. Now define

V = V1 × V2
Now, define

Ṽ1 = V1 × {OW}
and also

Ṽ2 = {OV } × {V2}
Then it is not hard to see that

V = Ṽ1 + Ṽ2

Also, the nice thing about Ṽ1 and Ṽ2 is that V1 ∼= Ṽ1 and V2 ∼= Ṽ2. This kind of direct
sum is called an external direct sum, because V1 and V2 are no more subspaces of V .
But due to the isomorphism, any external direct sum can be interpreted as an internal
direct sum.

Quotient Spaces

Let V be a vector space over some field K, and let W be a subspace of V . We define
a relation v on V as follows: v v w if v − w ∈ W . It is then easy to see that v is
actually an equivalence relation. The set of all equivalence classes under this relation

is called the quotient space, and is denoted by V /
W . For a vector v, we denote its

equivalence class by the symbol [v]. Also, the equality

[v] = v +W

is true, where
v +W := {u+ v : u ∈ W}

Now, we will define addition and scalar multiplication of equivalence classes as
follows:

[v1] + [v2] = [v1 + v2]

α[v1] = [αv1]



38 SIDDHANT CHAUDHARY

where α ∈ K. This shows that V
/
K is itself a vector space, whose zero element is

[O] = W . We now define a map π : V → V /
W as

π(v) = [v]

It is then easily seen that Kerπ = W , and imπ = V /
W . And by Rank-Nullity

theorem, we get

dimV /
W = dimV − dimW

This gives us an important fact: given any subspace W of V , there is a linear map
from V to some vector space whose kernel is W . Let’s do an example of quotient
spaces.
Example. Let V = R2. Let L0 be the subspace of V given by

L0 = {(x, 0) : x ∈ R}

We wish to find V /
L0

. The elements of this quotient space are the translates of L0,

which are basically elements of the form v + L0, where v ∈ V . So, the elements are
Lα, where α is any real number, and

Lα = {(x, α) : x ∈ R}

which means that the quotient space consists of all lines in R2 parallel to the line
y = 0.

We will now prove what’s called the first isomorphism theorem.

Theorem 1.1. Let V and W be vector spaces over some field K, and let T : V → W
be a linear map. Then,

V /
KerT

∼= imT

Proof: We will give an isomorphism from V /
KerT to imT .

For v + KerT ∈ V
/

KerT , define

P (v + KerT ) = T (v)

We must ensure that this map is well-defined, in the sense that if v1+KerT = v2+KerT
then P (v1 + KerT ) = P (v2 + KerT ), but this is easily checked. We will show that P
is a one-one and onto linear map.

First let’s show that it is a linear map. Let v1 +KerT and v2 +KerT be in V
/

KerT .
Then,

P (v1 + KerT + v2 + KerT ) = P (v1 + v2 + KerT )

= T (v1 + v2)

= T (v1) + T (v2)

= P (v1 + KerT ) + T (v2 + KerT )

and if α ∈ K, then

P (α(v1 + KerT )) = P (αv1 + KerT )

= T (αv1)

= αT (v1)

= αP (v1 + KerT )
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To show that P is one-one, we will prove that KerP = {O + KerT} (O is the zero
vector in V ). Suppose there is some v + KerT such that

P (v + KerT ) = T (v) = O

(observe that here O is the zero element of W ). This means that v ∈ KerT , which
means that v + KerT = 0 + KerT . So, T is one-one.

Finally, showing that P is onto is trivial. So, it follows that P is an isomorphism,
and hence

V /
KerT

∼= imT

General Orthogonal Bases and The Algebraic Dual

In this section, we will first prove that any non-zero finite dimensional vector space
V has an orthogonal basis.

Theorem 1.2. Let V be a finite dimensional vector space over a field K, equipped
with a scalar product, and suppose V 6= {O}. Then, V has an orthogonal basis.

Proof: We can prove this by induction on the dimension of V . If V is one-
dimensional, then any non-zero vector in V forms an orthogonal basis. So, suppose
n = dimV > 1. Then, two cases are possible.

Case 1: For every vector v ∈ V , we have

〈v, v〉 = 0

and a consequence of this is that for every v, w ∈ V , we have

〈v, w〉 = 0

which means that every basis of V is orthogonal.
Case 2: There is some vector v1 ∈ V such that 〈v1, v1〉 6= 0. Let V1 be the space

generated by the vector v1. We will show that

V = V1 ⊕ V ⊥1
To show this, suppose v ∈ V , and let

c =
〈v, v1〉
〈v1, v1〉

and observe that 〈v − cv1, v1〉 = 0, which means that v − cv1 ∈ V ⊥1 and hence

v = (v − cv1) + cv1

Also, we must have V1∩V ⊥1 = {O}, which proves our claim. Now, dimV ⊥1 = dimV −1,
and by induction hypothesis, V ⊥1 has an orthogonal basis {v2, ..., vn}, and it follows
that

{v1, v2, ..., vn}
is an orthogonal basis of V . This proves the claim.

V,§5. Exercises

1. In this exercise we will find orthogonal basis for the indicated spaces.
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(a). A = (1, 1, 1), B = (1,−1, 2) and X · Y = x1y1 + 2x2y2 + x3y3. It is clear that A
and B are linearly independent, but

〈A,B〉 6= 0

Also, observe that 〈A,A〉 6= 0. Consider the vector B′ given by

B′ = B − 〈B,A〉
〈A,A〉

A =

(
3

4
,
−5

4
,
7

4

)
So, the set {A,B′} is an orthogonal basis for the given space.

2. Consider the space C2 over C. For elements (x1, x2) and (y1, y2) in C2, we define

〈(x1, x2), (y1, y2)〉 = x1y1 − ix2y1 − ix1y2 − 2x2y2

Consider the elements A = (1, 1) and B = (1,−1), which form a basis of C2. Also, we
have

〈(1, 1), (1, 1)〉 = −1− 2i 6= 0

Now, define B′ as

B′ = B − 〈B,A〉
〈A,A〉

A =

(
8− 6i

5
,
−2− 6i

5

)
So, {A,B′} is an orthogonal basis of C2.

Suppose V is a vector space over some field K. We define the space V ∗ as

V ∗ := {T : V → K : T is linear}
Observe that V ∗ is a subspace of KV . We call this space the algebraic dual of V .

Suppose dimV = N . We already know that V ∼= KN . We will prove that in this
case, V ∗ ∼= KN as well, which will prove that V ∼= V ∗.

Suppose {v1, ..., vN} is a basis of V . Any f ∈ V ∗ is completely determined by the
values f(v1), ..., f(vN). So, consider the map φ : V ∗ → KN defined as

φ(f) = (f(v1), ..., f(vn))

It is then clear that φ is a one-one map. Also, it is clearly onto. Finally, it is also easy
to see that φ is a linear map. Hence, φ is an isomorphism, and hence

V ∼= V ∗

Note that V was assumed to be finite dimensional. It turns out that this is a necessary
and sufficient condition for the dual space to be isomorphic to the original space.

We will now look at finite dimensional vector spaces with a non-degenerate scalar
product. It turns out that the dual space in this case is isomorphic to something
simple, as we prove in the following theorem:

Theorem 1.3. Suppose V is a finite dimensional vector space with a non-degenerate
scalar product. For any v ∈ V , define the map Lv(w) = 〈v, w〉. Then, Lv ∈ V ∗. The
map

v 7→ Lv

is an isomorphism between V and V ∗.

In other words, this theorem means that any map φ ∈ V ∗ can be written in the
form

φ(v) = 〈v0, v〉
for some element v0 ∈ V .
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Proof: First, the mapping v 7→ Lv is clearly linear by the properties of the scalar
product.

Next, suppose there is some v ∈ V such that Lv = O, where O is the zero-map.
This means that for all w ∈ V , we have

〈v, w〉 = 0

and since the scalar product is non-degenerate, this implies that v = OV . So, the
kernel of the mapping v 7→ Lv is {OV }. By the Rank-Nullity theorem, it follows that
the dimension of the image of this map is dimV . Since dimV = dimV ∗, it follows
that this map is surjective. Hence it is an isomorphism.

Let’s prove one final theorem in this section:

Theorem 1.4. Suppose V is a finite dimensional vector space, and let W be a sub-
space. Define

W⊥ := {φ ∈ V ∗ : φ(W ) = 0}
Then, W⊥ is a subspace of V ∗, and

dimW + dimW⊥ = dimV

Proof: That W⊥ is a subspace of V ∗ is easy to see. If W = {OV }, then W⊥ = V ∗,
and the claim follows. So, suppose W 6= {OV }. Let {w1, w2, ..., wr} be a basis of W ,
and extend it to a basis of V , that is let

{w1, w2, ..., wr, wr+1, ..., wn}

be a basis of V . Corresponding to this basis, let {φ1, φ2, ..., φn} be the dual basis. We
will show that {φr+1, φr+2, ..., φn} is a basis of W⊥.

First, any linear combination of {φr+1, ..., φn} is in W⊥. Next, if φ ∈ W⊥, then we
can write

φ = a1φ1 + ...+ anφn

and observe that

φ(w1) = a1 = 0

φ(w2) = a2 = 0

....

