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SIDDHANT CHAUDHARY

Abstract. In this document I discuss topics in Group Theory and also include so-
lutions to selected exercises from the book Abstract Algebra by David Steven Dummit
and Richard M.Foote.

1. Exercise on Page 21

11. Consider (Z/12Z)+. We have that |0| = 1. Let k 6= 0 be in the group. Let
m = |k|. Then, we have that

km ≡ 0 (mod 12)

So, finding orders is pretty straight-forward: if (k, 12) = 1, then |k| = 12. If (k, 12) > 1,
then |k| = 12

(k,12)
. In general, for any k ∈ (Z/mZ)+, we have

|k| = m

(m, k)

15. Let G be a group. Then, if a1, a2 ... an are in G, then

(a1a2...an)−1 = a−1
n a−1

n−1...a
−1
1

Proof : We prove this by strong induction. The base case n = 1 is trivially true. So,
let the statement be true for all naturals upto some n ∈ N. Let an+1 be an additional
element of G. Then,

(a1a2...anan+1)−1 = ((a1a2...an)an+1)−1

= a−1
n+1(a1a2...an)−1 (Statment is true for k = 2)

= a−1
n+1a

−1
n ...a−1

1 (Statment is true for k = n)

So, by induction, the claim follows.

22. Let x and g be elements of a group G. Let |x| = k and |g−1xg| = m , where
k,m ∈ N. Now,

(g−1xg)k = g−kxkgk

= g−kgk

= 1

This implies that m ≤ k. Also, we have

(g−1xg)m = g−mxmgm = 1

=⇒ xmgm = gm

=⇒ xm = 1

which means that k ≤ m. Combining both the inequalities, we see that k = m.
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Now, let a and b be in G. Set x = ab , and set g = a. Then,

|x| = |g−1xg|

which means that

|ab| = |a−1aba| = |ba|

which proves the claim.

23. Let x be an element of G such that |x| = n <∞ for some n ∈ N. Suppose n = st,
for some s and t in N. Let |xs| = m for some m ∈ N. The reason why |xs| < ∞ is
because

(xs)n = xsn = xns = (xn)s = 1

and then apply the WOP.
Since (xs)t = 1 , we immediately know that m ≤ t. But, (xs)m = 1, which means

that st ≤ sm. From here, it is clear that m = t, and thus the claim follows.

25. Suppose G is a group such that x2 = 1 for every x ∈ G. This means that x−1 = x
for all x ∈ G.

Let a and b be in G. By 15, we know that

(ab)−1 = b−1a−1 = ba

So, it follows that ab = ba, which proves that G is abelian.

30. Let A and B be two groups. Observe that

(a, 1)(1, b) = (a, b) = (1, b)(a, 1)

and hence the elements (a, 1) and (1, b) commute. Now, let k = |(a, b)|, n1 = |a|,
n2 = |b|, and define m = [n1, n2] (lcm).

Now, it follows that

(a, b)k = (ak, bk) = (1, 1)

which means that ak = 1 and bk = 1, which means that n1|k and n2|k, which means
that m|k. Similarly, observe that

(a, b)m = (am, bm) = (1, 1)

which means that km. Hence, k = m.

31. Suppose G is a finite group of even order. Let t(G) be the set of all g ∈ G such
that g 6= g−1. It is clear that 1 /∈ t(G). Also, for any g ∈ t(G), g−1 is also in t(G),
and hence t(G) has even order. Hence, it follows that the set G− t(G) contains even
number of elements, and hence there is an element of order 2 in the group.

32. Suppose X is a non-identity element of order n in G. We will show that the
elements 1, x, ..., xn−1 are all distinct. Suppose there are 0 ≤ k1 < k2 ≤ n−1 such that
xk1 = xk2 . So, it follows that xk2−k1 = 1, which contradicts the fact that ord(x) = n.
So, the elements are all distinct, and hence |x| ≤ |G|.
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2. Dihedral Group D2n

The Dihedral group of order 2n, denoted by D2n
1, is the group of symmetries of a

polygon with n vertices. We can explicitly write it as:

D2n :=
{

1, r, r2, ..., rn−1, s, sr, sr2...srn−1
}

with the following properties:

• rn = 1
• s2 = 1
• rs = sr−1, which means that it is a non-abelian group.
• ris = sr−i

Intuitively, r denotes a clockwise rotation by an angle of 2π
n

radians, and s denotes the
reflection about the axes of symmetry passing through the vertex named 1. Note that
as these are just permutations of the set {1, 2, 3, 4....n}, we can specify the effects of r
and s:

{1, 2, 3, 4, ...., n} r−→ {n, 1, 2, 3, ...., n− 1}

{1, 2, 3, 4, ...., n} s−→ {1, n, n− 1, n− 2, ...., 2}

From these relations, note that any element of D2n can be written as skri, where
k ∈ {0, 1} and 1 ≤ i ≤ n− 1.

3. Exercises on Page 27

1. Here we will compute the order of a general element in the group D2n. If g = rk,
for some 0 ≤ k ≤ n, then

ord(g) =
n

(n, k)

If g = srk, for some 0 ≤ k ≤ n− 1, and if g is the non-identity element, then

ord(g) = 2

2. Suppose x is any element of D2n. Then, using the generators and relations, we see
that x is either of the form rk or srk. So, suppose x = srk for some integer k. Then,
observe that

rx = r(srk) = (rs)rk = (sr−1)rk = xr−1

3. Consider the group D2n = 〈r, s | rn = 1, s2 = 1, rs = sr−1〉. Let x ∈ D2n such that
x = risj, for some i, j ∈ N. Since the order of r is n and the order of s is 2, we can
make the restrictions

0 ≤ i ≤ n− 1

0 ≤ j ≤ 1

1In some sources this group is denoted by Dn, but our notation is better because it specifies the order
of the group.



4 SIDDHANT CHAUDHARY

So, any element of D2n which is not a power of r can be written in the form ris, where
0 ≤ i ≤ n− 1. Now, we have

(rks)(rks) = rk(srk)s

= rk(r−ks)s

= (rkr−k)s2

= 1

which means that the order of x is 2 (it clearly cannot be 1). We can use this fact to
easily compute the order of every element in D2n as follows: if x is not a power of r,
then its order is 2. If x = rk, for some 0 ≤ k ≤ n − 1, then the order of x is simply
n

(k,n)
.

Observe that ssr = r, which means that all powers of r can be generated by s and
sr. It follows that the group is generated by s and sr.

4. Suppose n = 2k where n ≥ 4. Then, rk is an element of order 2 in the group
D2n. Now, suppose x is any element of D2n. If x = rk1 , for some k1, then x trivially
commutes with rk. If x = srk1 , then observe that

rkx = rk(srk1) = (rks)rk1 = (srk)rk1 = xrk

and hence x commutes with rk. So, rk commutes with all elements of the group D2n.
This is infact the only non-identity element which commutes with all other elements,
which is not hard to prove.

6. Suppose x and y are elements of order 2 in a group G. Suppose t = xy. Observe
that

tx = (xy)x = x(yx) = xt−1

7. Consider the group with presentation 〈a, b|a2 = b2 = (ab)n = 1〉. We will show that
this is a presentation of D2n.

First, consider the usual presentation of D2n. Put a = s and b = rs. Then, it is clear
that a2 = b2 = 1. Also, ab = srs = r−1, and hence (ab)n = 1. So, the elements a and
b also generate the group, and hence 〈a, b|a2 = b2 = (ab)n = 1〉 is a valid presentation
of the group.

Now, consider the given group presentation. Put s = a and r = ab. Then, sr = b,
and hence s, r generate the given group. Also, s2 = 1, and rn = 1, and so this
presentation represents the group D2n.

18. Suppose Y = 〈u, v|u4 = v3 = 1, uv = v2u2〉. We will show that this represents
the trivial group through the following exercises:

(a) Since v3 = 1, we have vv2 = 1, and hence v−1 = v2.
(b)

4. Exercises on Page 32

1. The cycle decompositions of σ and τ are given by

σ = (1 3 5)(2 4)

τ = (1 5)(2 3)

So, the cycle decompositions of the following permutations are:

: σ2 = (1 5 3)
: στ = (2 5 3 4)
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: τσ = (1 2 4 3)
: τ 2σ = (1 3 5 2 4)

4. First, lets list the elements of S3: 1, (2 3), (1 2), (1 2 3), (1 3 2), (1 3). Now, the
orders of the elements are given in the following table:

1 1
(2 3) 2
(1 2) 2

(1 2 3) 3
(1 3 2) 3
(1 3) 2

5. Consider the cycle product (1 12 8 10 4)(2 13)(5 11 7)(6 9). If we multiply this
cycle product by itself, notice what product we get:

((1 12 8 10 4)(2 13)(5 11 7)(6 9))2 = (1 8 4 10 12)(5 7 11)

We observe that the elements within a cycle remain in the cycle, so it follows that the
order of this cycle product is the lcm of the orders of each cycle. In this case, the lcm
is [5, 2, 3, 2] = 30. Also, we can make the following conjecture: The order of a cycle
(a1 a2 ... an) is equal to the order of the cycle (1 2 ... n), which is equal to n.

Using this, we can compute the order of any cycle product.

6. Consider an element σ ∈ S4 of order 4. By our previous conjecture (which seems to
be true), the only way σ can have order 4 is if its length is 4. So, such σ are: (1 2 3 4),
(1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2)

8. We show that there are infinitely many bijections from Ω to Ω. For k ∈ N, define

fk(n) =


k, if n = 1

1, if n = k

n otherwise

It is not hard to see that fk is a bijection. It follows that SΩ is an infinite group.

9. I have this conjecture: suppose σ is the m-cycle given by (a1 a2 ... n). Then, σi

consists of
m

(m, i)
disjoint cycles, each of length (m, i). So, σi is an m cycle if and only

if i is relatively prime to m.
Using this conjecture, we can immediately solve this problem. In problem 11, we

will partially prove this conjecture.

10. Now we will prove that if σ is an n cycle, then |σ| = n. Suppose σ is given by
σ = (a0 a2 ... an−1). Then, it is not hard to see that σi(ak) = ak+i, where k + i is
reduced mod n. So, for any element ak, σ

i(ak) = ak if and only if i + k = k mod n.
The least positive integer for which this is true if i = n. Hence, |σ| = n.

11. Here, we will prove a general result. Suppose σ is an n-cycle given by σ =
(a0 ... an−1). Let i be an integer. Then, σi consists of (n, i) cycles, each of length
n

(n, i)
. The proof is as follows: suppose ak is a fixed element. Then, the cycle in

which this fixed element lies under the action of σi is (ak ak+i ak+2i ... ak+(l−1)i), where

l =
n

(n, i)
. So, it follows that there are (n, i) cycles, each of length

n

(n, i)
.

Using this fact, it follows that σi is an n-cycle if and only if (n, i) = 1.
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12. This problem can be done by using the statement proved in the previous problem.

15. Here I’ll only explain the proof strategy. The key fact we have to use here is:
disjoint cycles commute, and if a, b are commuting elements of a group G, then (ab)n =
anbn. Also, we know that the order of an m-cycle is m. Using these facts, the statement
is not difficult to prove.

20. We know that every permutation can be represented as a product of transposi-
tions. Also, the order of a transposition is 2. So, a presentation for S3 is

S3 = 〈a, b, c|a2 = b2 = c2 = 1〉

where a, b, c are the three transpositions.

5. Exercises on Page 35

2. All elements of GL2(F2) are:(
0 1
1 0

)
,

(
0 1
1 1

)
,

(
1 1
1 0

)
,

(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 1
0 1

)
5. It is clear that if F has finite number of elements, then GLn(F ) only has finite
number of elements. Also, if F has infinitely many elements, then GLn(F ) also has
infinitely many elements: we can just make infinitely many diagonal matrices, such
that the diagonal entries are non-zero. Hence, we are done.

6. Suppose |F | = q. We will show that |GLn(F )| < qn
2
. There are qn

2
possible

matrices over the field F . Also, we know that the zero matrix is not in GLn(F ).
Hence, the claim follows.

6. Exercises on Page 39

1. Let φ : G→ H be a homomorphism.
(a) We show that φ(xn) = φ(x)n for all n ∈ N, and x ∈ G. The case n = 1 is trivial.

Also, observe that

φ(xn+1) = φ(xn · x) = φ(xn)φ(x) = φ(x)n+1

and hence the claim follows by induction.
(b) Now, observe that

φ(xx−1) = φ(x)φ(x−1) = φ(1G) = 1H

and hence

φ(x−1) = φ(x)−1

and hence it follows that

φ(xn) = φ(x)n

for all n ∈ Z.
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2. Suppose φ : G→ H is an isomorphism, and let x ∈ G. Consider the element x ∈ G
and φ(x) ∈ H. Suppose ord(x) = p and ord(φ(x)) = q in the respective groups.

