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Abstract. These notes contain a detailed discussion of free groups.

1. Free Groups

Definition 1.1. Let S be a set, and F be a group. Let θ : S → F be a map. The
pair (F, θ) is said to be a free group over S if any map ϕ : S → G can be extended to
a unique homomorphism Φ : F → G such that α = Φ ◦ θ, i.e the following diagram
commutes:

S F

G

θ

ϕ
Φ

Let us now prove some properties of free groups.

Theorem 1.2. Let (F, θ) be a free group on the set S.

(1) θ is one-one.
(2) (F, inclusion) is free on the set Im(θ).
(3) F = 〈Im(θ)〉

Proof: Proving (1) is easy. Let G be an arbitrary group (say Z2), and let ϕ : S → G
be any map. Suppose θ(s1) = θ(s2) for some s1, s2 ∈ S. Since F is free on S, the map
ϕ can be extended to a unique homomorphism, say Φ. Then we have

Φ(θ(s1)) = Φ(θ(s2))

which implies that ϕ(s1) = ϕ(s2). Since ϕ was an arbitrary map, it follows that
s1 = s2, and hence θ is one-one.

To prove (2), consider the set Im(θ), and consider the inlusion map θ′ : Im(θ)→ F ,
which is just the identity map. Let ϕ : Im(θ)→ G be any map, where G is any group.
So, ϕ can be seen as a map from S → G. Specifically, define ϕ′ : S → G by ϕ′ = ϕ ◦ θ.
Since F is free on S, ϕ′ can be extended to a unique homomorphism Φ : F → G which
satisfies ϕ′ = Φ ◦ θ. Now, it is easy to see that ϕ = Φ|Im(θ), so that ϕ = Φ ◦ inclusion.
Uniqueness of the extension is easy to see. This proves the claim.

Now, we prove (3). By (2), we know that F is a free group over the set Im(θ), and
hence we put S = Im(θ) for simplicity of notation.

Consider the following diagram, which we will show to be a commutative diagram:
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S 〈S〉 F

F

i1

i3

i2

π
idF

Here, i1 : S → 〈S〉, i2 : 〈S〉 → F and i3 : S → F are inclusion maps. It is easy
to see that i3 = i2 ◦ i1. Now, i3 can be extended to a homomorphism from F to F ,
which by uniqueness is the idF . Also, let π be the unique extension of i1. Observe
that i2 ◦ π is another candidate homomorphism from F → F , and by uniqueness we
see that i2 ◦ π = idF , so that the diagram commutes. Finally, since idF is surjective,
it follows that i2 is surjective, and hence proves that F = 〈S〉.

The next theorem shows that the free group over a set is unique. As a result, one can
work with the group of reduced words over a set, which forms a free group (something
that is not difficult to prove).

Theorem 1.3. Let F1 be free on S1 and let F2 be free on S2. Then, F1
∼= F2 if and

only if |S1| = |S2|.

Proof: First, suppose S1 and S2 are in bijection (we don’t assume them to be
finite) and the proof will follow by the universal property. Consider the following
commutative diagram (not hard to see why its commutative):

S1 F1

S2 F2

θ
i2◦θ

i1

Φ1

i2

Here, i1 and i2 are inclusion maps, and θ is the bijection between S1 and S2. We have
that

Φ1 ◦ i1 = i2 ◦ θ
By a similar fashion, we can find a homomorphism Φ2 from F2 to F1 such that

Φ2 ◦ i2 = i1 ◦ θ−1

Now, we show the following: we have that Φ2Φ1 is a homomorphism from F1 to F1.
Also, we have

Φ2Φ1 ◦ i1 = Φ2 ◦ (i2 ◦ θ) = i1 ◦ θ−1 ◦ θ = i1

and hence Φ1Φ2 is an extension of the map i1 : S → F1 to a homomorphism from F1

to itself. By uniqueness of homomorphisms, it follows that Φ2Φ1 = idF1 . Similarly, we
may prove that Φ1Φ2 = idF2 . So, this means that Φ1 is an isomorphism.

For the converse, suppose F1
∼= F2. Abelianizing, we get

F1/[F1, F1] ∼= F2/[F2, F2]

and this implies that

Z(S1) ∼= Z(S2)

where Z(X) represents the free abelian group on X (see Exercise 2.4), or equivalently
the free Z-module over X. This means that 2Z(S1) ∼= 2Z(S2), and hence taking
quotients, we get

Z(S1)/2Z(S1) ∼= Z(S2)/2Z(S2)
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and using the fact that Z(X)/2Z(X) ∼= [Z/2Z](X) (need to verify this), we get

[Z/2Z](S1) ∼= [Z/2Z](S2)

both of which are vector spaces. Comparing dimensions, we see that |S1| = |S2|,
completing the proof.