φ(wr) = ar = 0

and hence φ is a linear combination of {φr+1, ..., φn}. This proves the theorem.
Observe that in the above theorem no use of the scalar product is made. But we

will now use it to prove a corollary.
Let V be a finite dimensional vector space with a non-degenerate scalar product.

For a subspace W of V , we define it’s orthogonal complement in two ways:

perpV (W ) = {v ∈ V : 〈v, w〉 = 0 ∀w ∈ W}
perpV ∗(W ) = {φ ∈ V ∗ : φ(W ) = 0}

Since the scalar product is degenerate, the map v 7→ Lv gives an isomorphism between
perpV (W ) and perpV ∗(W ), where Lv(w) = 〈v, w〉 for all w ∈ V . So, as a corollary to
the previous theorem, we obtain:
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Theorem 1.5. Suppose V is a finite dimensional vector space with a non-degenerate
scalar product. For any subspace W of V , we have

dimV = dimW + dimW⊥

Here, W⊥ is the set of all vectors in V which are orthogonal to every vector in W .

V, §6. Exercises

3. Suppose W is the subspace of C3 generated by the vector (1, i, 0). We know that
the dimension of W⊥ is 3−1 = 2. So, let’s find two linearly independent vectors which
are orthogonal to (1, i, 0). Any such vector (x, y, z) ∈ C3 will satisfy the equation

x+ iy = 0

Observe that two such vectors are (i,−1, 1) and (1, i, 0), both of which are linearly
independent. Hence, the set {(i,−1, 1), (1, i, 0)} is the basis of W⊥.

4. Suppose V is an n dimensional vector space over K, and consider φ, a non-zero
functional (a map in V ∗). By Rank-Nullity theorem, we have

n = dim Ker(φ) + dim Im(φ)

and since the image is a non-zero subspace of K, it must be K. Hence,

dim Ker(φ) = n− 1.

Space of Operators

In this section we will study something known as the space of operators. Let V and
W be finite dimensional vector spaces over a field K. The set of all linear maps (or
operators) from V to W is denoted by Hom(V,W ). This is a vector space over K as
we proven before.

We define End(V ) = Hom(V,W ). Observe that not only is End(V ) a vector space,
but it is equipped with another operation, which is the composition of linear maps.
Let T ∈ End(V ). As a notation, we write

K[T ] := {c0I + c1T + ...+ cnT
n : c0, ..., cn ∈ K}

Here, I is the identity map in End(V ). Note that if g ∈ K[T ] and f ∈ K[T ], then we
have

f ◦ g = g ◦ f
that is composition is commutative in K[T ]. Let’s again come back to the space
Hom(V,W ). We will find the dimension of this space.

Theorem 1.6. If V and W are finite-dimensional vector spaces over K, then

dim Hom(V,W ) = dim(V ) dim(W )

Proof: Let {v1, ..., vn} be a basis of V , and let w1, ..., wm be a basis of W . Here, the
key fact that we will use is that any T ∈ Hom(V,W ) is completely determined by the
values T (v1), ..., T (vn).

For 1 ≤ i ≤ n and 1 ≤ j ≤ m, define Tij ∈ Hom(V,W ) by the formula

Tij(vk) = δikwj

for any 1 ≤ k ≤ n. In simpler words, the map Tij sends the vector vi to wj, and sends all
other vectors to the zero vector. We will show that the set {Tij : 1 ≤ i ≤ n, 1 ≤ j ≤ m}
is a basis of Hom(V,W ), which will prove the claim.
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First, let λij be scalars in K such that

f =
∑

1≤i≤n
1≤j≤m

λijTij = O

Here, O is the zero map. Let’s compute f(v1). We have

f(v1) =
∑

1≤i≤n
1≤j≤m

λijTij(v1)

=
∑

1≤i≤n
1≤j≤m

λijδi1wj

=
m∑
j=1

λ1jwj

= OW

and since w1, ..., wm are linearly independent, it follows that λ1j = 0 for each 1 ≤ j ≤
m. Similarly, by computing f(vk), we can show that λkj = 0 for each 1 ≤ j ≤ m. This
proves that λij = 0 for all i and j, and hence the set {Tij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is
linearly independent.

Now, let T : V → W be a linear map which takes the following values on the basis
elements of V :

T (v1) = a11w1 + a12w2 + ...+ a1mwm

T (v2) = a21w1 + a22w2 + ...+ a2mwm

...

T (vn) = an1w1 + an2w2 + ...+ anmwm

and this can be written as

T (v1) = a11T11(v1) + a12T12(v1) + ...+ a1mT1m(v1)

T (v2) = a21T21(v2) + a22T22(v2) + ...+ a2mT2m(v2)

...

T (vn) = an1Tn1(vn) + an2Tn2(vn) + ...+ anmTnm(vn)

and so we can write the map T as

T =
∑

1≤i≤n
1≤j≤m

aijTij

which proves that the set {Tij : 1 ≤ i ≤ n, 1 ≤ j ≤ m} is a basis of Hom(V,W ). So,
it directly follows that

dim Hom(V,W ) = dim(V ) dim(W )

In particular, the above formula tells us that

dim End(V ) = (dim(V ))2

if V is finite dimensional.
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Polynomials. Let V be a vector space over some field K, and consider the objects
End(V ) and K[x]. As a convention, we define

degO =∞
where O ∈ K[x] is the zero polynomial. We already know an important fact about
the ring K[x]: it has Euclidean division. Let’s now prove the following theorem:

Theorem 1.7. Suppose V is finite dimensional, with dimV = N . Let T ∈ End(V ).
Then, there is a non-zero polynomial f ∈ K[x] of degree less than or equal to N2 for
which the map f(T ) is the zero map.

Proof: Consider the following maps in End(V )

I, T, T 2, T 3, ..., TN
2

where I is the identity mapping. We know that these must be linearly dependent,
because dim End(V ) = N2, and so there are scalars c0, ..., cN2 not all zero such that

c0I + c1T + c2T
2 + ...+ cN2TN

2

= O

where O is the zero map. Consequently, the polynomial f ∈ K[x] defined by

f(x) = c0 + c1x+ ...+ cN2xN
2

is non-zero, and the map f(T ) is the zero map. This proves the claim.
Let’s make a couple of definitions. Let T ∈ End(V ). We say that T is regu-

lar/invertible if there is some map S ∈ End(V ) such that S ◦ T = I = T ◦ S. It T is
not regular, then it is called singular. We also define the general linear group GL(V )
to be the set

GL(V ) := {T ∈ End(V ) : T is invertible}
(Its called a group because it forms a group under composition). If V is finite dimen-
sional, then T ∈ End(V ) is invertible if and only if KerT = {O}. This is easily seen
by the Rank-Nullity theorem.

Another definition. For T ∈ End(V ), we define the annihilator of T to be the set

An(T ) = {f ∈ K[x] : f(T ) = O}
where O ∈ End(V ) is the zero map. Let’s prove a relatively simple theorem.

Theorem 1.8. Let T ∈ End(V ). Then:

(1) f, g ∈ An(T ) =⇒ f + g ∈ An(T )
(2) f ∈ An(T ) and g ∈ K[x] implies that fg ∈ An(T ) and gf ∈ An(T ).

Proof: For the first assertion, suppose f, g ∈ An(T ), and let

f = c0 + ...+ cnx
n

g = b0 + ...+ bmx
m

and wlog let m > n. Then, observe that

(f + g)(T ) = (c0 + b0)I + ...+ (cn + bn)T n + ...cmT
m

and for any element v ∈ V , we have

(f + g)(T )(v) = (c0 + b0)I(v) + ...+ (cn + bn)T n(v) + ...+ cmT
m(v)

= c0I(v) + ...+ cmT
m(v) + b0I(v) + ...+ bnT

n(v)

= O +O

= O
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and hence f + g ∈ An(V ). In a similar way, we can prove the second assertion.
Now suppose V is finite dimensional. Then, by Theorem 1.3, there is some non-

zero polynomial f ∈ K[x] such that f ∈ An(T ), for any T ∈ End(V ). Also, if this f
satisfies

f(x) = c0 + ...+ crx
r

then by Theorem 1.4, we see that c−1r f ∈ An(T ), and observe that c−1r f is a monic
polynomial. With this in mind, for a given T , we define its minimal polynomial to be
the monic polynomial of least degree which annihilates T . By Euclidean Division in
K[x] combined with Theorem 1.4, it follows that this minimal polynomial is unique.

Examples. Following are some examples of linear maps and their minimal polynomi-
als:

(a)The minimal polynomial of the zero map is x.
(b)The minimal polynomial of the identity mapping I is x− 1. The minimal poly-

nomial of the map λI is x− λ.
(c) Let’s see an example where the minimal polynomial is x2 + 1. Suppose V = R2,

and let {e1, e2} be the standard basis of R2. Define a map T ∈ End(V ) as

T (e1) = e2

T (e2) = −e1
It is then easy to see that no monic polynomial of degree one can be the minimal
polyomial. Also, observe that

T 2 + I = O

and hence its minimal polynomial is x2 + 1.
Let’s make some more definitions. We say that T ∈ End(V ) is nilpotent there is

some n ≥ 1 such that T n = O. Let’s do prove an easy theorem:

Theorem 1.9. If T is nilpotent, then both T − I and T + I are invertible.