Now, observe that

φ(x)p = φ(xp) = φ(1G) = 1H

and hence q|p. Similarly, we have

φ(xq) = φ(x)q = 1H

and since φ is an isomorphism, it follows that xq = 1G, and hence p|q. So, p = q, and
the claim follows.

No, the result may not be true if φ is assumed to be only a homomorphism. For
instance, let φ be the trivial homomorphism, i.e suppose φ(x) = 1H for every x ∈ G.
Then, for every element x ∈ G, ord(φ(x)) = 1.

3. Suppose φ : G → H is an isomorphism. We show that G is abelian if and only if
H is abelian. Suppose G is abelian. Suppose y1, y2 ∈ H. Then, there are x1, x2 in G
such that y1 = φ(x1) and y2 = φ(x2). Now,

y1y2 = φ(x1)φ(x2) = φ(x1x2) = φ(x2x1) = φ(x2)φ(x1) = y2y1

and hence H is abelian. Similarly, we can show that G is abelian if H is abelian,
and hence the claim follows. If we only assume that φ is a homomorphism and G is
abelian, then if φ is surjective, then H will also be abelian.

4. To show that R−{0} and C−{0} are not isomorphic, it is enough to observe that
C − {0} contains an element of order 4, while R − {0} does not have any element of
order 4.

5. To see why the additive groups R and Q are not isomorphic, it is enough to observe
that there can be no bijection between R and Q.

6. To see that the additive groups Z andQ are not isomorphic, observe thatQ contains

an element of order 2, which is
1

2
. However, Z does not have any element of order 2.

7. To see that D8 and Q8 are not isomorphic, it is enough to observe that D8 has four
elements of order 2, while Q8 has only two elements of order 2.

9. To see that D24 and S4 are not isomorphic, it is enough to observe that D24 contains
an element of order 12, while S4 doesn’t.

10. Suppose ∆ and Ω are two sets in bijection, and let θ be the bijection. We prove
that the groups S∆ and SΩ are isomorphic.

(a) Let σ ∈ S∆. Consider the map θ◦σ◦θ−1, which is a map from Ω to Ω. We show
that this map is a bijection, and hence it is a permutation of Ω. It is clearly injective,
because θ, σ and θ−1 are all injective. To show that this is surjective, let y ∈ Ω, and
consider the element x = θσ−1θ−1(y), which is also in Ω. Also, θσθ−1(x) = y, and
hence this map is also surjective. Hence, it is bijective, and hence a permutation.

(b) So we define φ : S∆ → SΩ by φ(σ) = θσθ−1. Now, we define a map χ : SΩ → S∆

by χ(σ) = θ−1σθ. We show that χφ is the identity map, and so is φχ. Observe that

χφ(σ) = θ−1(θσθ−1)θ = σ

and similarly φχ is the identity. So, a two-sided inverse has been found for φ, and
hence φ is a bijection.
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13. Suppose Φ : G→ H is a homomorphism. We will show that Φ(G) is a subgroup
of H. First, observe that Φ(1G) = 1H , and hence 1H ∈ Φ(G). Second, suppose
x1, x2 ∈ Φ(G). So, there are y1, y2 in G such that Φ(y1) = x1 and Φ(y2) = x2. Then,
Φ(y1y2) = x1x2, and hence x1x2 ∈ Φ(G). Finally, suppose x ∈ Φ(G). Then, there is
some y ∈ G such that x = Φ(y). Observe that xΦ(y−1) = 1H , and hence x−1 ∈ Φ(G).
So, Φ(G) is a subgroup of H.

Further, suppose that Φ is injective. Consider the map χ : G → Φ(G) given by
χ(x) = Φ(x), for x ∈ G. Clearly, χ is both one-one and onto, because Φ is injective.
Also, because Φ is a homomorphism, χ is also a homomorphism. So, it follows that
G ∼= Φ(G).

14. Suppose Φ : G→ H is a homomorphism. We will show that KerΦ is a subgroup
of G. Clearly, Φ(1G) = 1H , and hence 1G ∈ KerΦ. If x1, x2 ∈ KerΦ, then so is
x1x2. Finally, if x ∈ KerΦ, then Φ(x) = 1H . But, Φ(x−1) = Φ(x)−1 = 1H , and hence
x−1 ∈ KerΦ. So, KerΦ is a subgroup of G.

The fact that Φ is one-one if and only if KerΦ is the identity subgroup of G is exactly
similar to the corresponding statement for linear maps in vector spaces.

17. Suppose G is a group and consider the map from G to itself defined as g 7→ g−1.
We will show that this map is a homomorphism if and only if G is abelian.

First, suppose G is abelian, and let the map be φ. Then,

φ(xy) = y−1x−1 = x−1y−1 = φ(x)φ(y)

and hence φ is a homomorphism.
Conversely, suppose φ is a homomorphism. Let x, y be two elements of G. Then,

by our assumption, we have

x−1y−1 = y−1x−1

and taking inverses on both sides, we get xy = yx, and hence G is abelian.

19. Let G = {z ∈ C|zn = 1 for some n}. Consider the map z → zk, where the integer
k > 1 is fixed. It is clear that this map is a homomorphism. Also, it is not hard to see
that this map is a surjective homomorphism. However, since k > 1, there are more
than one z ∈ G for which zk = 1, and hence the kernel of this map is not the identity
subgroup. So, it is not an isomorphism.

20. Let G be a group, and let Aut(G) be the set of all automorphisms of G. We will
show that Aut(G) is also a group, and we will call this the automorphism group of G.

Suppose φ, χ are two automorphisms of G. Let x, y be elements of G. Then,

φ(χ(xy)) = φ(χ(x)χ(y)) = φ(χ(x))φ(χ(y))

which implies that φ ◦ χ is a homomorphism from G to G. Since both χ and φ are
bijective, φ ◦ χ is also bijective, and hence φ ◦ χ ∈ Aut(G). Now, the identity auto-
morphism of G forms the identity element of Aut(G). Finally, suppose φ ∈ Aut(G).
Then, φ−1 is also in Aut(G), which is not hard to see. Hence, Aut(G) forms a group
under function composition.
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21. Consider the additive group Q, and let k ∈ Q − {0}. Consider the map q 7→ kq,
and call this map φ. We will show that φ is an automorphism.

First, observe that Kerφ = {0}, and hence φ is one-one. Since k 6= 0, this map is
also onto. Finally, observe that

φ(q1 + q2) = k(q1 + q2) = kq1 + kq2 = φ(q1) + φ(q2)

which means that φ is a homomorphism. Hence, φ is an automorphism.

7. Group Actions

In this section we will discuss a bit about group actions. Given a group G and a set
A, a group action is a map from G× A to A, which has the following properties:

(1) g1 · (g2 · a) = (g1g2) · a for all g1, g2 ∈ G and a ∈ A.
(2) 1 · a = a for all a ∈ A.

The above action might as well be called a left-action. We can define a right action in
a similar way. One of the best examples of a group action is scalar multiplication of
vectors in vector space theory.

Let’s prove two important properties of group actions:

Theorem 7.1. Suppose G is a group acting on a set A. For g ∈ G, define σg : A→ A
by

σg(a) = g · a

Then, σg ∈ SA, or, in simpler words, σg is a permutation of A.

Proof: We will show that σg is a bijective map. First, suppose σg(a) = σg(b), which
means that g · a = g · b. So, it follows that g−1 · (g · a) = g−1 · (g · b), which implies that
a = b, and hence σg is one-one. Next, suppose a ∈ G. Consider the element g−1 · a.
Observe that

σg(g
−1 · a) = a

and hence σg is onto. Hence, it is a bijection, and it follows that σg ∈ SA.

Theorem 7.2. The map φ : G→ SA given by φ(g) = σg is a homomorphism.

Proof: Suppose g1, g2 ∈ G. We want to show that φ(g1g2) = φ(g1) ◦ φ(g2). So,
suppose a ∈ A. Then,

φ(g1g2)(a) = (g1g2) · a
= g1 · (g2 · a)

= φ(g1)(g2 · a)

= φ(g1)(φ(g2)(a))

= φ(g1) ◦ φ(g2)(a)

We can also define the kernel of a group action. Suppose G is a group acting on a set A.
Then, the kernel of the action is defined to be the set {g ∈ G : g ·a = a for all a ∈ G}.
If φ : G → SA is the corresponding homomorphism, then the kernel of the action is
the kernel of φ.
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8. Exercises on Page 44

4. Suppose G is a group acting on a set A, and let a ∈ A be fixed.
(a) First we will show that the kernel of the action is a subgroup of G. We have

that
kernel = {g ∈ G|g · a = a}

Cleary, 1 ∈ kernel. Suppose g1, g2 ∈ kernel. Then, for any a ∈ A, we have

(g1g2) · a = g1 · (g2 · a) = g1 · a = a

and hence g1g2 ∈ kernel. Finally, suppose g ∈ kernel. Observe that for any a ∈ A, we
have

g−1 · a = g · (g−1 · a) = (gg−1) · a = 1 · a = a

which implies that g−1 ∈ kernel, and hence kernel is a subgroup of G.
(b) Let’s call the set {g ∈ G|g · a = a} the stabilizer of a (here a is fixed). We will

show that this is also a subgroup of G. Clearly, 1 ∈ Stab(a). If g1, g2 ∈ Stab(a), then
g1g2 ∈ Stab(a), because

(g1g2) · a = g1 · (g2 · a) = g1 · a = a

Finally, if g ∈ Stab(a), then similar to what we did in part (a), we see that g−1 ∈
Stab(a) as well. Hence, Stab(a) is also a subgroup of G.

5. We already showed that the kernel of an action is the kernel of the corresponding
permutation representation of the group.

6. Suppose G acts on A faithfully. So, the permutation representation is one-one,
which means that the kernel of the permutation representation is {1}, which means
that the kernel of the action is {1}.

Conversely, if the kernel of the group action is {1}, then the corresponding permu-
tation representation is one-one, and hence the group action is faithful.

17. Suppose G is a group acting on itself by conjugation. For g ∈ G, we define the
map σg : G→ G by

σg(x) = gxg−1

We already know that this map is a bijection. We will show that this is also a
homomorphism, which will in turn show that this is an automorphism.

If a, b ∈ G, then observe that

σg(ab) = g(ab)g−1

= (gag−1)(gbg−1)

= σg(a)σg(b)

and hence the map is an automorphism. So, it follows that for any x ∈ G, |x| = |gxg−1|.
Also, it follows that for any subset A of G, |A| = |gAg−1|.

18. Suppose H is a group acting on a set A. Define a relation ∼ on A as

a ∼ b iff. a = h · b for some h ∈ H
We will show that this is an equivalence relation. Clearly, the relation is reflexive,

because a = 1 · a. If a = h · b, then b = h−1 · a, which means that the relation is
symmetric. Finally, if a = h1 · b and b = h2 · c, then a = (h1h2) · c, which means that
the relation is also transitive. Hence, it is an equivalence relation, and the set A can
be partitioned into equivalence classes.
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19. Here we will prove a general version of Lagrange’s theorem. Let H be a subgroup
of a group G, and let H act on G by left-multiplication. Let x be a fixed element of
G, and let O be the orbit of x under the group action (the orbit is another word for
the equivalence class to which x belongs). Consider the map φ : H → O given by
φ(h) = hx. We will show that this is a bijection.

If φ(h1) = φ(h2), then h1x = h2x, and hence h1 = h2, so that φ is one-one. The
map is clearly surjective. Hence, it is bijective.

If G is finite, then it follows that all orbits have cardinality |H|, and since the orbits
partition G, it follows that |H| divides |G|, which is Lagrange’s theorem.

9. Exercises on Page 48

5. Let G be a group, where n = |G| > 2. We will show that there can’t by any
subgroup H of order n−1. Suppose H is a subgroup of order n−1, and let a ∈ G−H.
Let x ∈ G such that x 6= 1 and x 6= a (this is possible because n > 2). So, it follows
that x ∈ H. Now, ax ∈ G, and since x 6= 1, it follows that ax ∈ H. But, this means
that axx−1 ∈ H, which is a contradiction. Hence, such an H cannot exist.

In this problem, we can directly use Lagrange’s theorem as well.

6. Let G be an abelian group, and consider the torsion subgroup of G, which is the
set T := {g ∈ G| |g| < ∞}. We will prove that this is a subgroup. Clearly, 1 ∈ T . If
g1, g2 ∈ T , then g1g2 ∈ T , because for any k, (g1g2)k = gk1g

k
2 . Finally, it is easy to see

that T is closed under inverses. So, T is a subgroup.