(Need to verify that this proof is correct)

Definition 1.4. Suppose F is a free group over a set S. Then the cardinal number
|S| is said to be the rank of F .

The following is an abstract property of free groups:

Theorem 1.5. If G is any group, then G is isomorphic to the quotient group of some
free group.

Proof: Let S = G, and consider the identity map from S → G. The extension of
this map to a map ϕ : F (G)→ G is surjective, and by the first isomorphism theorem
we have that G ∼= F (G)/Kerϕ. This proves the claim.

Finally, I will mention a result which is not trivial to prove (infact the proof is hard).

Theorem 1.6. Subgroups of free group are free.

2. Some Problems on Free Groups

Exercise 2.1. Show that free groups are torsion free (i.e there are no elements of
finite order other than the identity). Infact, if an = bn, show that a = b.

Solution:

Exercise 2.2. Show that in a free group, two commuting elements a, b must satisfy
a = cu, b = cv for some element c and some integers u, v. In particular, a free group
has non-trivial center if and only if its rank is 1.

Exercise 2.3. If w 6= 1 in a free group, show that CF (w) (the centralizer) is an infinite
cyclic group.

Exercise 2.4. If the free group F has rank n, then F/[F, F ] ∼= Zn, i.e abelianization
of a free group leads to a free abelian group.

Solution: We will prove this not only for finite ranks, but arbitrary ranks. Let F be
a free group over a set X. We know that F/[F, F ] is abelian. Let π : F → F/[F, F ]
be the natural projection map. Let G be any abelian group, and let ϕ : X → G be
a set map. Then, there is a unique group homomorphism Φ : F → G such that the
diagram

X F

G

i

ϕ
Φ

commutes. So, we see that F/Ker Φ ∼= Φ(F ), and since Φ(F ) is abelian, it follows
that [F, F ] ⊂ Ker Φ and hence Φ factors through F/[F, F ], so that the diagram
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X F F/[F, F ]

G

i

ϕ

π

Φ
σ

commutes, where σ is a homomorphism. Hence ϕ has been extended from X to
F/[F, F ] (where the inclusion map is π ◦ i).

We now prove uniqueness of the extension. Suppose σ1, σ2 are extensions of ϕ, so
that the diagram

F/[F, F ] F X F F/[F, F ]

G
σ2

π ii π

σ1

So we see that σ1 ◦ π and σ2 ◦ π are extensions of ϕ : X → G to F . By the universal
property applied to F , we see that σ1◦π = σ2◦π, and since π is surjective, this implies
σ1 = σ2. This completes the proof, showing that F/[F, F ] is the free abelian group
over X.

3. Presentations

We can now formally define group presentations. First, some intuition. Suppose
G is a group and S ⊂ G such that G = 〈S〉. Let F (S) be the free group over S.
Then suppose G has presentation G = 〈S|R〉 where R represent the relations. Think
of each relation as a word in F (S), where each of these words has been collapsed to
the identity. Let 〈RF (S)〉 denote the normal closure of R in F (S) (i.e, the smallest
normal subgroup containing R, or equivalently the intersection of all normal subgroups
containing R). It is then reasonable to define G = F (S)/〈RF (S)〉. And this is exactly
how we do it.

So before formally defining presentations, let’s do a quick lemma about normal
closures:

Lemma: If R ⊆ G, then 〈RG〉 = 〈grg−1|g ∈ G, r ∈ R〉
Proof: Let H = 〈grg−1|g ∈ G, r ∈ R〉. It is clear that H ≤ 〈RG〉. We only need to

show that H is a normal subgroup. To show this, let g ∈ G, and let

(g1r1g
−1
1 )...(gnrng

−1
n ) ∈ H

be an element of H. Then, we have that

g(g1r1g
−1
1 )...(gnrng

−1
n )g−1 = (gg1r1g

−1
1 g−1)...(ggnrng

−1
n g−1) ∈ H

and this proves the lemma.

Definition 3.1. Let F be a free group over S. Let G be a group such that G = 〈S〉.
A presentation for G is a pair (S,R) where R ⊂ F such that 〈RG〉 is the kernel of the
homomorphism Φ : F (S) → G that extends the identity map from S → G, and in
that case we have

G ∼= F/〈RF 〉

We now show that every group is presentable.
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Theorem 3.2. All groups have presentations and finite groups have finite presenta-
tions.

Proof: Let S = G, and let F (S) be the free group over S. Consider the identity
mapping ϕ : S → G. This extends to a homomorphism Φ : F (S) → G such that
G ∼= F (S)/Ker(Φ). Take any set R such that 〈R〉 = Ker(Φ). Then it follows that
G = 〈S|R〉

For the second part, suppose G is finite.
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