Proof: The conclusion follows from the simple observation that

I = (T − I)(−I − T − ...− T n−1)
I = (−T − I)(−I + T − T 2...+ (−1)nT n−1)

Let’s do another important fact about invertible operators:

Theorem 1.10. Suppose dimV < ∞, and suppose T ∈ End(V ). Let PT be the
minimal polynomial of T . Then, T is invertible if and only if PT (0) 6= 0

Proof: First, suppose that PT (0) 6= 0. Then, let

PT (x) = c0 + c1x+ ...+ xn

where n ≥ 1. So, we have
c0I + c1T + ...+ T n = O

which implies that

I = T

(
−c1
c0

I − ...− T n−1

c0

)
which implies that T is invertible.

We will prove the other direction by proving the contrapositive. Suppose PT (0) = 0.
Then, let

PT (x) = c1x+ ...+ xn
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which means that

c1T + ...+ T n = O

where n ≥ 1. If n = 1, this means that

T = O

and hence T is not invertible. If n > 1, then we have

T (c1I + ...+ T n−1) = O

and since PT is the minimal polynomial for T , it must be true that

c1I + ...+ T n−1

is not the zero map. So, there is some non-zero w ∈ V such that (c1I+ ...+T n−1)(w) 6=
OV , which means that T (w) = OW , and hence Ker(T ) is non-zero, which means that
T is not invertible. This completes the proof.

So, to check whether a given operator is invertible or not, we just need to check the
constant of its minimal polynomial.

Let’s make some more definitions. Suppose V is finite dimensional, and let T ∈
End(V ). λ ∈ K is called an eigenvalue of T if T − λI is singular(not invertible). This
is equivalent to saying that there is some non-zero v ∈ V such that

T (v) = λv

.
Let’s prove an important theorem about eigenvalues of an operator:

Theorem 1.11. Let V be a finite dimensional vector space, and let T be an operator
on V . Then, λ ∈ K is an eigenvalue of T if and only if λ is the root of PT .

Proof: We might as well assume that T is the non-zero operator. Suppose λ is an
eigenvalue of T . We have that

PT (x) = (x− λ)q(x) + c

where c ∈ K. Let v ∈ V be the corresponding non-zero eigenvector for this eigenvalue.
Then, we have

PT (T )(v) = OV = (T − λI) ◦ q(T )(v) + cI(v)

= q(T ) ◦ (T − λI)(v) + cI(v)

= OV + cv

which implies that cv = OV , and since v 6= OV , it implies that c = 0. So, λ is a root
of PT .

Conversely, suppose λ is a root of PT . Then,

PT (x) = (x− λ)q(x)

for some non-zero polynomial q. This means that (T − λI)q(T ) is the zero-map. But,
q(T ) cannot be the zero-map, and so there exists some non-zero v ∈ V such that
(T − λI)(v) = OV , which means that λ is an eigenvalue of T . This completes the
proof.

Now let us prove another important theorem:

Theorem 1.12. Let T ∈ End(V ), and let λ be an eigenvalue of T . Let Vλ be the set
of all eigenvectors of T corresponding to this eigenvalue. Then, Vλ is a subspace of V .
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Proof: It is clear that O in Vλ. Also, suppose v1, v2 are in Vλ. Then,

T (v1 + v2) = λv1 + λv2 = λ(v1 + v2)

and hence v1 + v2 ∈ Vλ. It can be similarly shown that cv1 ∈ Vλ for any c ∈ K. So,
the proof is complete.

This space is called the eigenspace corresponding to λ.
Let us now prove another theorem:

Theorem 1.13. Eigenvectors corresponding to distinct eigenvalues are linearly inde-
pendent.

Proof: Suppose T ∈ End(V ) and let a1, ..., an be distinct eigenvalues of T , with
corresponding eigenvectors v1, ..., vn. We prove the claim by induction. Clearly, a
single vector is linearly independent. So, let v1, ..., vr be a subset of v1, ..., vn, and
suppose all sets of r − 1 vectors are linearly independent. Now, suppose there are
scalars c1, ..., cr such that

c1v1 + ...+ crvr = O

Appplying T on both sides, we get

a1c1v1 + ...+ arcrvr = O

and this means that

c2(a2 − a1)v2 + ...+ cr(ar − a1)vr = O

and since this is a set of r− 1 vectors, these are linearly independent. Since ai − a1 is
not zero for i 6= 1, we see that

c2 = ... = cr = 0

and hence c1 = 0 (because v1 6= O). So, by induction, it follows that v1, ..., vn are
linearly independent.

Now, we will prove a theorem which will lead to a concept called diagonalisation.

Theorem 1.14. Suppose T ∈ End(V ). The following hold:

(1) T ∈ GL(V ) if and only if 0 is not an eigenvalue of T .
(2) For any S ∈ GL(V ), we have

(STS−1)n = ST nS−1

(3) For any f ∈ K[x], we have

f(STS−1) = Sf(T )S−1

(4) The operators T and STS−1 have the same eigenvalues.

Proof: For (1), we know that T is invertible if and only if PT (0) 6= 0. Also, PT (0) 6= 0
if and only if 0 is not an eigenvalue of T (because eigenvalues are roots of PT ). Hence
the claim follows.

For (2), we prove it using induction. The case n = 1 is trivial. Then, observe that

(STS−1)n+1 = (STS−1)n(STS−1)

= (ST nS−1)(STS−1)

= ST n+1S−1

and so we are done by induction.
For (3), suppose f ∈ K[x] is given by

f(x) = c0 + c1x1 + ...+ cnx
n
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Then, we have

f(STS−1) = c0SIS
−1 + c1STS

−1 + c2ST
2S−1 + ...+ cnST

nS−1

= S(c0IS
−1 + c1TS

−1 + c2T
2S−1 + ...+ cnT

nS−1)

= S(c0I + c1T + c2T
2 + ...+ cnT

n)S−1

= Sf(T )S−1

Note that we first used left distributivity of composition, then we used right distribu-
tivitiy. For (4), we will prove something stronger: we will show that the minimal
polynomials of STS−1 and T are equal.

Let g be the minimal polynomial of STS−1, and let f be the minimal polynomial
of T .

Then, observe that
g(STS−1) = O = Sg(T )S−1

where O is the zero map. Since S ∈ GL(V ), it follows that g(T ) is the zero map, and
hence g ∈ An(T ). So, f |g. Similarly, observe that

f(STS−1) = Sf(T )S−1 = O

and hence f ∈ An(STS−1), so that g|f . Since f and g are both monic polynomials in
K[x] that divide each other, it follows that f = g. So, the minimal polynomials are
equal, and hence the eigenvalues are also equal.

Respecting the above theorem, we define a diagonalisable operator. T ∈ End(V ) is
said to be diagonalisable if there is a basis of V which consists of eigenvalues.

Let’s now prove a key theorem about diagonalisable operators:

Theorem 1.15. T ∈ End(V ) is diagonalisable if and only if all roots of PT are in the
field K and each root has multiplicity 1.

Proof: First, suppose T is diagonalisable. Then, there is a basis {v1, ..., vn} of V
that consists of eigenvectors of T . Suppose

T (v1) = λ1v1

T (v2) = λ2v1

...

T (vn) = λnvn

Consider
F (x) = (x− λ1)...(x− λr)

where 1 ≤ r ≤ n, and each λi is distinct (this is done to ensure that each λi has
multiplicity 1 in F ). Now, observe that

F (T ) = O

and hence F annihilates T , so PT |F . Also, we know that each λi is an eigenvalue, and
hence (x − λi)|PT for each i. But, observe that if i 6= j, then (x − λi) and (x − λj)
are coprime, and hence it follows that (x− λ1)...(x− λr)|PT , which means that F |PT .
Finally, both F and PT are monic polynomials which divide each other, and hence
F = PT . So, each root of PT is in K and has multiplicity 1.

Conversely, suppose that P = (x − λ1)...(x − λr), where each λi is distinct, and
1 ≤ r ≤ n. Let W1, ...,Wr be the eigenspaces corresponding to the eigenvalues λ1, ..., λr
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respectively. We will show that V is the direct sum of W1, ...,Wr, and hence it will
show that T is diagonalisable.

It is clear that Wi ∩Wj = {O} if i 6= j. So, all we need to prove is that every v ∈ V
can be written in the form

v = w1 + ...+ wr

, where wi ∈ Wi.
First, suppose w ∈ Wi, for any i. Observe that

T (T (w)) = T (λiw) = λiT (w)

and hence T (w) ∈ Wi. We say that each space Wi is T -invariant.
Consider the polynomials

Qi(x) =
P (x)

x− λi
for each 1 ≤ i ≤ r. Then, the polynomials Q1, ..., Qr are relatively prime. So, there
are polynomials G1, ..., Gr such that

Q1G1 + ...+QrGr = 1

where 1 is the constant polynomial.
First, we will show that for any v ∈ V , Qi(T )(v) ∈ Wi. Since PT is the minimal

polynomial, we have

PT (v) = O

for all v ∈ V . Hence

(T − λiI) ◦ (T − λ1I) ◦ ... ◦ (T − λi−1I) ◦ (T − λi+1I) ◦ ... ◦ (T − λrI)(v) = O

for all v ∈ V , which means that

(T − λiI)(Qi(T )(v)) = O

for all v ∈ V , and hence Qi(T )(v) ∈ Wi.
Finally, observe that

Q1G1(T )(v) + ...+QrGr(T )(v) = I(v) = v

for all v ∈ V . This proves that we can write any v ∈ V in the form v = w1 + ...+ wr,
and hence V is the direct sum of W1, ...,Wr. Hence, T is diagonalisable, and the proof
is complete.