8. Let H and K be subgroups of G. We will show that H ∪K is a subgroup if and
only if either H ⊆ K or K ⊆ H. First, if either H ⊆ K or K ⊆ H, then it is clear
that H ∪ K is a subgroup. Next, if neither of H ⊆ K or K ⊆ H is true, then take
a ∈ H − K and b ∈ K − H. So, it follows that a−1 ∈ H − K and b−1 ∈ K − H.
Consider the element ab ∈ G. We show that ab /∈ H ∪K, implying that H ∪K is not
a subgroup. If ab ∈ H ∪ K, then without loss of generality suppsose ab ∈ H, which
implies that b ∈ H, a contradiction. So, both sides of the claim have been proved.

10. (b) Let G be a group, and let {Hα}α∈I be an arbitrary non-empty collection of
subgroups of G. We show that

M =
⋂
α∈I

Hα

is also a subgroup. Clearly, 1 ∈M . Next, if a ∈M , then trivially a−1 ∈M . Similary,
if a, b ∈M , then ab ∈M , and hence M is a subgroup.

15. Suppose H1 ≤ H2 ≤ ... be an ascending chain of subgroups of G. We will show
that M = ∪∞i=1Hi is a subgroup of G. It is clear that 1 ∈M . Next, suppose a, b ∈M .
Then, there are k1, k2 ∈ N such that a ∈ Hk1 and b ∈ Hk2 . Without loss of generality
suppose Hk1 ≤ Hk2 . Then, a, b ∈ Hk2 , and hence ab ∈ Hk2 , which implies ab ∈ M . It
is clear that M is closed under inverses. So, M is a subgroup.

10. Centralizers, Normalizers, Stabilizers and Kernels

Centralizers: Suppose G is a group, and let A be a subset of G. Then, the centralizer
CG(A) of A is defined as the set of all elements of G which commute with all elements
of A, i.e

CG(A) := {g ∈ G| gag−1 = a ∀ a ∈ A}
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It is not difficult to see that this is a subgroup of G. With this definition, the set
Z(G) := CG(G) is called the center of the group G.
Normaliszers: Suppose G is a group, and let A ⊆ G. For g ∈ G, define gAg−1 :=
{gag−1| a ∈ A}. The normalizer of A, denoted by NG(A), is defined as

NG(A) := {g ∈ G| gAg−1 = A}

Let’s prove that NG(A) is a subgroup of G. Since 1A1 = A, it follows that 1 ∈ NG(A).
Next, suppose g1 ∈ NG(A). Then, g1Ag

−1
1 = A. We will show that g−1

1 Ag1 = A,
which will show that NG(A) is closed under inverses. Suppose a ∈ A. Then, there
is some b ∈ A for which g1bg

−1
1 = a, which means that g−1

1 ag1 = b ∈ A, and hence
g−1

1 Ag1 ⊆ A. Second, suppose a ∈ A. Then, let b = g1ag
−1
1 , which means that b ∈ A.

Clearly, g−1
1 bg1 = a, and hence A ⊆ g−1

1 Ag1. So, A = g−1
1 Ag1.

Finally, suppose g1, g2 ∈ NG(A), which means that g1Ag
−1
1 = A and g2Ag

−1
2 = A.

By a very similar idea as we did above, we can prove that (g1g2)A(g−1
2 g−1

1 ) = A, and
hence g1g2 ∈ NG(A). Hence, the normalizer is also a subgroup.

It is also worth mentioning that very element in CG(A) is also in NG(A), and hence
CG(A) is a subgroup of NG(A).

The fact that normalisers and centralizers are subgroups is a consequence of a general
theorem, which is the fact that stabilizers and kernels of group actions are themselves
subgroups (which we have already proven in the preceding exercises).

To show this, let G be a group, and consider the following theorem:

Theorem 10.1. Let P (G) be the set of all subsets of G. For g ∈ G and B ⊆ G,
consider the map from G× P (G) to P (G) given by

g ·B = gBg−1

which is nothing but conjugation. This map is a group action.

Proof: First, it is clear that 1B1 = B, which means that 1 · B = B. Secondly,
suppose g1, g2 ∈ G. We will show that g1 · (g2 · B) = (g1g2) · B by showing that
g1(g2Bg

−1
2 )g−1

1 = (g1g2)B(g1g2)−1. But this fact is trivial by considering the fact that
(g1g2)−1 = g−1

2 g−1
1 .

Now, if B ⊆ G, then observe that NG(B) is the stabilizer of B, with respect to the
above group action, and hence NG(B) ≤ G. Proving it from scratch was much more
difficult.

Now, lets prove that CG(B) ≤ NG(B), using group actions. Let the group NG(B)
act on B by conjugation, i.e for g ∈ NG(B) and b ∈ B, define

g · b = gbg−1

Then, the kernel of this action is precisely the set CG(B), and hence it follows that
CG(B) ≤ NG(B) ≤ G. If we set B = G, we get that Z(G) ≤ G, i.e the center is also a
subgroup. The proofs of these properties are now much simpler using group actions.

11. Exercises on Page 52

2. Let G be a group. We know that for any g ∈ G and a ∈ Z(G),

ag = ga

which implies that CG(Z(G)) = G. Also, we know that CG(Z(G)) ≤ NG(Z(G)) ≤ G,
which also implies that NG(Z(G)) = G.
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3. Suppose A and B are subsets of G such that A ⊆ B. Consider the subgroups CG(A)
and CG(B). If b ∈ CG(B), then b ∈ CG(A), which implies that CG(B) ≤ CG(A).

4. In this exercise we will find the centers for each of the groups S3, D8 and Q8.
S3: Since Z(S3) ≤ S3, it follows that |Z(S3)| divides 6. Also, since S3 is non-abelian,

it follows that |Z(S3)| has to be one of 1, 2 or 3. Now, none of the 2-cycles of S3 can
be in Z(S3), because they don’t mutually commute. Also, none of the 3-cycles can be
in Z(S3), because the 3− cycles don’t commute. Hence, it follows that Z(S3) = {1}.
D8: We will show that Z(D8) = {1, r2}. If srk ∈ Z(D8) for some k, then it will

follow that
rsrk = srk+1

which will imply that r2 = 1, which is not true. So, no reflection can be in the group
center. If rk ∈ Z(D8), for some k, then it will follow that

srk = rks

which will imply that r2k = 1, which is only possible if k = 2. It is easy to see that r2

actually commutes with every element. So, it follows that Z(D8) = {1, r2}.
Q8: It is clear that {1,−1} ≤ Z(Q8). Now, i /∈ Z(Q8), because ij 6= ji. Same holds

true for −i. By symmetry, none of j, −j, k and −k is in Z(Q8). So, it follows that
Z(Q8) = {1,−1}.

6. Let H be a subgroup of the group G.
(a) We will show that H ≤ NG(H). Define a map from H×H → H as h·g = hgh−1,

for h, g ∈ H. This map is a group action, and for fixed h ∈ H, the map σh : H → H
given by σh(g) = hgh−1 is a permutation of H, which means that hHh−1 = H, which
means that h ∈ NG(H). So, H ≤ NG(H).

If H is not a subgroup, then this is not necessarily true. For instance, consider Q8,
and let H = {i}. Clearly, H is not a subgroup. Also, observe that i /∈ NG(H), so H
is not a subset of NG(H)‘.
(b) We will show that H ≤ CG(H). Suppose H is abelian. Then it is clear that

H ≤ CG(H). If H ≤ CG(H), then all elements of H commute with each other, and
hence H is abelian.

7. Suppose n ∈ Z with n ≥ 3. First, let’s show that no element of the form srk is in
Z(D2n). If it was the case, then we would have

rsrk = srk+1

which would imply that r2 = 1, which is a contradiction. If rk ∈ Z(D2n), for some k,
then observe that

srk = rks

which implies that r2k = 1, which is only possible if 2k = 0(mod n). Because 1 ≤ k ≤
n, if n is odd, then there is no such k. If n is even, then the only choice is

n

2
. Also, if

n is even, then it is easy to see that r
n
2 commutes with all elements of the group. So,

it follows that Z(D2n) = {1}, if n is odd, and Z(D2n) = {1, r n2 }, if n is even.

8. Let G = Sn, and let A = S, and consider the group action defined by

σ · a = σ(a)

for σ ∈ G, and a ∈ A. For i ∈ A, Gi as defined is nothing but StabG(i), which is
a subgroup of G (because stabilizers are subgroups). Also, the order of Gi must be
(n− 1)!, which is not hard to see.
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9. Let H be a subgroup of G. First, we know that intersection of two subgroups is
a subgroup, which means that H ∩ NG(A) is a subgroup of G. Also, if h ∈ NH(A),
then it is clear that h ∈ H and h ∈ NG(A), which means that h ∈ NG(A)∩H. And if
h ∈ H∩NG(A), then by definition, h ∈ NH(A), which means thatNH(A) = H∩NG(A).
Hence, NH(A) is a subgroup of H.

10. Suppose H is a subgroup of order 2 in G, and let H = {1, h}. We will show
that NG(H) ≤ CG(H). Suppose g ∈ NG(H), which means that gHg−1 = H. But,
observe that gHg−1 = {1, ghg−1}. So, this means that ghg−1 = h, which means that
g ∈ CG(H). Hence, NG(H) ≤ CG(H). But, this means that CG(H) = NG(H).

Now, if NG(H) = G then it follows that CG(H) = G, which means that all elements
of G commute with all elements of H, and hence H ≤ Z(G).

12. Let R = Z[x1, x2, x3, x4], the ring of polynomials in four variables.
(b) We define a group action on R by the group S4. For σ ∈ S4 and p(x1, x2, x3, x4) ∈

R, define

σ · p(x1, x2, x3, x4) = p(xσ(1), xσ(2), xσ(3), xσ(4))

. Clearly, if 1 is the identity permutation, then

1 · p(x1, x2, x3, x4) = p(x1, x2, x3, x4)

Also, if σ1 and σ2 are two permutations, then

σ1 · (σ2 · p(x1, x2, x3, x4)) = σ1 · (p(xσ2(1), xσ2(2), xσ2(3), xσ2(4)))

= p(xσ1σ2(1), xσ1σ2(2), xσ1σ2(3), xσ1σ2(4)))

= (σ1σ2) · p(x1, x2, x3, x4)

So, this is a valid group action.
(c) Consider the polynomial p(x1, x2, x3, x4) = x4. Clearly, all σ ∈ S4 that fix

4 stabilize p under the group action. Also, it is easy to see that this stabilizer is
isomorphic to S3.

(d) Let p(x1, x2, x3, x4) = x1 + x2. Clearly, 1 ∈ S4 is a stabilizer. It is easy to see
that the other stabilizers are (1 2), (3 4) and (1 2)(3 4). Since disjoint cycles commute,
this is an abelian group of order 4.

12. Cyclic Groups

H is called a cyclic group if H = {xn| n ∈ Z}, where x ∈ H. In that case, we write
H = 〈x〉. Let’s state some easy to prove theorems:

Theorem 12.1. Let G be a group, and let x ∈ G. If xn = 1, for some n ∈ Z, then |x|
divides n.

The next theorem proves a fundamental property of the structure of cyclic groups.

Theorem 12.2. Any two cyclic groups of the same order are isomorphic.

Proof: First, let’s deal with finite cyclic groups. Suppose A = 〈x〉 and B = 〈y〉 are
two cyclic groups of the same order, say n ∈ N. Consider the map φ : A → B given
by

φ(xk) = yk

for all 0 ≤ k ≤ n − 1. Clearly, the map is a bijection. Also, it is not difficult to see
that it is also a homomorphism. Hence, A and B are isomorphic.
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Similarly, if A = 〈x〉 is an infinite cyclic group, then consider the map φ : Z → A
given by

φ(k) = xk

Again, it is not hard to see that this is indeed an isomorphism.
Given H = 〈x〉, we will now determine which elements of H generate it.

Theorem 12.3. Let G be a group, and let x ∈ G, and a ∈ Z− {0}.
(1) If |x| =∞, then |xa| =∞.

(2) If |x| = n <∞, then |xa| = n

(n, a)
.

Proof: To prove (1), suppose |xa| = m <∞. So, we have

(xa)m = xam = 1

Without loss of generality, we can assume that a > 0 (as |xa| = |x−a|). But, this means
that am > 0 and xam = 1, contradicting the fact that |x| =∞. Hence, |xa| =∞.

To prove (2), suppose |x| = n. Observe that

(xa)
n

(a,n) = 1

and hence |xa| < ∞. Now, if |xa| = k, then xak = 1, which implies that n|ak. The

least positive integer k for which this is true is
n

(a, n)
. So, k =

a

(a, n)
.

Theorem 12.4. Suppose H = 〈x〉.
(1) Suppose |H| =∞. Then, H = 〈xa〉 if and only if a = ±1.
(2) If |H| = n <∞, then H = 〈xa〉 if and only if (a, n) = 1. Hence, there are φ(n)

generators.