Let us now prove another important theorem regarding upper-triangular maps (or
matrices):

Theorem 1.16. Suppose V is a finite dimensional vector space over K, and let T ∈
End(V ) such that there is basis B for which MB(T ) is upper triangular, i.e

MB(T ) =


a11 a12 ... a1n
0 a22 .. a2n
.. .. .. ..
0 0 0 ann


Then, aii is an eigenvalue of T , for 1 ≤ i ≤ n.
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Proof: Let the basis B be {v1, ..., vn}. Then, the following hold:

T (v1) = a11v1

T (v2) = a12v1 + a22v2

...

T (vn) = a1nv1 + ...+ annvn

A simple calculation shows that

(T − a11I)(v1) = O

(T − a11I) ◦ (T − a22I)(v2) = O

...

(T − a11I) ◦ (T − a22I) ◦ ... ◦ (T − annI)(vn) = O

First, it is clear that a11 is an eigenvalue. Now suppose that a11, ..., ak−1k−1 are eigen-
values. If akk is any one of a11, ..., ak−1k−1 then akk is also an eigenvalue. So, suppose
akk is not one of those values. Observe that

(T − ak−1k−1I) ◦ ... ◦ (T − a11I)(vk) = d1v1 + ...+ dkvk

where d1, ..., dk are in K. A simple calculation shows that

dk = (akk − ak−1k−1)...(akk − a11)
and hence dk 6= 0. Hence, (T − ak−1k−1I) ◦ ... ◦ (T − a11I)(vk) 6= O. But, observe that

(T − akkI) ◦ (T − ak−1k−1I) ◦ ... ◦ (T − a11I)(vk) = O

and hence it follows that akk is also an eigenvalue of T . Hence, all the diagonal elements
are eigenvalues of T , and the proof is complete.

Next, let’s prove that upper triangulizable and lower triangulizable are essentially
the same thing, and hence we can just say a triangulizable operator :

Theorem 1.17. T ∈ End(V ) is upper triangulizable if and only if it is lower trian-
gulizable.

Proof : Suppose T is upper triangulizable. Then, there is some basis {v1, ..., vn}
such that

T (v1) = a11v1

T (v1) = a12v1 + a22v2

...

T (vn) = a1nv1 + ...+ annvn

Consider the basis {vn, ..., v1}. The matrix of T with respect to this basis is then:
ann 0 ... 0
an−1n an−1n−1 ... 0
an−2n an−2n−1 ... 0
... ... ... ...
a1n a1n−1 ... a11


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which is a lower triangular matrix. Hence, T is lower triangulizable. Similarly, the
other direction may be proved, and hence the claim follows.

VIII , §1. Exercises

1. Suppose a ∈ K and a 6= 0. It is easy to see that the only eigenvalue of the matrix(
1 a
0 1

)
is λ = 1, and any eigenvector corresponding to this eigenvalue is of the form (α, 0),
and a basis for this eigenspace is {(1, 0)}. Evidently, this is a one-dimensional space.

2. Consider the matrix (
2 0
0 2

)
and again the only eigenvalue is λ = 2, and every vector is an eigenvector. So, a basis
of the eigenspace is {(1, 0), (0, 1)}.

3. Suppose A is a diagonal matrix given by

A =


a11 0 ... 0
0 a22 ... 0
... ... ... ...
0 0 ... ann


Suppose E1, ..., En are the standard orthonormal basis. Then observe that

A(E1) = a11E1

A(E2) = a22E2

...

A(En) = annEn

and hence the dimension of the space generated by the eigenvectors of A is n (caution:
this does not mean that every vector is an eigenvector). All diagonal elements are the
eigenvalues, and their corresponding eigenvectors are these vectors.

5. (a) Suppose θ ∈ R and consider the matrix

A =

(
cos θ sin θ
sin θ − cos θ

)
First, suppose cos θ 6= 1. Consider the vector v given by

v =

(
sin θ

1− cos θ
, 1

)
It is not hard to see that Av = v. Hence, in this case, A has an eigenvector with a
real eigenvalue. If cos θ = 1, then the matrix A is simply

A =

(
1 0
0 −1

)
and the vector v = (1, 0) is an eigenvector of A with corresponding eigenvalue 1.

6. Let R(θ) be a rotation matrix in R2. The characteristic polynomial of this matrix
is t2 − 2t cos θ + 1. This polynomial has real roots if and only if sin θ = 0, which is
equivalent to saying that R(θ) = ±I.
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The Characteristic Polynomial

We have already shown before that if T ∈ End(V ), then λ is an eigenvalue of T if
and only if T −λI is not invertible. If T is interpreted as a matrix, then we define the
characteristic polynomial of T to be the polynomial

det(T − λI) = 0

where I is the identity matrix. Let’s prove an important theorem:

Theorem 1.18. λ ∈ K is an eigenvalue of T if and only if λ is a root of the charac-
teristic polynomial of T . Here T is a matrix.

Proof: Suppose λ ∈ K is an eigenvalue of T . Then, we know that the matrix T −λI
is not invertible, and hence det(T − λI) = 0. Conversely, suppose λ ∈ K is a root of
the characteristic polynomial. Then, we have

det(T − λI) = 0

and hence T − λI is not invertible, and hence λ is an eigenvalue of T .
The characteristic polynomial gives us a good computational tool to calculate the

eigenvalues of a map.
Let’s also prove a relationship between determinants of similar matrices:

Theorem 1.19. Suppose A and B are two n× n matrices, such that B is invertible.
Then, the characteristic polynomials of A and B−1AB are equal.

Proof: We have that

det(A− tI) = det(B−1(A− tI)B)

= det(B−1AB − tI)

and this proves our theorem.

VIII , §2. Exercises

1. (a) The characteristic polynomial of A is (x− a1)(x− a2)...(x− an).
(b) The eigenvalues of A are a1, ..., an.

2. If A is a triangular matrix, the answer is still as it was in 1.

9. Suppose V is an n dimensional vector space and suppose that the characteristic
polynomial of a map A ∈ End(V ) has n distinct roots. Then, it implies that A has
n distinct eigenvalues, and hence A is diagonalisable. This means that there is some
basis of V consisting of eigenvalues of A.

10. We will prove something more general: suppose V is an n dimensional vector
space with a non-degenerate scalar product. Then, for any map A ∈ End(V ), the
eigenvalues of A and tA are equal.

Proof: Suppose λ is an eigenvalue of A and let v1 ∈ V be the corresponding eigen-
vector. Then, for every w ∈ V , we have

〈Av,w〉 = 〈λv, w〉 = 〈v, tAw〉
which implies that

〈v, λw − tAw〉 = 0

Now, if λ is not an eigenvalue, then the map λI − tA is invertible, and hence an
isomorphism. So, the expression λw − tAw runs through all vectors in V as w runs
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through all vectors in V . But since the scalar product is non-degenerate, it implies
that v = O, which is a contradiction. So, λ must be an eigenvalue of tA.

Similarly, we can show the other way: if λ is an eigenvalue of tA, then it is also an
eigenvalue of A. Hence, this completes the proof.

This theorem implies that the eigenvalues of a matrix and its transpose are the
same.

15. Suppose V is a finite dimensional vector space over K. Let A and B be linear
operators. We will show that AB and BA have the same eigenvalues. Suppose λ 6= 0
is an eigenvalue of AB. Then, there is some non-zero vector v such that

ABv = λv

Now, observe that B(v) is a non-zero vector. Also, we have

BABv = Bλv = λBv

which implies that λ is also an eigenvalue of BA. We can show the other direction
similarly. Hence, the eigenvalues of AB and BA are the same.

Now we deal with the case when λ = 0. So, there is some non-zero v such that

ABv = O

Now, if Bv 6= O, then we are done, because in that case,

BABv = O

and hence Bv is the required eigenvector. If Bv = O, then there are two cases: first,
if Ker(A) 6= {O}, then there is some v 6= O such that Av = O, and hence

BAv = O

so that v is the required eigenvector. If Ker(A) = {O}, then A is an isomorphism.
Hence, there is some w ∈ V such that A(w) = v. Hence, in that case, we have

BAw = Bv = O

and hence w is the required non-zero eigenvector. So, in all cases, AB and BA have
the same eigenvalues.

Semi-Simple Operators

Let’s define what a semi-simple operator is. Let V be a vector space over some field
K. T ∈ End(V ) is called semisimple if for every T -invariant subspace of V , there
is a T -invariant complement. T is called a simple operator if the only T -invariant
subspaces of V are {O} and V .