Proof: (2) is easy to prove. So, we will prove (1). If a = ±1, then clearly H = 〈xa〉.
Now, suppose H = 〈xa〉, for some a ∈ Z. Then, for any k ∈ Z, there is some q ∈ Z
such that

xqa = xk

Since distinct powers of x are distinct, it follows that

k = qa

which means that a|k. Since k was arbitrary, it follows that a = ±1.
We now prove a theorem that gives the complete structure of subgroups of a cyclic

group:

Theorem 12.5. Suppose H = 〈x〉.
(1) Every subgroup of H is cyclic. If K ≤ H, then either K = {1}, or K = 〈xd〉,

where d is the smallest positive integer such that xd ∈ K.
(2) If H is an infinite group, then if a, b ∈ Z such that a 6= b, then 〈xa〉 6= 〈xb〉.

Also, for every integer m, we have 〈xm〉 = 〈x|m|〉.
(3) If H is a finite group, then for every positive divisor of a, there is a unique

subgroup of order a, which is 〈xna 〉. Also, for every m ∈ Z, we have 〈xm〉 =
〈x(n,m)〉.

So, if H is a finite group, the subgroups of H are in bijection with Z. If H is an infinite
group, the subgroups are in bijection with the positive divisors of |H|.
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Proof: To prove (1), suppose K is a subgroup of H such that K 6= {1}. Let
S := {d ∈ N : xd ∈ K}. S is non-empty since K 6= {1}. So, let the least element of S
be d. We will show that K = 〈xd〉. Suppose xa ∈ K, for some a ∈ Z. Let a = dq + r,
where 0 ≤ r < d. So, xa = xdqxr, which implies that xr ∈ K. Since d is the least
element of S, it follows that r = 0, which means that d|a. So, it follows that H = 〈xd〉.

To prove (2), suppose H is an infinite group. Let a, b ∈ Z be such that a 6= b. We
might as well assume that a, b ∈ N, and without loss of generality suppose a < b.
Then, it follows that xa /∈ 〈xb〉, and hence 〈xa〉 6= 〈xb〉. The fact that 〈xm〉 = 〈x|m|〉
has been proven before.

Finally, to prove (3), suppose a is a positive divisor of n. Then, the group 〈xd〉 has

order a, where d =
n

a
. To prove that this group is unique, suppose there is another

subgroup K of order a. Then, K = 〈xb〉, where b is the least positive integer for which

xb ∈ K. Also, in this case, 0 ≤ b < n. Also, we know that the order of 〈xb〉 is
n

(n, b)
.

So, it follows that
n

(n, b)
= a, which means that (n, b) = d, which means that d|b.

Hence, 〈xb〉 ≤ 〈xd〉, and because the orders of the two groups are same, it follows that
〈xb〉 = 〈xd〉. Now, if m ∈ Z, then 〈xm〉 ≤ 〈x(n,m)〉. Also, their orders are equal, and
hence 〈xm〉 = 〈x(n,m)〉.

To reiterate, the previous theorem says this: if H is an infinite cyclic group, then
its subgroups are in bijection with N. If H is a finite cyclic group, then its subgroups
are in bijection with the positive divisors of |H|. In particular, there are exactly σ0(n)
subgroups.

13. Exercises on Page 60

8. Consider the map φa from Z/48Z to Z48 given by

1→ xa

For this to be an isomorphism, it is necessary and sufficient that xa is a generator of
Z48. So, any a such that (a, 48) = 1 will work.

9. Let Z36 = 〈x〉, and for a ∈ Z, consider the map φ : Z/48Z → Z36 given by
φ(1) = xa. Suppose this map is well defined. So, for if b = c, it should be true that
φ(b) = φ(c). Now, suppose b = 48k + c, and observe that

φ(b) = xab = xa(48k+c) = x48akxac = xac

and if we set k = 1, we see that x12a = 1, which means that 3|a. So, the map will be
well defined if and only if 3|a, and it will automatically be a homomorphism.

Also, the map can never be surjective, because xak 6= x for all k ∈ Z, because 3|a.

11. Here, we will find all cyclic subgroups of D8. By Lagrange, the cyclic subgroup
can only have order 1, 2, 4 or 8. By this observation, it is easy to see that the only
cyclic subgroups are: {1}, {1, r2}, {1, s}, {1, sr}, {1, sr2}, {1, sr3}, {1, r, r2, r3}. A
proper subgroup of D8 which is not cyclic is: {1, r2, s, sr2}.

14. Let σ = (1 2 3 4 5 6 7 8 9 10 11 12). We know that the order of this cycle is 12.
So, σa = σa mod m, where a mod m is the reduced residue mod m. Also, we proved

earlier that σa consists of
12

(12, a)
cycles, each of length (12, a). This theorem will help

make the computation a bit easy.
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16. Suppose |x| = n and |y| = m, and suppose that xy = yx. Let |xy| = p. If [n,m] is
the lcm, then (x, y)[n,m] = x[n,m]y[n,m] = 1, because the elements commute, and hence
p|[n,m].

We now give an example of non-commuting elements where this need not hold.
Let x = (1 2) and y = (1 3) in S4. Then, |x| = 2 and |y| = 2, and observe that
xy = (1 3 2), so that |xy| = 3.

17. Zn = 〈x|xn = 1〉.

20. In this exercise, we will prove that (1 + p) is an element of order pn−1 in the
multiplicative group Z/pnZ, where p is an odd prime.

23. We will show that (Z/2nZ)× is not cyclic for n ≥ 3 by finding two subgroups of
order 2. Clearly, one such subgroup if 〈2n − 1〉. Also, it can be checked that if n ≥ 3,
then 〈2n−1 − 1〉 is also a subgroup of order 2. Clearly, these are distinct subgroups,
and hence the given group is not cyclic.

24. Let G be a finite group, and suppose x ∈ G with |x| = n.
(a) Suppose g ∈ NG(〈x〉). Then, it follows that g〈x〉g−1 = 〈x〉, and hence gxg−1 =

xa, for some a ∈ Z.
(b) Conversely, suppose gxg−1 = xa, for some a ∈ Z. Since order is invariant under

conjugation, it follows that (a, n) = 1. Also, observe that gxkg−1 = (gxg−1)k = xak,
for any k ∈ Z. This means that g〈x〉g−1 = 〈xa〉, and we know that xa is a generator
(a, n) = 1, and hence g〈x〉g−1 = 〈xa〉 = 〈x〉, which means that g ∈ NG(〈x〉).

This gives us a very useful test to find normalizers of cyclic subgroups.

25. Suppose G is a cyclic group of order n, and suppose k is an integer relatively
prime to n. Consider the map from G to G given by x 7→ xk. In this case, xk is also
a generator, and hence the map is surjective.

Let’s now prove the theorem for general finite groups G, and let the order of G be n.
Let x ∈ G. Consider the cyclic subgroup 〈x〉. By Lagrange’s theorem, it follows that
if |x| = m, then m|n. So, it follows that (k,m) = 1, and hence 〈xk〉 = 〈x(k,m)〉 = 〈x〉.
So, it follows that there is some b ∈ Z such that xkb = x, which means that (xb)k = x.
Hence, x has a k-th root in G, and so the map x 7→ xk is surjective.

26. Let Zn = 〈y〉. For a ∈ Z, let σa : Zn → Zn be defined by σa(x) = xa for x ∈ Zn.
(a) First, we will show that the map σa is a homomorphism for every a ∈ Z. If

x1, x2 ∈ Zn, then x1 = yk1 and x = yk2 , for some k1, k2 ∈ Z. So,

σa(x1x2) = yak1+ak2 = σa(x1)σa(x2)

and hence this map is a homomorphism. So, the map σa is completely determined by
the value σa(y). Now, if (a, n), then σa(y) = ya is a generator of Zn, and hence the
map is an isomorphism. Conversely, if the map is an isomorphism, then σa(y) = ya

must be a generator, which implies that (a, n) = 1. So, σa is an automorphism if and
only if (a, n) = 1.

(b) Suppose σa = σb. This implies that ya = yb, which means that a = b(mod n).
Conversely, suppose a = b(mod n). Then, σa(y) = ya = yb = σb(y), and hence the
maps are equal (because they are determined by σa(y) and σb(y)).
(c) Suppose φ ∈ Aut(Zn). Then, φ(y) = yk, for some k ∈ Z. Since y generates Zn,

it follows that for every x ∈ Zn, it is true that φ(x) = xk. So, φ is the map x 7→ xk,
which is σk.
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14. Subgroups generated by subsets

In vector space theory, we can generate subspaces using a subset of the vector space,
which is just the set of all finite linear combinations of elements of the subset. In the
same exact manner, there is a notion of a subgroup generated by a subset of a group.
Let’s make this notion precise as follows.

Suppose G is a group, and let A be a subset of G. Let M be the set of all subgroups
of G that contain A (which is clearly not empty, because G ∈M). We define

〈A〉 =
⋂
H∈M

H

and call this the subgroup generated by A. It is not hard to see that 〈A〉 is the smallest
subgroup of G that contains A.

Now, we consider the set of all finite products of elements of A (analogous to finite
linear combinations as in vector space theory), and claim that this set must be 〈A〉.

Theorem 14.1. If A ⊂ G, then

〈A〉 = {aα1
1 a

α2
2 ...a

αn
n | n ∈ N , ai ∈ A, αi = ±1}

Note that, the ais don’t have to be distinct. The proof of this theorem is just like
the proof as in vector space theory. Also, a point to be observed is that this definition
doesn’t require A to be a finite or even a countable set.

Exercises on Page 65

2. Let G be a group, and suppose A ⊂ B ⊂ G. We will show that 〈A〉 ≤ 〈B〉. If
x ∈ A, then x ∈ B, and hence x ∈ 〈B〉. So, 〈B〉 is a subgroup of G containing A. By
the definition of 〈A〉, it follows that 〈A〉 ≤ 〈B〉.

Now, let G = Zn = 〈x〉, and set B = G, and A = {x}. Then, A ⊂ B and A 6= B,
but 〈A〉 = 〈B〉 = G.

3. Suppose H is a subgroup of an abelian group G. We will show that 〈H,Z(G)〉
is also abelian. Note that any element of 〈H,Z(G)〉 is a product of finitely many
elements of H and Z(G). Also, all elements of Z(G) commute with all elements of H,
and Z(G) is itself abelian, so it follows that 〈H,Z(G)〉 is also abelian.

We will now show by explicit example that 〈H,CG(H)〉 may not necessarily abelian.
Intuitively, this is because CG(H) may not itself be abelian. For instance, let G =
D8, and let H = {1, r2}. Then, it can be calculated that CG(H) = D8. Hence,
〈H,CG(H)〉 = D8 is not abelian.

5. Any element of order 2 in S3 must be a transposition. By Lagrange’s theorem, a
subgroup of S3 can have order 1, 2, 3 or 6. If a and b are the chosen transpositions
in S3, then 〈a, b〉 contains the elements 1, a and b. Also, the product of any two
transpositions distinct transpositions is not a transposition, and hence 〈a, b〉 = 6,
which means that 〈a, b〉 = S3.

6. Consider the subgroup of S4 given by 〈(1 2), (1 2)(3 4)〉. Since these two elements
commute, this subgroup is abelian. Also, since the order of each of the elements is 2,
4 is an upper bound to the order of the given subgroup. Also, observe that

(1 2)(1 2)(3 4) = (3 4)

and hence
〈(1 2), (1 2)(3 4)〉 = {1, (1 2), (3 4), (1 2)(3 4)}
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which is an abelian group of order 4.

7. Consider the subgroup of S4 given by 〈(1 2), (1 3)(2 4)〉. Put a = (1 2) and b =
(1 3)(2 4). Then, we can see that (1 3 2 4) = ab. Also, observe that (ab)4 = 1, and
a2 = b2 = 1. So, we see that

〈(1 2), (1 3)(2 4)〉 = 〈a, b| a2 = b2 = 1, (ab)4 = 1〉
which is a presentation for D8. So, this subgroup is isomorphic to D8, where the
isomorphism is given by a 7→ s, ab 7→ r.

13. Consider the multiplicative group of positive rational numbers. If
p

q
is in the

group, then (p, q) = 1 and both p and q are positive. By the fundamental theorem of

arithemetic, we can write p = pα1
1 ...p

αn
n and q = qβ11 ...q

βm
m , where no pi is equal to any

qj. So, we have
p

q
=
pα1

1 ...p
αn
n

qβ11 ...q
βm
m

which can be separated as powers of
1

pi
s and powers of

1

qi
s. Hence, this group is

generated by the set

{
1

p
: p is prime

}
14. (a) If G is a finite group, then it is trivially generated by all of its elements, and
hence it is finitely generated.

(b) Z = 〈x〉 is an infinite cyclic group, and hence it is finitely generated.
(c) Suppose H is a finitely generated subgroup of the additive group Q, say H =

〈a1, a2, ..., an〉, where each ai =
pi
qi

is a rational number. Let Q = q1q2...qn. If x ∈ H,

then

x = k1a1 + ...+ knan =
k1p1r1 + ...+ knpnrn

Q

where each ki is an integer, and ri =
Q

qi
is also an integer. This means that x ∈

〈
1

Q

〉
,

and hence H ≤
〈

1

Q

〉
. So, H must be cyclic as well.

(d) If Q were finitely generated, then it would mean that Q is cyclic, which is not
true. So, Q is not finitely generated.

15. A proper subgroup of Q which is not cyclic is the subgroup of all positive rational
numbers, as given in problem 13.

16. (a) Let H be a proper subgroup of a finite group G. Consider the set M := {U <
G : H ≤ U}. Clearly, this set is non-empty and finite (a finite group can only have
finitely many subgroups). So, out of all these subgroups, we can choose a maximal
subgroup.

(b) LetD2n be the dihedral group, and consider R = {1, r, r2, ..., rn−1}, the subgroup
of all rotations. We will show that this subgroup is maximal. So, suppose H is a
subgroup of D2n containing R such that H 6= R. Then, H contains a reflection, say
srk, for some 0 ≤ k ≤ n− 1. Then, since rk ∈ H, we see that

rksrk = s

is also in H, and hence H = D2n. So, it follows that R is maximal.
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(c) Suppose G = 〈x〉 is a cyclic group of order n ≥ 1. We will show the following:
H ≤ G is maximal if and only if H = 〈xp〉 for some prime p dividing n.

First, suppose H is maximal. We know that H is cyclic, so H = 〈xp〉, for some
p ∈ Z (p 6= 0 because H cannot be the trivial subgroup). Also, because H 6= G, it
follows that d = (p, n) > 1. This means that H ≤ 〈xd〉, and since (d, n) = d > 1, it
is also true that 〈xd〉 6= G. So, the only possible way this is true is when d = p. So,
p|n. Now, we will show that p is a prime. If not, then let k be a non-identity divisor
of p. Then, H < 〈xk〉, and since (k, n) = k > 1, it is also true that 〈xk〉 6= G, which
contradicts the maximality of H. So, p must be a prime.

The converse is easy to prove. Suppose p is a prime dividing n, and let H = 〈xp〉, so
that H 6= G. Suppose K ≤ G is a subgroup containing H, and let K = 〈xa〉, for some
a ∈ Z. Assume also that K 6= G, so that d = (a, n) > 1. So, we have that xp ∈ K,
which means that p = ak(mod n), which means that d|p. But, the only choice of d
is d = p, and hence a = p, which means that K = H. So, the only subgroups of G
containing H are H and G, so that H is maximal.

17. Let G be a non-trivial finitely generated group, say G = 〈g1, ..., gn〉 and let S be
the set of all proper subgroups of G. Clearly, S is non-empty (because it contains the
trivial subgroup), and S is a partially ordered set, the partial order being set inclusion
”⊂”. Let C be a chain in S.

(a) Define M =
⋃
H∈C

H. Let’s show that M is a subgroup of G. Clearly, 1 ∈ M . If

a ∈ M , then a ∈ H, for some H ∈ C, and hence a−1 ∈ M . Finally, suppose a, b ∈ M .
Then, a ∈ H1 and b ∈ H2, for some H1, H2 in C. But, since C is a chain, without loss
of generality, suppose H1 ⊂ H2, which implies that ab ∈ H2, and hence ab ∈ M . So,
M is a subgroup of G.
(b) We will now show that M is a proper subgroup of G, which will mean that

M ∈ S. Suppose not, i.e suppose M = G. Then, g1 ∈ H1, g2 ∈ H2, for some
H1, H2 ∈ C, and continuing this way, we see that gi ∈ Hi, for some Hi ∈ C, for each
i. However, C is a chain, and this will imply that g1, ..., gn ∈ Hj, for some 1 ≤ j ≤ n,
which means that Hj = G, a contradiction because Hj is a proper subgroup of G. So,
M is a proper subgroup of G, and hence this chain C in S has an upper bound in S.

(c) By Zorn’s lemma, this means that S has a maximal element. By definition,
this maximal element is a maximal subgroup of G. Hence, every non-trivial finitely
generated group has a maximal subgroup.

19. (a) We will show that the additive group of rational numbers Q is divisible. Let
a ∈ Q, and let k ∈ Z be non-zero. Then, since

a

k
· k = a

the element a has a k − th root, and hence Q is divisible.

15. Exercises on Page 71

16. Homomorphisms and Quotient Groups

In this section, we will see that quotienting of groups is just a study of homomor-
phisms between groups. Let’s start with a simple case.

Suppose φ : G → H is a group homomorphism between two groups G and H, and
let K = Ker(φ). The quotient group G/K is defined as follows: for every a ∈ Im(φ),
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consider the set Xa := {y ∈ G| φ(y) = a}. For a, b ∈ Im(φ), we define XaXb = Xab.
The new group is denoted by G/K.

Like in vector space theory, if V is a vector space, and W is a subspace, then V/W
consists of all translates of W , i.e

V/W := {u+W : u ∈ V }
where the choice of representatives of an equivalence class is immaterial. In the same
aspect, let’s prove the following theorem:

Theorem 16.1. Suppose φ : G → H is a homomorphism with kernel K. For a ∈
Im(φ), let Xa := φ−1(a) (the pre-image). Then, if u ∈ Xa, then

(1) Xa = uK (the left coset).
(2) Xa = Ku (the right coset).

In essence, this theorem says that the fibre of a looks like a translate of K, and the
choice of u (the representative) does not matter.
Proof: Let’s prove (1) first. Suppose v ∈ Xa, so that φ(v) = a. This means that

u−1v ∈ K, and hence v = uk, for some k ∈ K, which means that v ∈ uK, and hence
Xa ⊂ uK. Now, if v ∈ uK, then it is easy to see that φ(v) = a, and hence v ∈ Xa.
Hence, Xa = uK.

For (2), the proof is exactly similar, just observe that vu−1 ∈ K.
The above theorem implies that if K ≤ G is the kernel of some homomorphism

from G to some group, then if g1 ∈ gK, it follows that g1K = gK (similarly for right
cosets), which in simple words mean that any representative of a coset can be chosen.
We will see that this is infact true for arbitrary subgroups of G.

We now prove that the quotient we have defined is actually a group, if K is the
kernel of some homomorphism:

Theorem 16.2. Suppose G is a group and K ≤ G such that K is the kernel of some
homomorphism from G to some other group. Then, the left cosets (or right cosets) of
K in G form a group, with the operation given by

uK · vK = (uv)K

and the group is well defined in the sense that any two representatives of the same
coset can be chosen.

Proof: Suppose u, v ∈ G, and consider the cosets uK and vK. If a = φ(u) and
b = φ(v), then we know that uK = φ−1(a) and vK = φ−1(b). Also, (uv)K = φ−1(uv).
Now, suppose u1, v1 are in uK and vK respectively. Then, we know that u1K = uK
and v1k = vK. Now,

(u1v1)K = φ−1(u1v1) = φ−1(uv) = (uv)K

and hence the choice of the representatives doesn’t matter. Hence, the left cosets form
a group. The same exact procedure can also be repeated for right cosets.

At this point, it is to be remarked that left cosets forming a group only makes sense
if the choice of the representative does not matter. As mentioned before, we will see
later that if uK is a left coset, and if v ∈ uK, then uK = vK, and it is true for
arbitrary subgroups K of G.

From now on, we will not mention any homomorphism while studying quotient
groups, we will only work with left (or right) cosets. The next theorem will show that
the left (or right) cosets of a subgroup N of G partition G:



22 SIDDHANT CHAUDHARY

Theorem 16.3. Suppose N is a subgroup of a group G. The left cosets of N partition
G. In particular, if uN is a left coset, and v ∈ uN , then uN = vN . The same also
holds for right cosets. (This partition also induces an equivalence relation on G)

Proof: It is clear that the union of all left cosets is the group G. We will show that
if the intersection of two left cosets is non-empty, then the cosets are equal.

So, suppose u, v ∈ G such that uN ∩ vN 6= φ. So, let k ∈ uN ∩ vN , so that

k = un = vm

for some n,m ∈ N . Consider the coset kN . If x ∈ kN , then x = ky, for some y ∈ N ,
which means that x = uny, which means that x ∈ uN , which means that kN ⊂ uN .
Now, if x ∈ uN , then x = uy, for some y ∈ N , and hence x = kn−1y, which means
that x ∈ kN , and so uN ⊂ kN . So, uN = kN , and similarly, uN = kN = vN . For
right cosets, the procedure is exactly the same. The claim follows.

We will now see which subgroups of a group G have the property that their left (or
right) cosets form a group:

Theorem 16.4. Suppose G is a group and let N be a subgroup of G.

(1) The multiplication of left (or right) cosets given by

uN · vN = (uv)N

is well defined if and only if gng−1 ∈ N for all g ∈ G and n ∈ N .
(2) If the operation is well defined, then the left (or right) cosets form a group,

denoted by G/N .

Proof: We will prove only (1), since (2) is not hard to prove.
First, suppose the multiplication of left (or right) cosets is well defined. Let g, n be

arbitrary elements of G and N respectively. Since gg−1 ∈ N and n ∈ N , we have

(gn)N = (g1)N = gN

So, it follows that
(gnN)(g−1N) = (gN)(g−1N) = N

but (gnN)(g−1N) = (gng−1N) and hence

(gng−1N) = N

which means that gng−1 ∈ N .
Conversely, suppose gng−1 ∈ N for all g ∈ G and n ∈ N . Then, suppose u, u1 and

v, v1 are in G such that u = u1k1 and v = v1k2, for some k1, k2 ∈ N . We wish to show
that

(uv)N = (u1v1)N

So, suppose x ∈ (uv)N . Then, x = uvk, for some k ∈ N . Observe that

y = v−1
1 k1v1k2k ∈ N

and it can be checked that (uv)k = (u1v1)y, which means that (uv)N ⊂ (u1v1)N .
Similarly, the reverse containment can be proven, and hence (uv)N = (u1v1)N , which
proves the claim.

Such subgroups N of G are called normal subgroups, and we use the notation to
denoted these subgroups.

The following theorem is not hard to prove:

Theorem 16.5. If N is a subgroup of G, then the following are equivalent:

(1) N �G.
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(2) NG(N) = G.
(3) gNg−1 ⊂ N .
(4) gN = Ng for all g ∈ G.

So, to check whether a subgroup is normal, we can use any of the above criterion.
We now show that normal subgroups are precisely those subgroups which are kernels

of homomorphisms (remember that we started the discussion with kernels of homo-
morphisms):

Theorem 16.6. A subgroup N of G is normal if and only if it is the kernel of some
homomorphism.

Proof: We will already shown that if N is the kernel of some homomorphism, then
it is normal. We now prove the converse.

Now, suppose N is normal, and consider the map φ from G to G/N given by:

g 7→ gN

Let’s show that this is a homomorphism. Observe that

φ(g1g2) = g1g2N = (g1N)(g2N) = φ(g1)φ(g2)

and hence this is a homomorphism. It is easy to see that the kernel of this homomor-
phism if N . This proves the claim.

The homomorphism constructed in this proof is also called the natural projection of
G onto G/N .

Exercises on Page 85

1. Suppose φ : G → H be a homomorphism, and let E ≤ H. We will show that
φ−1(E) ≤ G. Clearly, 1 ∈ φ−1(E). If x ∈ φ−1(E), then φ(x) ∈ E, which means that
[φ(x)]−1 ∈ E, which means that φ(x−1) ∈ E, and hence x−1 ∈ φ−1(E). That φ−1(E)
is closed under the operation is straightforward. Hence, φ−1(E) ≤ G.

Next, suppose E � H. We will show that φ−1(E) � G. Suppose g ∈ G, and
e ∈ φ−1(E). Then, φ(geg−1) = φ(g)φ(e)φ(g)−1 ∈ E, and hence geg−1 ∈ φ−1(E),
which means that φ−1(E) �G. Hence, it follows that Ker(φ) �G, because the trivial
group of H is a normal subgroup.