Let’s look at two examples:

Example 1: T : V → V , such that T (e1) = e1 and T (e2) = e1 + e2. We will show
that T is not semi-simple.

Suppose T is semi-simple. Consider the subspace spanned by e1. Since e1 is an
eigenvector, this subspace is T -invariant. So, there is a T -invariant complement as
well, and call it W . Since V is two-dimensional, dimW = 1, and let {e} be a basis of
W . Since W is T -invariant, we must have

T (e) = ce

for some c ∈ K.
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Now, it is clear that c 6= 1, because T is not the identity operator. Now, suppose
e2 = ae1 + be, where a, b ∈ K. We then have

T (e2) = ae1 + cbe = (1 + a)e1 + be

which implies that b(c−1) = 0, and since b 6= 0, we have c = 1, which is a contradiction.
Hence, T is not semi-simple.

Example 2: Suppose V is a two dimensional vector space over R, and let T be given
by T (e1) = −e2 and T (e2) = e1. It is clear that the minimal polynomial of T is x2 + 1,
and hence it is not diagonalisable. But, we will show that T is simple, and hence
semi-simple. This is a good example to show the fact that if the ground field is not
algebraically closed, then semi-simpleness and diagonalisable are not the same thing.

Suppose W is a T -invariant subspace of dimension 1. Let {e} be a basis of W . Since
W is T -invariant, it follows that T (e) = ce, for some c ∈ R, which means that c is an
eigenvalue, which contradicts the fact that x2 + 1 is the minimal polynomial. Hence,
V cannot have any T -invariant subspaces of dimension 1, and hence it is simple.

Now, lets prove another useful theorem:

Theorem 1.20. Suppose T is an operator on V such that T is diagonalisable. Then,
T is semi-simple.

Proof: We prove this by reverse induction on the degree of the T -invariant subspace.
Suppose W is a T -invariant subspace of V of dimension n. Then, it follows that
W = V , and hence the T -invariant complement is {O}.

Now, suppose dimW = r < n, and suppose it is true that all T -invariant subspaces
of V of dimension > r have a T -invariant complement. Let {w1, ..., wr} be a basis of W .
Since T is diagonalisable, there is a basis {v1, ..., vn} of V consisting of eigennvectors
of T . Now, in this basis, there is atleast one vector vk such that the set {w1, ..., wr, vk}
is linearly independent. Without loss of generality suppose vk = v1, and the set
{w1, ..., wr, v1} is linearly independent. Define W1 = 〈{w1, ..., wr, v1}〉, and hence
dimW1 = r + 1. Also, since v1 is an eigenvector, it follows that W1 is a T -invariant
subspace of V . Hence by our hypothesis, it has a T -invariant complement, say W2.
Let {ur+2, ..., un} be a basis of W2.

Now, define

W̃ = 〈{v1, ur+2, ..., un}〉

Then, W̃ is a T -invariant subspace of V , and observe that

V = W ⊕ W̃

and hence, W has a T -invariant complement. So, it follows that all T -invariant sub-
spaces of V have a T -invariant complement, and our proof is complete.

Let’s now prove another important theorem:

Theorem 1.21. T ∈ End(V ) is triangulisable if and only if all the roots of the minimal
polynomial are in the ground field.
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Proof: First, suppose T is triangulisable, and suppose there is a basis {v1, ..., vn} of
V such that the following equations hold:

T (v1) = a11v1

T (v2) = a12v1 + a22v2

...

T (vn) = a1nv1 + annvn

We earlier showed that the polynomial (x− a11)...(x− ann) annihilates T . Hence, PT
divides this polynomial, and hence it follows that all roots of PT are in the ground
field.

We prove the converse by induction. If dimV = 1, then the statement is trivial. So,
suppose the statement holds for some n− 1 ∈ N, and suppose dimV = n. Suppose T
is an operator on V for which PT has all its roots in the ground field. We know that
deg(PT ) ≥ 1, and hence there is some root λ of PT , and this root is also an eigenvalue.
Let v1 be the corresponding eigenvector. Consider the subspace W = 〈v1〉. Since v1 is
an eigenvector, W is a T -invariant subspace of V .

Now, consider the quotient space V
/
W . We define an operator T on this space as

follows: for v + W ∈ V
/
W , define T (v + W ) = T (v) + W , i.e the equivalence class

of v is sent to the equivalence class of T (v). We will now verify that this is a well
defined operator. So, suppose x, y ∈ V such that x − y ∈ W . Then, T (x − y) ∈ W ,
because W is T -invariant, and this means that T (x)−T (y) ∈ W . So, this means that
T (x) +W = T (y) +W , and hence the map T is well defined.

Now, we will show that PT (T ) is the zero map in the quotient space. So, suppose

v +W ∈ V
/
W , and suppose

PT (x) = c0 + c1x+ c2x
2 + ...+ xk

for some k ∈ N. Then, we have

PT (T ) = c0I + c1T + c2T
2

+ ...+ T
n

where I is the identity operator in the quotient space.
Now,

PT (T )(v +W ) = c0(v +W ) + c1T (v +W ) + c2T
2
(v +W ) + ...+ T

n
(v +W )

= (c0v +W ) + (c1T (v) +W ) + (c2T
2v +W ) + ...+ (T n(v) +W )

= (c0v + c1T (v) + ...+ T n(v)) +W

= PT (T )(v) +W

= O +W

and hence PT annihilates T . So, it follows that PT divides PT , and hence all roots of
PT are in the ground field. By induction hypotheses, it follows that T is triangulisable.

So, let {v2 +W, ..., vn +W} be the required basis of V
/
W with respect to which the

matrix of T is triangular.
Now, we will first show that {v1, ..., vn} is a basis of V . So, suppose there are

constants ci such that

c1v1 + ...+ cnvn = O



56 SIDDHANT CHAUDHARY

This means that

c1(v1 +W ) + ...+ cn(vn +W ) = O +W

in the quotient space. But, v1 ∈ W , and hence c1(v1 + W ) = O + W . So, it follows
that

c2(v2 +W ) + ...+ cn(vn +W ) = O +W

but because the elements v2 +W, ..., vn +W are linearly independent, it follows that

c1 = c2 = ... = cn = 0

and hence {v1, ..., vn} is a basis of V .
Moreover, observe that

T (vj +W ) = c2(v2 +W ) + ...+ cj(vj +W )

for 2 ≤ j ≤ n and for some constants ci. Hence, we have

T (vj) +W = (c2v2 + ...+ cjvj) +W

for each 2 ≤ j ≤ n, and hence

T (vj)− (c2v2 + ...+ cjvj) ∈ W
for each 2 ≤ j ≤ n, which implies that

T (vj) = c1v1 + ...+ cjvj

for some scalar c1. Hence, the matrix of T with respect to the basis {v1, ..., vn} is
triangular, and hence T is triangulisable. This completes the proof.

As a corollary to this, it can be inferred that if the ground field is algebraically
closed (like C), then every operator is triangulisable.

We now know that a diagonalisable operator is both semi-simple and triangulisable.
We now show the converse, but before that we will prove a lemma:
Lemma: Suppose T ∈ End(V ) is semi-simple. Let W be a T -invariant subspace of
V . Then, the restriction of T to W is also semi-simple.

Proof: Let W1 be a T -invariant subspace of W . Then, W1 is also a T -invariant
subspace of V . Hence, there is a T -invariant complement of W1, and call it W2. Now,
consider the space W ∩W2, which is also T -invariant. It is clear that W1∩ (W ∩W2) =
{O}, because W1∩W2 = {O}. Also, suppose w ∈ W . Then, we can write w = w1+w2,
for some w1 ∈ W1 and w2 ∈ W2, and hence w2 ∈ W ∩W2. Hence it follows that

W = W1 ⊕ (W ∩W2)

and hence the restriction of T on W is also semi-simple.
Let’s now move to the main theorem:

Theorem 1.22. Suppose T ∈ End(V ) is both triangulisable and semi-simple. Then,
T is diagonalisable.

Proof: We prove it by induction on dimV . The theorem is clear if dimV = 1. So,
suppose dimV > 1. Since T is triangulisable on V , there exists a basis {v1, ..., vn}
of V such that the matrix corresponding to this basis is upper triangular. Now, put
W = 〈v1, ..., vn−1〉, so that dimW = n−1. It is clear that W is a T -invariant subspace

of V . So, there is a T -invariant complement of W , say W̃ . The dimension of W̃ is 1,

and let {v} be a basis of W̃ . It is clear that v is an eigenvector.
Also, the restriction of T on W is triangulisable, and this restriction is also semi-

simple by our lemma. So, by induction hypothesis, the restriction of T on W is
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diagonalisable. So, there is some basis {u1, ..., un−1} of W consisting of eigenvectors
of W .

Finally, it follows that {u1, ..., un−1, v} is a basis of V consisting of eigenvectors of
V . Hence, T is diagonalisable.

We now look at an example.

Example 1: Consider the map T given by T (e1) = 0, T (e2) = −e3 and T (e3) =
e2, where the ground field is R. We will show that T is not diagonalisable, not
triangulisable, but it is semi-simple.