3. Let A be an abelian group, and let B be a subgroup, so that B � A, and hence
A/B is defined. Suppose uB and vB are two elements of A/B. So, we have

uBvB = (uv)B = (vu)B = vBuB

and hence A/B is abelian.
Now, we will give an example of a non-abelian group G which has a proper normal

subgroup N such that G/N is abelian. Let G = D8, and let N = Z(D8) = {1, r2}.
Then, we can compute that

D8/Z(D8) = {{1, r2}, {r, r3}, {s, sr2}, {sr, sr3}}

and since this is a group of order 4, it follows that D8/Z(D8) is isomorphic to either
Z4 or V4, both of which are abelian. Hence, this group is abelian.
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4. Consider the quotient group G/N . We will prove that if gN ∈ G/N , then

gαN = (gN)α

for all α ∈ Z.
For positive α, the equality follows by induction. The equality is trivial for α = 0.

If α is negative, then observe that

gαN = (g−α)−1N = (g−αN)−1 = [(gN)−α]−1 = (gN)α

and hence the claim follows.

5. Let g ∈ G, and consider the coset gN . We wish to compute the order of the coset
in G/N . From the previous exercise, we know that if n ∈ N, then

(gN)n = (gn)N

and hence the order of gN is the least positive integer k such that gk ∈ N . If no such
integer exists, then gN has infinite order.

We will now give an example where the order of gN in G/N is strictly less than
the order of g in G. An obvious example is G = Z, and N = mZ for any m ∈ Z.
Any non-identity element of Z has infinite order, but every element in Z/mZ has finite
order.

Using this fact, we can show that quotient groups of a cyclic group are cyclic.
Suppose G = 〈x〉 is a cyclic group. Let N be any subgroup of G, so that N = 〈xd〉,
where d is the smallest power of x in N . Since G is abelian, N is normal. Now, we
have

G/N = {gN | g ∈ G} = {xkN | k ∈ Z}
and since

(xk)N = (xN)k

it follows that

G/N = 〈xN〉

The order of the quotient group G/N is equal to
|G|
|N |

, by Lagrange’s theorem, if G is

a finite group.

15. Let G be a divisible abelian group, and let N be a proper subgroup. We will show
that G/N is also divisible. Suppose gN ∈ G/N . If k ∈ Z, then there is some x ∈ G
such that g = xk. So, it follows that

(xk)N = (xN)k = gN

and hence G/N is divisible. Since Q is a divisible abelian group, it follows that Q/Z
is also divisible.

16. Suppose G = 〈S〉 for some subset S of G. Let N be a normal subgroup of G, and
let G = G/N . Let S be the set of all left cosets of elements of S. We will show that

G = 〈S〉

It is clear that 〈S〉 ≤ G. To show the reverse inclusion, let gN ∈ G. Since g = x1...xn,
for some x1, .., xn ∈ S, it follows that

gN = (x1N)...(xnN)

and hence gN ∈ 〈S〉, which means that G ≤ 〈S〉. The equality follows.



GROUP THEORY 25

17. Consider D16, and its center Z(D16) = {1, r4}. We consider the quotient group
G = D16/Z(D16).
(a) By Lagrange’s theorem, the order of this subgroup is 8.
(b) Since D16 = 〈s, r〉, it follows that

D16/Z(D16) = 〈s, r〉

Now, it can be computed that

D16/Z(D16) = {{1, r4}, {r, r5}, {r2, r6}, {r3, r7}, {s, sr4}, {sr, sr5}, {sr2, sr6}, {sr3, sr7}}

and in terms of powers of s, r, we have

D16/Z(D16) = {1, r1, r2, r3, s, sr1, sr2, sr3}

Intuition says that this is isomorphic to D8, and this is infact true.
(e) Consider the subgroup 〈s, r2〉 of this group. We will show that it is normal.

Observe that

rksrk
−1

= rksr−k = r2ks ∈ 〈s, r2〉
and we have

srkssrk
−1

= srksr−ks = sr2k ∈ 〈s, r〉

and similarly we can show the same thing for r2. Hence, this is a normal subgroup.

22. (a) Suppose H, K are normal subgroups of G. Now, if g ∈ G, and h ∈ H ∩K,
then we have that ghg−1 ∈ H ∩K, and hence H ∩K is also a normal subgroup.

(b) The same idea as above can be used to prove that the intersection of an arbitrary
collection of normal subgroups is a normal subgroup.

23. Suppose {Kα}α∈I is an arbitrary collection of normal subgroups of G, and let

M =
⋃
α∈I

Kα

We will show that 〈M〉 is also a normal subgroup. Suppose g ∈ G, and m ∈ 〈M〉.
Then, m = k1k2...kn, where ki ∈ Kαi , for αi ∈ I. Observe that

gmg−1 = g(k1...kn)g−1 = (gk1g
−1)...(gkng

−1) ∈ 〈M〉

because Kαi is normal. So, 〈M〉 is a normal subgroup.

26. (c) Suppose N = 〈S〉 for some subset S of G. Suppose N �G. Then, given any
s ∈ S and g ∈ G, we see that gsg−1 ∈ N , and hence gSg−1 ⊂ N . Conversely, suppose
gSg−1 ⊂ N for all g ∈ G. Then, given any n ∈ N , we have

n = s1...sn

for s1, ..., sn ∈ N , and hence

gng−1 = g(s1...sn)g−1 = (gs1g
−1)...(gsng

−1) ∈ N

and hence N is normal.

31. Suppose H ≤ G and N �H. It then follows that hNh−1 = N for all h ∈ H, and
hence H ≤ NG(N). Hence, NG(N) is the largest subgroup of G in which N is normal.
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40. Suppose G is a group, and let N be a normal subgroup of G. Let G = G/N .
Suppose xy = yx. This means that

xyN = yxN

which implies that x−1y−1xy ∈ N .
Conversely, if x−1y−1(xy) ∈ N , then xy = yxk, for some k ∈ N , and hence

xyN = yxN

Let’s now define the product of two subgroups H and K of a group G. This product
is defined as

HK = {hk : h ∈ H and k ∈ K}
We will now prove a theorem regarding the cardinality of HK:

Theorem 16.7. Suppose H and K are subgroups of a group G. Then,

|HK| = |H||K|
|H ∩K|

Proof: First, observe that

HK =
⋃
h∈H

hK

So, we need to count the distinct number of cosets of the form hK, for h ∈ H, and
multiply that with |K|, since each coset contains |K| elements. Now,

h1K = h2K ⇐⇒ h1 = h2k

for some k ∈ H ∩K. Now, there are |H| elements in H, and hence we have |H| cosets
with overcounting, and each coset is overcounted |H ∩K| times. Hence, the distinct
number of cosets is

|H|
|H ∩K|

and hence the formula follows.
Notice that for this formula to work, HK need not be a subgroup of G. We now

present a condition in which HK will be a subgroup.

Theorem 16.8. HK is a subgroup of G if and only if HK = KH.

The proof of this fact is not difficult, and hence I am not writing it here.
We have a another sufficient condition to determine when HK is a subgroup:

Theorem 16.9. Suppose K ≤ G and H ≤ NG(K). Then, HK is a subgroup of G.

Proof: If hk ∈ HK, then observe that hk = (hkh−1)h, and since hkh−1 ∈ K, it
follows that hk ∈ KH, proving that HK ⊂ KH. Similarly, the reverse containment
is proved. Hence, HK is a subgroup of G.

17. Exercises on Page 95

4. SupposeG is a group of order pq, where p and q are primes (not necessarily distinct).
If Z(G) = 1 then we are done. So, suppose Z(G) is non-trivial. It follows that |Z(G)|
is one of p, q or pq. If it is pq, then G is abelian, and we are done. If it is p, then the
quotient group G/Z(G) has order q, and hence it is cyclic, which implies that G is
abelian. Similarly, the case |Z(G)| = q can be handled. So, in all cases, G is abelian.
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5. Suppose H ≤ G, and let g ∈ G be fixed.
(a) First, let us prove that gHg−1 ≤ G. Clearly, 1 ∈ gHg−1. Secondly, if k ∈ gHg−1,

then k = ghg−1, for some h ∈ G, and hence

k−1 = gh−1g−1 ∈ gHg−1

so that it is closed under inverses. Finally, that it is closed under the group operation
is not hard to see. Hence, it is a subgroup.

Consider the mapping from H to gHg−1 given by

h 7→ ghg−1

It is clear that this mapping is one-one and onto. Hence, the order of the two subgroups
is the same.

(b) Now, if n ∈ Z+, and if H is the unique subgroup of order n, then observe that
gHg−1 = H, for all g ∈ G, which means that NG(H) = G, and hence H �G.

6. Let H ≤ G and let g ∈ G. Suppose Hg = kH, for some k ∈ G. We will show that
gH = Hg, and that g ∈ NG(H). Since Hg = kH, we have that

g = kh1

for some h1 ∈ H, and hence
k = gh−1

1

which means that kH = gH. Hence, it follows that gH = Hg. As we have proven
earlier, this condition is equivalent to the fact that g ∈ NG(H).

8. Suppose H and K are finite subgroups of G such that their orders are relatively
prime, and let |H| = p and |K| = q. Now, H ∩ K is a subgroup of both H and K,
so its order should divide both p and q. The only possible way this is true is when
H ∩K = 1, and hence H ∩K = 1.

10. Suppose H and K are subgroups of G with finite index, where G can also be an
infinite group. Let |G : H| = m and |G : K| = n.

18. The Isomorphism Theorems

These theorems are a set of observations about the relationships between groups
and their quotient groups:

Theorem 18.1. First Isomorphism Theorem: Suppose φ : G → H is a homomor-
phism. Then,

G/Ker(φ) ∼= Im(φ)

This theorem is very easy to prove, and I will not write the proof here. One property
that we can immediately verify however is the fact that

|G : Ker(φ)| = |φ(G)|
There is a commutative diagram which is very useful for interpreting the first isomor-
phism theorem.

Now, let us prove the Second Isomorphism theorem:

Theorem 18.2. Diamond Isomorphism Theorem: Suppose A, B are subgroups of a
group G, such that A ≤ NG(B). Then, AB is a subgroup of G, and we have the
following relations:

(1) B � AB.
(2) A ∩B � A.
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(3) AB/B ∼= A/(A ∩B).

Remark: It is not necessary that A� AB.

Proof: Suppose A and B are subgroups of G such that A ≤ NG(B). It then follows
that AB is a subgroup of G, and also A,B ≤ AB.

First, let us show that B �AB. So, suppose a′b′ ∈ AB, and let b ∈ B. So, we have
(a′b′)b(b′−1a′−1) ∈ B, and hence B � AB.

Now, consider the natural projection map from π : AB → AB/B, and consider the
restriction of π to, A, i.e consider

π : A→ AB/B

If xB ∈ AB/B, then we know that x = ab, for some a ∈ A and b ∈ B. And hence,

xB = abB = (aB)(bB) = aB

which implies that this restriction is surjective. Also, observe that Ker(φ) = A ∩ B,
so that A ∩B � A. By the first isomorphism theorem, we have

A/A ∩B ∼= Im(φ) = AB/B

and this completes the proof. The reason why this is called the Diamond Isomorphism
theorem (or also the Parallelogram Isomorphism theorem) is because of the lattice
structure of the mentioned subgroups.

The Third Isomorphism Theorem is concerned with taking quotient groups of quo-
tient groups:

Theorem 18.3. Third Isomorphism Theorem: Let G be a group, and let H,K be
normal subgroups of G such that H ≤ K. Then, K/H �G/H, and we have

(G/H)/(K/H) ∼= G/K

Remark: This is just like cancelling in fractions.

Proof: First, let us show that K/H�G/H. So, suppose gH ∈ G/H and kH ∈ K/H.
Then, observe that

(gH)(kH)(gH)−1 = (gkg−1)H ∈ K/H
and hence K/H �G/H.

So, the quotient group (G/H)/(K/H) is well-defined. Now, consider the map φ :
G/H → G/K given by

φ(gH) = gK

First, let us show that this map is well defined. So, let g1H = g2H. This means that
g1g
−1
2 ∈ H, and hence g1g

−1
2 ∈ K, since H ≤ K, and hence g1K = g2K.

The map is clearly surjective. Also, it is a homomorphism, since

φ(g1Hg2H) = φ(g1g2H) = g1g2K = φ(g1H)φ(g2H)

and its kernel is given by

Ker(φ) = K/H

Hence, by the First Isomorphism theorem, we have

(G/H)/(K/H) ∼= G/K

The last isomorphism theorem, called the Lattice Isomorphism theorem, gives the
group structure of G/N in terms of the structure of G. This theorem is very useful to
determine the lattice of G/N given the lattice or G:
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Theorem 18.4. Fourth Isomorphism Theorem: Suppose G is a group, and let N be a
normal subgroup of G. Every subgroup of G = G/N is of the form A = A/N , where A
is a subgroup of G containing N . The following are true for all A,B ≤ G with N ≤ A
and N ≤ B:

(1) A ≤ B if and only if A ≤ B.
(2) If A ≤ B, then |B : A| = |B : A|
(3) 〈A,B〉 = 〈A,B〉.
(4) A�G if and only if A�G.

Proof: First, let us give a bijection φ from the subgroups of G containing N to
subgroups of G/N . Let π be the natural projection homomorphism from G→ G/N .

For A ≤ G such that N ≤ A, define

φ(A) = π(A)

where π(A) is the image of A under the natural homomorphism. Let us show that
π(A) is a subgroup of G/N .

Clearly, N ∈ π(A), because 1 ∈ A. Next, if gN ∈ π(A), then gN = g′N , for some
g′ ∈ A. So, (gN)−1 = (g′N)−1 = g′−1N ∈ π(A), because g′−1 ∈ A. If aN, bN ∈ A,
then aN = g1N and bN = g2N , for some g1, g2 ∈ A. So, (aN)(bN) = (g1g2)N ∈ π(A),
because g1g2 ∈ A. So, it follows that π(A) is a subgroup of G/N .
Remark: Before continuing the proof, I will make the following remark. Note that,

in the previous paragraph, we never used the fact that A contains N . This is infact
true; any subgroup A of G can be mapped to a subgroup of G/N by its image under
the natural homomorphism. But, to get a bijection, we only deal with subgroups
containing N , as we will see further in the proof.

Now, let us show that φ is a bijection (Here is the importance of using only those
subgroups which contain N). Suppose π(A) = π(B). Now, let a ∈ A. So, aN ∈ π(A),
and hence aN ∈ π(B). This means that aN = a1B, for some a1 ∈ B. Hence,
a = a1n, for some n ∈ N , and since N ≤ B, it follows that a ∈ B, and hence A ≤ B.
Similarly, the reverse containment may be proven, and hence A = B, so that this
map is injective. To show that this map is surjective, suppose H ≤ G/N . Then, we
know that the complete pre-image, π−1(H), is a subgroup of G (the pullback in a
homomorphism is a subgroup), and this subgroup contains N (because H contains the
coset N). Hence, we then get H = φ(π−1(H)), and hence the map is surjective. So, it
follows that the subgroups of G/N are in bijection with subgroups of G containing N .

To prove (1), suppose A ≤ B. Let aN ∈ A/N . So, aN ∈ B/N , and hence
A/N ≤ B/N . Conversely, if A/N ≤ B/N , it is easy to see that A ≤ B, and hence we
are done.

To prove (2), if A ≤ B, then we have A/N ≤ B/N by (1). Also,

|B : A| = |B|
|A|

=
|N ||B|
|N ||A|

=
|B/N |
|A/N |

= |B/N : A/N |

and we are done.
The proofs of (3) and (4) are not difficult but a bit involved, so I’ll skip that.
To prove (5), suppose A� G. Let aN ∈ A/N and gN ∈ G/N , so that aN = a1N ,

for some a1 ∈ A. Observe that

(gN)(aN)(gN)−1 = (ga1g
−1)N ∈ A/N

because ga1g
−1 ∈ A. So, A/N �G/N .
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Conversely, suppose A/N �G/N . Let a ∈ A, and let g ∈ G. Observe that

(gN)(aN)(gN)−1 = (gag−1N) ∈ A/N

because A/N �G/N . So,

gag−1N = a1N

for some a1 ∈ A, and hence gag−1 = a1n, for some n ∈ N . Because N ≤ A, it follows
that a1n ∈ A, and hence gag−1 ∈ A, proving that A � G. (Note that, here we again
used the fact that A ≤ G).

19. Exercises on page 101

1. Let F be a finite field of order q and let n ∈ Z+. We know that det is a homomor-
phism from GLn(F ) to F − {0}, and the kernel is SLn(F ). By the first isomorphism
theorem, we have

|GLn(F ) : SLn(F )| = |Im(det)| = q − 1

because det is surjective.

3. Suppose H �G such that |G : H| = p for some prime p. First, let us show that if
K ≤ G such that H ≤ K, then either K = H or K = G (H is a maximal subgroup).
To prove this, consider the group G/H. The order of this group is p, and hence the
only subgroups of G/H is the trivial group and the whole group. If H ≤ K ≤ G, then
K/H is a subgroup of G. So, either K/H = 1 or K/H = G/H. In the first case, we
have K = H, and in the second case, we have K = G (by the fourth isomorphism
theorem).

Now, suppose K ≤ G. Then, either K ≤ H, or there is some k ∈ K such that
k /∈ H. In that case, H is a proper subgroup of HK, and by what we proved above,
it follows that G = HK. By the second isomorphism theorem, we have

HK/H ∼= K/H ∩K

and hence

|HK : H| = p = |K : K ∩H|

4. Let C �A and D�B. We will show that C ×D�A×B. Suppose (c, d) ∈ C ×D
and let (a, b) ∈ A×B. We have

(a, b)(c, d)(a, b)−1 = (aca−1, bdb−1) ∈ C ×D

and hence C ×D � A×B.
Now, define the map φ : A×B → A/C ×B/D by

(a, b) 7→ (aC, bD)

It is clear that this is a well defined map, and a homomorphism. The kernel of this
map is C ×D, and hence by the first isomorphism theorem, we have

(A×B)/(C ×D) ∼= A/C ×B/D

because φ is surjective.
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7. Suppose M,N are normal subgroups of G such that G = MN . We will show that

G/(M ∩N) ∼= (G/M)× (G/N)

Consider the map φ : G→ G/M ×G/N defined by

g 7→ (gM, gN)

Clearly, the map is a well defined homomorphism, and the kernel is M ∩ N . Let’s
prove that the map is onto (here is when we use the requirement that G = MN).

Suppose a, b ∈ G. We have that b−1a ∈ MN = NM , and hence b−1a = n1m1, for
some n1 ∈ N and m1 ∈M . Hence, we have

am−1
1 = bn1 = p

So, we have

φ(p) = (pM, pN) = (aM, bN)

and hence this map is onto. By the first isomorphism theorem, we have

G/M ∩N ∼= G/M ×G/N

8. Suppose p is a prime and let G = {z ∈ C| zpn = 1 for some n}. Consider the map
from G to G given by

z 7→ zp

It is clear that the map is a homomorphism. To prove that it is surjective, let z ∈ G,

and consider z
1
p . Given that zp

n
= 1 for some n, observe that

(z
1
p )p

n+1

= zp
n

= 1

proving that the homomorphism is surjective. Now, the kernel of this homomorphism
is the set of all pth roots of unity. So, the kernel is proper, and hence

G/kernel ∼= G

and hence G is isomorphic to a proper quotient of itself.

9. Suppose G is a group of order pam, where a is the highest power of p dividing
|G|. Suppose P is a subgroup of G of order pa, and let N be a normal subgroup of
G of order pbn, where b does not divide n. Observe that both |P | and |N | divide
|PN |, and hence |PN | = pak, where n|k and p does not divide k. Also, we know that
|P ∩K| = pl, for some l ≤ b. Now, we have

|P ∩N | = |P ||N |
|PN |

=
pbn

k

and since (k, pb) = 1, it follows that k|n and hence k = n. So, |P ∩N | = pb, and hence
|PN/N | = pa−b.

20. Composition Series

First, we will see the proof of Cauchy’s theorem for finite abelian groups using
induction; the basic philosophy is this: if you know some information about sub-
groups/quotient groups of a group, then there are cases where this information can be
forced to the bigger group. Let’s see an example of this:

Theorem 20.1. Cauchy’s Theorem (for finite abelian groups): Let G be a finite
abelian group. If p is a prime divisor of |G|, then G contains a subgroup of of order p.
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Proof: If |G| = p then we are done. So, we assume that |G| > p.
First, let x be any non-identity element of G. If |x| = p, we are done. If p divides
|x|, then again we are done by induction. So, suppose p does not divide |x|. Consider
the quotient group G/〈x〉 (because G is abelian, every subgroup is normal). Clearly, p
divides |G/〈x〉|, and by induction hypothesis, this group contains a subgroup of order
p. This subgroup must be cyclic, and let it be {1〈x〉, g〈x〉, ..., gp−1〈x〉} So, we observe
that g /∈ 〈x〉 but gp ∈ 〈x〉. It follows that 〈gp〉 6= 〈g〉, which means that 〈gp〉 is a proper
subgroup of 〈g〉. So, it follows that (|g|, p) > 1, and hence p divides |g|. We are again
done by induction hypothesis.

A group G is called simple if |G| > 1 and the only normal subgroups of G are 1 and
G. If |G| is a prime, then it is easy to see that G is simple. Simple groups have the
property that they cannot be factored into subgroups like N or G/N , and hence they
are just like primes in integers.

Let G be a group. A sequence of subgroups

1 = N0 ≤ N1 ≤ ... ≤ Nk = G

is called a composition series if Ni�Ni+1 for every i, and each group Ni+1/Ni is simple.
Next, we look at solvable groups. A group G is said to be solvable if there is a chain

of subgroups

1 = G0 �G1 � ...�Gs = G

such that Gi/Gi−1 is abelian for every i. Solvable groups present themselves in Galois
Theory.

We have the following proposition which is again an example of how information
about smaller groups can be put together to a larger group:

Proposition 20.2. If N�G and both N and G/N are solvable, then G is also solvable.

Proof: Let 1 = H0/N�H1/N� ...�Hk1/N = G/N be a sequence of subgroups such
that (Hi/N)/(Hi−1/N) ∼= Hi/Hi−1 is abelian for every i. Here, each Hi is a normal
subgroup of G containing N . Combining this with such a series for N , we obtain a
series for G, proving that G is solvable.

21. Exercises on Page 106

1. Suppose G is an abelian simple group. We show that G ∼= Zp for some prime p.
Note that any subgroup of G must be normal, and hence the only subgroups of G are
G and 1. Hence G must be a cyclic group. Moreover, it cannot be the infinite cyclic
group, and hence it is finite. In that case, it is clear that G ∼= Zp for some prime p.
2. Here we find all 3 composition series for Q8 and all seven composition series for

D8 and list the composition factors.
4. Let G be a finite abelian group, and let n be a positive divisor of |G|. We will

show that G contains a subgroup of order n. If n is prime then this is just Cauchy’s
theorem for finite abelian groups. So, suppose n is not a prime, and let p be a prime
dividing n. Then, there is an element of order p, and hence a subgroup of order p.
Let this subgroup be K. Then n/p divides the order of G/K, and hence G/K has a
subgroup of order n/p (by induction), so that G has a subgroup of n.

5. Here we show that subgroups and quotient groups of solvable groups are solvable.
Let G be a solvable group, and let

1 = N0 �N1 � ...�Nk = G
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be a series of subgroups such that Ni/Ni−1 is abelian. Let H ≤ G, and consider the
series

1 = H ∩N0 �H ∩N1 � ...�H ∩Nk = H

22. Alternating Group

In this section, let us study the permutation group in more detail. Let ∆ be the
following polynomial of n independent variables:

∆ =
∏

1≤i<j≤n

(xi − xj)

So, ∆ contains all factors of the form xi− xj, for all i < j. Let the group Sn act on ∆
as follows: if σ ∈ Sn, define

σ(∆) =
∏

1≤i<j≤n

(xσ(i) − xσ(j))

The following observation can be made for all σ ∈ Sn

σ(∆) = ±∆

We define the sign of σ as the sign occuring in the above equation (this is one way of
defining the sign of a permutation. There is another beautiful way of defining it using
determinants, which is inluded in my Linear Algebra notes).

Theorem 22.1. ε : Sn → {−1, 1} is a homomorphism.

Proof: The proof of this fact is easy using the determinant definition of the sign of
a permutation, which is given in my Linear Algebra notes.

We also know that all transpositions are odd permutations. Hence, it follows that ε
is a surjective homomorphism.

We define the Alternating group An to be the kernel of the homomorphism ε : Sn →
{−1, 1}. By the first isomorphism theorem, we have

Sn/An ∼= {−1, 1}

and hence

|An| =
Sn
2

Let us now determine a quick way of finding the sign of a permutation from its cycle
decomposition:

Theorem 22.2. Let (a1 a2 ... ak) be a cycle in Sn. Then, the sign of this cycle is
(−1)k−1.

Proof: Observe that

(a1 a2 ... ak) = (a1 a2)(a2 a3)...(ak−1 ak)

and hence the sign of the cycle is (−1)k−1.
Using the above fact, we can find the sign of any permutation very easily.
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23. Group Actions

Let’s begin by proving the following fundamental relationship between actions and
homomorphisms into the symmetric group:

Theorem 23.1. For any group G and any non-empty set A there is a bijection between
the actions on G on A and the homomorphisms of G into SA.