The minimal polynomial of T is x(x2 + 1), and hence T is not diagonalisable, and
hence not triangulisable. Now, we will prove that T is semi-simple. So, suppose W
is a one-dimensional T -invariant subspace of V . Let {v1} be a basis of W . Then, v1
must be an eigenvector, and hence the eigenvalue must be 0, so T (v1) = 0. We show
that {v1, e2, e3} are linearly independent. So, suppose there are a, b, c in R such that

av1 + be2 + ce3 = O

and applying T to both sides, we obtain that a = b = c = 0, and hence {v1, e2, e3} are
linearly independent. Hence, it is a basis, and the required T -invariant complement of
W is 〈e2, e3〉.

Observe that dim KerT = 1 and hence dim ImT = 2. Now, suppose W is a two-
dimensional T -invariant subspace of V . Consider the map T : W → W . Let’s call
this restriction map T ′. Now, dim KerT ′ cannot be 2, because the dimension of the
kernel of the original map was 1. We will deal with two cases: when dim KerT ′ = 1
and when dim KerT ′ = 0.

First, suppose dim KerT ′ = 1. Then, KerT ′ = KerT = 〈e1〉. Also, dim ImT ′ = 1,
and let {u} be the basis of this image, where u ∈ W . This means that u must be an
eigenvalue of T ′, and since the only eigenvalue is 0, it follows that T ′(u) = O, and hence
u ∈ KerT ′, which means that u = ke1, for some scalar k. Hence, ImT ′ = KerT ′ = 〈e1〉.
Now, consider a basis {e1, v1} of W , where v1 ∈ W . Then, T (v1) = λe1, where λ 6= 0
(if λ were 0, we will get two linearly independent elements of KerT ′). We will show
that {e1, v1, e3} are linearly independent. So, suppose there are scalars a, b, c in R such
that

ae1 + bv1 + ce3 = O

and applying T on both sides, we get

bT (v1) + ce2 = O

which is the same as saying
bλe1 + ce2 = O

and hence b = c = 0 (because λ 6= 0). And hence, a = b = c = 0, and the required
T -invariant complement of W is 〈e3〉.

Now, suppose dim KerT ′ = 0, and hence ImT ′ = W . Also, we have that ImT =
〈{e2, e3}〉, and hence it follows that W = 〈{e2, e3}〉. Hence, a possible T -invariant com-
plement is 〈{e1}〉. Hence, T is semi-simple, as we have found T -invariant complements
in all cases.

Example 2: Consider the map given by T (e1) = e1, T (e2) = −e3 and T (e3) = e2.
The minimal polynomial of this map is (x−1)(x2 +1). Clearly, it is not diagonalisable
and not triangularisable either. We will show that T is semi-simple.

Suppose W is a one-dimensional T -invariant subspace of V , and let its basis be
{v1}. Then, v1 must be an eigenvector, and the only possible eigenvalue is 1, and
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hence T (v1) = v1. We will show that {v1, e2, e3} are linearly independent. So, suppose
there are scalars a, b, c in R such that

av1 + be2 + ce3 = O

and applying T on both sides, we get

av1 + bT (e2) + cT (e3) = O

By subtracting the first equation from the second, we get that b = c = 0, and hence
a = 0. So, the T -invariant complement of W is {e2, e3}.

Now, it is not hard to see that ImT = V , and hence dim KerT = 0. Suppose W is a
two dimensional T -invariant subspace of V , and let {v1, v2} be its basis. Extend this
to a basis of V , and say the new basis if {v1, v2, v3}. We will show that T (v3) is not in
{v1, v2}

Finally, let’s prove what’s called the Cayley-Hamilton theorem.

Theorem 1.23. Suppose T is an operator on V , and let CT be the characteristic
polynomial of T . Then, CT (T ) = O, and hence the minimal polynomial of T has
degree at most dimV .

Proof: We will prove the corresponding statement for an n × n matrix, and that
will prove the theorem for the operator as well. Let M be the matrix of T . We
consider three cases. First, if M is triangular, then it clear that CT (M) = O. If M
is triangulisable, then there is an invertible matrix S such that SMS−1 is triangular.
Now, the characteristic polynomial is invariant under conjugation, and hence

CT (SMS−1) = O = SCT (M)S−1

and hence CT (M) = O. Finally, suppose M is a general matrix. If the ground field
is K, then let K be the corresponding algebraically closed field. Then, M can also
be viewed as a matrix over the field K. Now, since K is algebraically closed, M is
triangulisable. Hence, CT (M) = O, and this proves the theorem.

This establishes a fundamental fact about the minimal polynomial: its degree is at
most the dimension of the vector space.

Symmetric and Unitary Operators

First, let us study Symmetric Operators. Let V be a finite dimensional vector space
over a field K with a non-degenerate scalar product. Let’s prove the following two
theorems which will justify the meaning of transpose:

Theorem 1.24. Let A ∈ End(V ). Then, there exists a unique B ∈ End(V ) such that

〈A(v), w〉 = 〈v,B(w)〉
for all v, w in V . This map B is also called the transpose of A, and is denoted by At.

Proof: First, fix w ∈ V . Consider the map

L(v) = 〈A(v), w〉
Then, L ∈ V ∗, where V ∗ is the dual space. Since V is finite dimensional and the scalar
product is non-degenerate, there exists w′ in V such that

L(v) = 〈v, w′〉
Let’s denote w′ by B(w). Then, B is a map from V to itself. We just need to show
that it is linear.
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So, suppose w1 and w2 are in V . Then, for any v ∈ V ,

〈v,B(w1 + w2)〉 = 〈A(v), w1 + w2〉
= 〈A(v), w1〉+ 〈A(v), w2〉
= 〈v,B(w1)〉+ 〈v,B(w2)〉
= 〈v,B(w1) +B(w2)〉

which means that since the scalar product is non-degenerate, it means that B(w1 +
w2) = B(w1) +B(w2). Similarly, if c ∈ K, then for any v ∈ V ,

〈v,B(cw1)〉 = 〈A(v), cw1〉
= c〈A(v), w1〉
= c〈v,B(w1)〉
= 〈v, cB(w1)〉

and again since the scalar product is non-degenerate, it follows that B(cw1) = cB(w1),
and so B ∈ End(V ).

That B is unique is easy to see, because the scalar product is non-degenerate.
Because the scalar product is non-degenerate, the transpose also satisfies the fol-

lowing properties which are not difficult to prove: (here A and B are in End(V ))

(1) (A+B)t = At +Bt

(2) (AB)t = BtAt

(3) (cA)t = cAt

(4) Att = A

VII, §1. Exercises

5. Suppose V is a finite dimensional vector space over a field K with a non-degenerate
scalar product. Let v0, w0 be fixed elements of V . Let A ∈ End(V ) given by

A(v) = 〈v0, v〉w0

Consider the map At. For any v, w in V , we have

〈A(v), w〉 = 〈v, At(w)〉
Now, observe that

〈A(v), w〉 = 〈〈v0, v〉w0, w〉
= 〈v0, v〉〈w0, w〉
= 〈v, v0〉〈w0, w〉
= 〈v, 〈w0, w〉v0〉

and hence At(v) = 〈w0, v〉v0 for all v ∈ V .

6. Let V be the vector space over R of infinitely differentiable functions vanishing
outside the interval (0, 1). Now, we know that the scalar product is positive definite,
hence it is non-degenerate. So, there is some operator Dt such that for every f, g in
V , we have

〈Df, g〉 = 〈f,Dtg〉
Observe the following integration by parts identity for such functions∫ 1

0

f ′(x)g(x)dx = −
∫ 1

0

f(x)g′(x)dx =

∫ 1

0

f(x)(−g′(x))dx
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and hence it follows that Dt = −D, which means that D is anti-symmetric.

9. Suppose A, B and C are three symmetric matrices such that A < B and B < C.
Let X 6= O be any vector in Kn. Then, we have

tX(C − A)X = tX((C −B) + (B − A))X

= tX(C −B)X + tX(B − A)X

> 0

and hence A < C.

10. Suppose V is a finite dimensional vector space over R with a positive definite
scalar product. Suppose V = W ⊕W⊥. Let P be the projection on W , and suppose
W 6= {O}. First, let us show that P is semipositive.

Let v ∈ V such that v = w + w̃, where w ∈ W and w̃ ∈ W⊥. Then,

〈Pv, v〉 = 〈w, v〉
= 〈w,w + w̃〉
= 〈w,w〉
≥ 0

because the scalar product is positive definite. Hence, P is semi-positive.
Now, suppose v, w ∈ V , such that v = w1 + w̃1 and w = w2 + w̃2. We then have

〈w1, w2〉 = 〈w1, w2〉
=⇒ 〈w1, w2 + w̃2〉 = 〈w1 + w̃1, w2〉
=⇒ 〈Pv, w〉 = 〈v, Pw〉

and hence P is symmetric.

11. Again, suppose v, w ∈ V such that v = w1 + w̃1 and w = w2 + w̃2. We have

〈cw1, w2〉 = 〈w1, cw2〉
=⇒ 〈cw1, w2 + w̃2〉 = 〈w1 + w̃1, cw2〉
=⇒ 〈Av,w〉 = 〈v, Aw〉

and hence A is symmetric.

14. Suppose V is a finite dimensional vector space with a positive definite scalar
product. Suppose A is an operator such that

〈Av,Aw〉 = 〈v, w〉

for all v, w ∈ V . This means that tAA = I, where I is the identity operator. This
means that the matrix of the operator tAA is the identity matrix, and hence
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Unitary Operators: Let V be a finite dimensional vector space over R with a positive
definite scalar product. A map A ∈ End(V ) is said to be unitary if for all v, w in V ,
it is true that

〈Av,Aw〉 = 〈v, w〉.
Unitary maps are also called orthogonal or norm-preserving maps. Let’s prove the
following theorem which justifies the name ’unitary’:

Theorem 1.25. Suppose V is a finite dimensional vector space over R with a positive
definite scalar product. Then, for A ∈ End(V ), the following are equivalent:

(1) A is unitary.
(2) A is norm-preserving.
(3) A maps unit vectors to unit vectors.

Proof: Let’s first prove the equivalence between (1) and (2). First suppose A is
unitary. Then, for any v ∈ V , we have

〈v, v〉 = 〈Av,Av〉

and hence A is norm-preserving. Conversely, suppose A is norm preserving. Then, it
follows that 〈v, v〉 = 〈Av,Av〉 for all v ∈ V . Now, for v, w ∈ V , we have

2〈v, w〉 = 〈v + w, v + w〉 − 〈v, v〉 − 〈w,w〉
= 〈Av + Aw,Av + Aw〉 − 〈Av,Av〉 − 〈Aw,Aw〉
= 2〈Av,Aw〉

and hence we get that 〈v, w〉 = 〈Av,Aw〉, which means that A is unitary.
Now, let’s prove the equivalence between (2) and (3). If (2) is true, then any unit

vector v will always be mapped to a unit vector Av, and hence (2) implies (3). Now,
suppose (3) is true, and let v be any vector in V . Then, observe that

v√
〈v, v〉

is a unit vector. This means that
Av√
〈v, v〉

is a unit vector. So, this means that〈
Av√
〈v, v〉

,
Av√
〈v, v〉

〉
= 1

which means that

〈Av,Av〉 = 〈v, v〉
and hence A is norm-preserving, and hence (3) implies (2) as well. This completes the
proof.

There is also a connection between unitary maps and their transpose:

Theorem 1.26. Let V be a finite dimensional vector space over R with a positive
definite scalar product. A ∈ End(V) is unitary if and only if tAA = I, where I is the
identity mapping.
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Proof: Suppose A is unitary. Then, for any vectors v, w in V , we have

〈Av,Aw〉 = 〈v, w〉
which means that

〈tAAv,w〉 = 〈v, w〉
and this implies that tAA = I, where I is the identity operator.

If we take V = Kn, and the scalar product to be the dot product, then the matrix
A is said to be orthogonal or unitary if tAA = I, or

tA = A−1

Diagonalisation of Self Adjoint Maps

First, I would apologise if the content in this section is repeated in an earlier section
(there is a slight chance, but most of the content is new). I wrote this section after
almost three months of not touching the pdf.

Suppose V is a finite dimensional vector space over K, where K ∈ {R,C}, and
suppose V is equipped with a positive-definite hermitian product (if K = R then the
product will just be a scalar product).

Here is a general fact (general because the only condition on the inner product
will be non-degeneracy): suppose the scalar (or hermitian) product is non-degenerate
(positive-definite products are always non-degenerate). Then, the map v 7→ fv is a
linear isomorphism (and if V is a space over C, with a hermitian product, then it is
an anti-linear isomorphism) between V and V ∗, where fv : V → V is defined as

fv(w) = 〈w, v〉
The above fact means that for non-degenerate products, every functional ”looks like”
the product taken with some fixed vector. Try proving this fact, it is not difficult. For
such a space, let A be an operator. Then, try to show that there is a unique operator
A∗ on V such that

〈Av,w〉 = 〈v,A∗w〉
for all v, w ∈ V . The operator A∗ is called the adjoint of A. A is said to be self-adjoint
if A∗ = A. It is also easy to show that the adjoint satisfies the usual matrix conjugate
transpose properties.

Now, let’s come back to our original vector space V with a positive definite product.
In the following theorem, we will show how conjugate transpose is related to the
adjoint:

Theorem 1.27. Suppose {e1, ..., en} is an orthonormal basis of V (existence is clear
because of positive-definiteness). Suppose T is an operator, and let A be the matrix of

T with respect to this basis. Then, the matrix of T ∗ is A
t
, i.e the conjugate transpose.

Proof: Let f1, ..., fn be the standard basis of Kn, and regard A is an operator on
Kn. Let B be the matrix of T ∗, and similarly we regard B as an operator. Observe
that Bij is given by

Bij = 〈Bfj, fi〉
where the above inner-product is the standard one on Kn. Also, we know that

〈Bfj, fi〉 = 〈fj, Afi〉 = Aji

which proves that B = A
t
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From the last theorem, we see that an operator is self-adjoint if and only if its matrix
is hermitian (hermitian is the same as symmetric if K = R).

We now define the complexification of an operator over Rn. Suppose V = Rn, and
let the matrix of T : V → V be A. The complexification of T , denoted by TC, is the
map TC : Cn → Cn given by

TC(x) = Ax

where the last equation is matrix multiplication. In other words, we regard T is an
operator on Cn. Now, it is easy to see that T is self-adjoint if and only if TC is self
adjoint, because a real matrix is symmetric if and only if it is hermitian.

We are now in position to prove some very important results on self-adjoint maps:

Theorem 1.28. Suppose V is a vector space over K with a positive definite hermitian
product, and let T be a self-adjoint operator. Then, all the eigenvalues of T are real.
In particular, if K = R, then T has an eigenvector in V

Proof: First, suppose K = C, so that T is hermitian. Let λ be an eigenvalue of T
(exists because C is algebraically closed). Let v 6= O be a corresponding eigenvector.
Then,

λ||v||2 = λ〈v, v〉 = 〈λv, v〉 = 〈Tv, v〉 = 〈v, Tv〉 = 〈v, λv〉 = λ||v||2

and since ||v||2 6= 0, we see that λ is real.
Now, suppose K = R, so that T is symmetric. Let A be the matrix of T with respect

to some basis of V . Consider the linear operator on Rn, whose matrix with respect
to the standard basis is A. Let AC be the complexification of A. Since A is real and
symmetric, AC hermitian, and hence it is self-adjoint. By the first paragraph of this
proof, any eigenvalue of AC is real. Since eigenvalues are precisely the roots of the
characteristic polynomial, all roots of the characteristic polynomial are real. Finally,
observe that the characteristic polynomials of AC and A are exactly the same (because
they are the same matrices), and hence all eigenvalues of A are real. This completes
the proof.

So, it follows that any self-adjoint map has real eigenvalues. It actually turns out
that any self-adjoint map is diagonalisable, which we will now prove. First, let us
prove a lemma:

Lemma: Suppose T is a self-adjoint operator on V . Let λ be an eigenvalue of T , and
consider the eigenspace Vλ. Then, V ⊥λ is T -invariant, and T is self-adjoint on V ⊥λ .

Proof: First, we will show that V ⊥λ is T -invariant. So, suppose w ∈ V ⊥λ . Then, for
any v ∈ Vλ, we have

〈Tw, v〉 = 〈w, Tv〉 = λ〈w, v〉 = 0

and hence Tw ∈ V ⊥λ , so that V ⊥λ is T -invariant.
That T is self-adjoint on V ⊥λ is clear because it is self-adjoint on V .
Finally, we can show that any self-adjoint operator is diagonalisable with an or-

thonormal basis:

Theorem 1.29. Let T be self-adjoint. Then, there is an orthonormal basis of V
consisting of eigenvectors of T . Hence, T is diagonalisable.

Proof: We proceed by induction on the dimension.
Let λ be an eigenvalue of T (even if the ground field is R, an eigenvalue exists

because of self-adjointness). Let Vλ be the corresponding eigenspace. If V = Vλ, then
we are done, because we can just choose an orthonormal basis of Vλ. If not, then

V = Vλ ⊕ V ⊥λ
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and since T restricted to V ⊥λ is self-adjoint, the claim follows by induction.
The last claim is a very powerful result, which is used in many areas of mathematics.
Next, we will discuss unitary maps, even though they are discussed in bit in earlier

sections. The imporant takeaway will be that self-adjoint matrices (or maps) can be
diagonalised via unitary matrices (or maps). We begin with the following theorem:

Theorem 1.30. Suppose Λ : V → V is a linear map. Then, the following are
equivalent:

(1) Λ is invertible and Λ−1 = Λ∗

(2) Λ maps every orthonormal basis of V to an orthonormal basis of V .
(3) Λ transforms some orthonormal basis of V to an orthonormal basis of V .
(4) Λ preserves the inner product.

Proof: First, let us quickly see the equivalence between (1) and (4). Observe that
if A preserves the inner-product, then

〈Λv,Λw〉 = 〈v, w〉 = 〈v,Λ∗Λw〉

for all v, w ∈ V , and hence we see that Λ∗Λ = I, implying that Λ−1 = Λ∗. The
converse is similarly proven.

(3) follows from (2) easily. To prove (2) from (3), suppose {v1, ..., vn} (an orthonor-
mal basis) is mapped to {v′1, ..., v′n} (another orthonormal basis), and let {w1, ..., wn}
be another orthonormal basis of V (different from {v1, ..., vn}). Let i, j ∈ {1, ..., n}.
Let

wi = ai1v1 + ...+ ainvn

wj = aj1v1 + ...+ ajnvn

and hence we get that

Λwi = ai1v
′
1 + ...+ ainv

′
n

Λwj = aj1v
′
1 + ...+ ajnv

′
n

and hence

〈Λwi,Λwj〉 = ai1aj1 + ...+ ainajn = 〈wi, wj〉 = δij

and hence {Λw1, ...,Λwn} is an orthonormal basis of V . This proves both directions.
Finally, we will look at the equivalence between (2) and (4). If (4) is true and that

Λ preserves inner product, then (2) clearly follows. Next, suppose (2) is true. Let
{v1, ..., vn} be an orthonormal basis of V , and hence {Λv1, ...,Λvn} is an orthonormal
basis of V . Let v, w ∈ V , so that

v = a1v1 + ...+ anvn

w = b1v1 + ...+ bnvn

Now, we have

〈Λv,Λw〉 = 〈a1Λv1 + ...+ anΛvn, b1Λv1 + ...+ bnΛvn〉
= a1b1 + ...+ anbn

= 〈v, w〉

and hence Λ preserves inner products. This completes the proof.
A matrix A is said to be unitary if A−1 = At.
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Some properties of unitary maps: Suppose Λ is a unitary operator on V , and let
A be its matrix.

(1) Clearly, A satisfies detA2 = 1, and hence detA lies on the unit circle.
(2) Suppose λ is an eigenvalue of Λ. Let v be a corresponding unit eigenvector.

Then we have

1 = 〈Λv,Λv〉 = |λ|2||v||2 = 1

and hence |Λ|2 = 1. So again, Λ lies on the unit circle.

We will now do a spectral theorem for unitary maps as well.

2. Positive Definite Operators

As before , suppose V is a finite dimensional vector space over K.
A self-adjoint operator T on V is said to be positive semi-definite if 〈Tv, v〉 ≥ 0 for

all v ∈ V . T is said to be positive definite if the inequality is strict for all v 6= O.
Similarly negative semi-definite and negative definite operators are defined.

These operators are characterised by the sign of the eigenvalues:

Theorem 2.1. Let T be a self-adjoint operator. Then, T is positive semi-definite
(or positive definite) if and only if all eigenvalues of T are non-negative (or strictly
positive).

Proof: First, suppose T is positive semi-definite (or positive definite). Let λ be an
eigenvalue. Let v be a corresponding eigenvector. Then, we have

0 ≤ 〈Tv, v〉 = λ〈v, v〉

and hence λ ≥ 0 (inequality is strict if T is positive definite). Conversely, suppose all
eigenvalues are non-negative (or positive). Let {v1, .., .vn} be a spectral basis (exists
because T is self-adjoint). Let v ∈ V , and let

v = a1v1 + ...+ anvn

Then,

〈Tv, v〉 = 〈a1λ1v1 + ...+ anλnvn, a1v1 + ...+ anvn〉
= |a1|2λ1 + ...+ |an|2λn
≥ 0

(the inequality is strict if T is positive definite). This completes the proof.
Note: The analogous fact is also true for negative semi-definite operators.
The following theorem is a special characterisation for dimension 2:

Theorem 2.2. Let A =

[
a b
b c

]
be a symmetric 2 × 2 matrix. Then, A is positive

definite if and only if detA > 0 and a > 0. It is negative definite if and only if
detA > 0 and b < 0.

Proof:
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3. Bilinear Maps and Quadratic Forms

Suppose U, V and W are vector spaces. A map g : U × V → W is said to be
bilinear g(x, y) is linear in both arguments (similarly, multilinear maps are defined).
Scalar products are examples of bilinear maps. An example of multilinear map is the
determinant.

In this section, we will be interested in bilinear forms (i.e, maps taking values in
the ground field).

First, suppose we are given an m×n matrix A over K. Define a map gA : Km×Kn →
K given by

gA(X, Y ) = X tAY

It is easy to see that gA is then a bilinear form. We now prove the following theorem:

Theorem 3.1. Given a bilinear form g : Km ×Kn → K, there is a unique matrix A
such that g = gA, i.e

g(X, Y ) = X tAY

The set of bilinear maps from Km × Kn to K is a vector space over K, denoted by
Bil(Km ×Kn, K) and the association

A→ gA

gives an isomorphism between Mm×n(K) and Bil(Km ×Kn, K).

Proof: First, suppose a bilinear form g is given to us. Fix the standard basis
{E1, ..., Em} and {E ′1, ..., E ′n} of Km and Kn.

Now, let X = c1E1 + ...+ cmEm, and Y = d1E
′
1 + ...+ dnE

′
n. Then, we have

g(X, Y ) = g(c1E1 + ...+ cmEm, d1E
′
1 + ...+ dnE

′
n)

=
m∑
i=1

cig(Ei, d1E
′
1 + ...+ dnE

′
n)

=
m∑
i=1

n∑
j=1

cidjg(Ei, Ej)

Now, let Aij = g(Ei, Ej), so that A is an m×n matrix. The above equation says that

g(X, Y ) =
m∑
i=1

n∑
j=1

cidjAij = X tAY

and hence the required matrix has been found. Showing the uniqueness of A is not
difficult, and I will skip that. Observe that we could have fixed some other basis of
Kn and Km as well.

So, the map A → gA from Mm×n(K) to Bil(Km × Kn, K) is clearly one-one and
onto. To show that it is a homomorphism, observe that if g1 and g2 are two bilinear
forms, then we have

(g1 + g2)(X, Y ) = g1(X, Y ) + g2(X, Y ) = X tA1Y +X tA2Y = X t(A1 + A2)Y

and hence the matrix of g1 + g2 is A1 + A2. This shows the isomorphism.
The two exercises in the next section are important properties connecting inner-

products to bilinear forms.
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4. V,§4. Exercises

This is the solution to problem 1. and 2. combined.
First, suppose A is an n × n symmetric matrix. Let gA be the associated bi-linear

form. We have that gA(X, Y ) = X tAY and gA(Y,X) = Y tAX. Now, observe that
X tAY is the standard dot product of X and AY , which we write as X ·AY (note that
this dot product is over any arbitrary field). This is commutative, and hence

X tAY = X · AY = AY ·X = (AY )tX = Y tAX

and hence gA(X, Y ) = gA(Y,X).
Conversely, suppose gA(X, Y ) = gA(Y,X) for all X, Y ∈ Kn. Let X = (X1, ..., Xn)

and Y = (Y1, ..., Yn). We expand both sides, and get

n∑
i=1

n∑
j=1

AijXiYj =
n∑
i=1

n∑
j=1

AijXjYi

Now, take for any 1 ≤ a, b ≤ n, let X be the vector whose ath coordinate is 1, and rest
are 0. Similarly, let Y be the vector whose bth coordinate is 1 and rest are 0. So, we
have

Aab = Aba

and hence A is symmetric.
It is now easy to see that for a symmetric matrix A, the bilinear form associated

with it defines an inner product.

Positive definite Inner Products. : Let V be a finite dimensional vector space with
a positive definite inner (scalar or hermitian) product over K, where K ∈ {R,C}.

By a similar strategy as we did in Theorem 3.1, we will see a one-to-one corre-
spondance between positive definite operators and positive definite inner products on
V .

First, suppose T : V → V is a positive definite operator. Define 〈v, w〉T = 〈Tv, w〉.
Then, it is not hard to see that 〈·〉T is an inner product on V . Conversely, suppose an
inner product 〈·〉′ is given on V . Let {v1, ..., vn} be an orthogonal basis of V . Observe
that if a1v1 + ...+ anvn and b1v1 + ...+ bnvn are any two vectors, then we have

〈a1v1 + ...+ anvn, b1v1 + ...+ bnvn〉′ =
n∑
i=1

n∑
j=1

aibj〈vi, vj〉′

So, we define a linear map T such that the entries of the matrix of T (with respect to
the given basis) are 〈vj, vi〉′. In other words, T is defined by

T (vj) =
n∑
i=1

〈vj, vi〉′vi

Then, observe that
n∑
i=1

n∑
j=1

aibj〈vi, vj〉′ = 〈Tv, w〉

and hence it follows that

〈v, w〉′ = 〈Tv, w〉
and hence T is a positive definite operator.
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Quadratic Forms. A map Q : V → R is said to be a quadratic form if there exists
a self-adjoint operator T : V → V such that

Q(v) = 〈Tv, v〉
Note that we can define quadratic forms over other fields as well, but we restrict

ourselves to R for now. Take an orthogonal basis {f1, ..., fn} of V , and suppose A is
the matrix of A with respect to this basis (so that A is symmetric). Then, we see that

Q(x1f1 + ...+ xnfn) =
n∑
i=1

n∑
j=1

xixj〈Tvi, vj〉

=
n∑
i=1

n∑
j=1

xixjAij

=
n∑
i=1

Aiix
2
i +

∑
i<j

2Aijxixj