Proof: Given an action A1 of G on A, there is a homomorphism from G to SA,
which is nothing but the permutation representation of A1. Let’s show that this map
from the set of actions to homomorphisms is one-one and onto. First, suppose A1 and
A2 are two actions having the same permutation representations. Given any g ∈ G,
we have

σg,A1 = σg,A2

which implies that

σg,A1(a) = σg,A2(a)

for all a ∈ A, and hence the two actions are the same. So, this map is one-one.
To show that the map is onto, let φ : G→ SA be any homomorphism. Define a map

A1 : G× A→ A as

A1(g, a) = φ(g)(a)

Then, observe that

A1(1, a) = φ(1)(a) = a

If g1, g2 ∈ g, then

A1(g1, A1(g2, a)) = A1(g1, φ(g2)(a)) = φ(g1)(φ(g2)(a)) = φ(g1g2)(a) = A1(g1g2, A)

and hence A1 is a group action. This completes the proof.
Let’s now see how equivalence relations can be defined using group actions:

Theorem 23.2. Let G be a group acting on a set A. For a, b ∈ G, we say that a ∼ b
if a = g · b, for some g ∈ G. This relation is an equivalence relation, and the number
of elements in the equivalence class of a is |G : Ga|, which is the index of Ga.

Proof: First, observe that a = 1 · a, and hence the relation is symmetric. Second, if
a = g · b, then observe that b = g−1 · a, and hence the relation is symmetric. Finally, if
a = g1 · b and b = g2 · c, then we have that a = (g1g2) · c, and the relation is transitive.
So, it is an equivalence relation.

Now, we will show a bijection between the equivalence class of a and the left cosets
of Ga in G. Let

Ca = {g · a| g ∈ G}
be the equivalence class of a. For b ∈ Ca such that b = g ·a, consider the map b 7→ gGa.
This map is clearly surjective. It is injective because if g1Ga = g2Ga, then g1 = g2h,
for some h ∈ Ga, and hence

g1 · a = (g2h) · a = g2 · a
and hence it follows that the number of elements in the equivalence class of a is the
index of Ga.

The equivalence class containing a is called the orbit of a. An action which produces
only one orbit is said to be transitive.

Using this theory, the existence of a unique (upto ordering) cycle decomposition of
a permutation can be proven. A good proof is given on page 115 of the book.
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24. Exercises on Page 116

1. Suppose G is a group acting on a set A. In this exercises, we will see the relationship
between stabilizers of two related elements under this action.

Suppose b = g · a, where a, b ∈ A and g ∈ G. We will show that

Gb = gGag
−1

So, suppose g0 ∈ Gb. Then, g0 · b = b. So, we have that

g0 · (g · a) = g · a

and hence

(g0g) · a = g · a

Letting g−1 act on both sides, we get

(g−1g0g) · a = a

and hence g−1g0g ∈ Ga, which means that g0 ∈ gGag
−1. Conversely, if g0 = gg′g−1 for

some g′ ∈ Ga, then we have

g0 · b = (gg′g−1) · b = (gg′) · a = g · a = b

and hence g0 ∈ Gb. This completes the proof.
Now, suppose G acts transitively on A. So, for any b ∈ A, we have b = g ·a for some

g ∈ G. Now, the kernel of the action is nothing but

ker =
⋂
b∈A

Gb

and hence we get

ker =
⋂
g∈G

gGag
−1

2. Let G be a permutation group on the set A. Let σ ∈ G and let a ∈ A. Observe
that

σ(a) = σ · a

and hence by the preceding exercise, we have

Gσ(a) = σGaσ
−1

If G acts transitively on A, then the kernel of the action is⋂
σ∈G

σGaσ
−1

But, G being a permutation group, acts faithfully on A. So, the kernel must be
trivial, and hence ⋂

σ∈G

σGaσ
−1 = 1
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3. Let G be an abelian transitive subgroup of SA.
We will show the following: for every element a ∈ A, Ga = {1}, where 1 is the

identity permutation. So, let σ ∈ Ga for some a ∈ G. Since the action of G is
transitive, for any b ∈ A, we have that b = σ′(a), for some σ′ ∈ G. It then follows that

Gb = σ′Gaσ
′−1

which means that σ′σσ′−1 ∈ Gb. Since G is abelian, we have

σ′σσ′−1 = σ

and hence σ ∈ Gb. Since b was arbitrary, it follows that σ is the identity permutation.
So, Ga = {1} for all a ∈ G.

Now, the action is transitive, and hence there is only one orbit. So, it follows that

|A| = |G : Ga| = |G|

4. Let S3 act on the set Ω = {(i, j)| 1 ≤ i, j ≤ 3}. There are two orbits of Ω under
this action:

{(1, 1), (2, 2), (3, 3)}, {(1, 2), (1, 3), (2, 1), (2, 3), (3, 1), (3, 2)}
Let the ordered pairs be labelled in the ordering as given above. Let φ : Ω→ S9 be

the permutation representation. We will find the cycle decomposition of φ(σ) for each
σ ∈ S3.

φ(1) = 1

φ((1 2)) = (1 2)(4 6)(5 7)(8 9)

φ((1 3)) = (1 3)(4 9)(5 8)(6 7)

φ((2 3)) = (2 3)(4 5)(6 8)(7 9)

φ((1 2 3)) = (1 2 3)(4 7 8)(5 6 9)

φ((1 3 2)) = (1 3 2)(4 8 7)(5 9 6)

Finally, observe that
G(1,1) = {1, (2 3)}

and
G(1,2) = {1}

All other stabilizers are conjugates of these (since there are only two orbits).

7. Suppose G is a transitive permutation group acting on the finite set A.
(a) Suppose B is a block containing the element a of A. Define the set GB = {σ ∈

G|σ(B) = B}. Clearly, the identity permutation is in GB. If σ1, σ2 ∈ GB, then it is
easy to see that σ1σ2 ∈ GB. That it is closed under inverses is also easy to see. Now,
if σ ∈ Ga, then σ(a) = a ∈ B, and hence σ(B) ∩ B 6= φ, and therefore σ(B) = B
(because B is a block), showing that σ ∈ GB. So, Ga ≤ GB.

Now, we will look at groups acting on themselves. As we have seen before, a group
can act on itself via left multiplication. It turns out that this action is faithful and
transitive, as we will prove.

We will generalise the above concept as follows: Let G be a group, and let H ≤ G.
We can define an action of G on the set of left cosets of H as follows:

g · aH = gaH

It is clear that this is indeed an action. Let’s prove some properties of this action:
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Theorem 24.1. Suppose H ≤ G, and let G act on the set of left cosets of H, which
we denote by A. Let πH be the associated permutation representation of the action.

(1) G acts on A transitively.
(2) The stabilizer of 1H is H. (and hence since the action is transitive, the stabi-

lizer of any other point is a conjugate of H).
(3) The kernel of πH is ∩x∈GxHx−1, and this kernel is the largest normal subgroup

of G contained in H.

Proof: To prove (1), let a1H and a2H be any two left cosets of H. Observe that

a2H = (a2a
−1
1 ) · a1H

and hence the action is transitive.
To prove (2), observe that

G1H = {g ∈ G| g · 1H = H}
= {g ∈ G| gH = H}
= H

Finally, observe that ker(πH) is the intersection of all stabilizers, and since the action
is transitive, the stabilizers are conjugates of H. So, we have

ker(πH) =
⋂
x∈G

xHx−1

First, it is immediate that ker(πH) � G. Now, let N be any normal subgroup of G
contained in H. If h ∈ N , then for any left coset aH we have

h · aH = haH = aH

implying that h ∈ ker(φH), and hence N ≤ ker(πH). This completes the proof.
Let us now prove Cayley’s theorem:

Theorem 24.2. Cayley: Every group is isomorphic to a subgroup of a symmetric
group. If |G| = n, then G is isomorphic to a subgroup of Sn.

Proof: Consider the action of G on itself by left-multiplication. The kernel of this
action is just the trivial group. If π is the permutation representation, then ker(π) = 1,
and by the first isomorphism theorem we have

G ∼= G/ker(π) ∼= H

where H is the subgroup of some symmetric group. This completes the proof.
The next theorem is a generalisation to the normality of subgroups of index 2, and

is a very useful tool:

Theorem 24.3. Let G be a group, and let H be a subgroup of index p, where p is
the smallest prime dividing |p|. Then H is normal.

Proof: Let πH be the permutation representation of the action of G on the left cosets
of H. We will prove that H is normal by proving that H = KerπH .

First, we know that K ≤ H, and let |H : K| = k. So, we have that

|G : K| = |G : H||H : K| = pk

Since H has p distinct left cosets, it follows that the group G/K is isomorphic to some
subgroup of Sp (by the first isomorphism theorem). This means that pk|p!, which
implies that k|(p− 1)!. Now, all prime factors of k must be greater than or equal to p
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(since p is the smallest prime dividing G) and hence we see that k = 1. So, it follows
that H = K, and hence H �G.

Exercises on Page 121

1. Let G = {1, a, b, c} be the Klein 4-group.
(a) We label {1, a, b, c} as {1, 2, 4, 3}. We consider the left regular representation π

of this group. The elements are mapped as

π(1) = 1

π(a) = (1 2)(3 4)

π(b) = (1 4)(2 3)

π(c) = (1 3)(2 4)

(b) We relabel the group as {1, 4, 2, 3}. Then, the elements are mapped as

π(1) = 1

π(a) = (1 4)(2 3)

π(b) = (1 2)(3 4)

π(c) = (1 3)(2 4)

Clearly, the image or the representation is the same as in part (a), even though the
representations are different.

4. Consider the left regular representation of Q8, which we denote by π. If we label
the points {1,−1, i,−i, j,−j, k,−k} as {1, 2, 3, 4, 5, 6, 7, 8}, we get that

π(1) = 1

π(−1) = (1 2)(3 4)(5 6)(7 8)

π(i) = (1 3 2 4)(5 7 6 8)

π(−i) = (1 4 2 3)(5 8 6 7)

π(j) = (1 5 2 6)(3 8 4 7)

π(−j) = (1 6 2 5)(3 7 4 8)

π(k) = (1 7 2 8)(3 5 4 6)

π(−k) = (1 8 2 7)(3 6 4 5)

So, the subgroup 〈π(i), π(j)〉 of S8 is isomorphic to Q8.

7. (a) By Cayley’s theorem, Q8 is isomorphic to a subgroup of S8.
(b) Here, we will show that Q8 is not isomorphic to a subgroup of Sn, for any n ≤ 7.
For the sake of contradiction, suppose Q8 is isomorphic to some subgroup of S7, say

I. Let I act on a set with 7 elements in the usual way, and hence we get an action
of Q8 on the set. The corresponding permutation representation π : Q8 → I is a
surjective map. Now, we will show that 〈−1〉 ≤ kerπ.
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8. Suppose H ≤ G has finite index n. We will show that there is a normal subgroup
K ≤ G with K ≤ H and |G : K| ≤ n!.

Consider the action of G on the left cosets of H. Let π be the corresponding
permutation representation of this action. Then, π : G→ Sn, because there are n left
cosets of H. Consider kerπ, which is a normal subgroup of G. Clearly, kerπ ≤ H, and
observe that G/kerπ is isomorphic to some subgroup of Sn, which implies that

|G|
|kerπ|

≤ n!

and hence kerπ is the required subgroup.

9. Suppose G is a group of order pα. Then, p is the smallest prime dividing |G|. So,
any subgroup of order p must be normal. Now, any group of order p2 contains a group
of order p, and hence this subgroup must be normal.

10. Let G be a non-abelian group of order 6. We will show that G has a non-normal
subgroup of order 2.

Next, we will consider another important type of group action, called conjugation.
Let G be a group. Then, the action of G on itself via conjugation, i.e

g · a = gag−1

defines another action. The orbits under this action are also called conjugacy classes.
Note that these actions are not transitive unless |G| = 1, because the orbit of 1 is just
{1}.

We again generalise the action by conjugation to subsets of G. For any S ⊂ G,
define

g · S = gSg−1

Let’s now prove a combinatorial result related to this action:

Theorem 24.4. The number of conjugates of a set S in G is equal to |G : Gs|, and
since Gs = NG(S), this is equal to |G : NG(S)|. In particular, the number of conjugates
of an element s of G is equal to |G : CG(s)|

The conjugation group action and the previous result give the Class equation:

Theorem 24.5. The Class Equation: Let G be a finite group, and let g1, ..., gk be the
representatives of distint conjugacy classes of G, such that no gi is in the Z(G). Then,
we have

|G| = |Z(G)|+
k∑
i=1

|G : CG(gi)|

Proof: We know that distinct conjugacy classes partition the group. Let g1, ..., gk
be representatives of distinct conjugacy classes of G, such that no gi is in Z(G), and
let the conjugacy classes be K1, ..., Kk. Observe that every element in Z(G) has a
conjugacy class consisting of itself. So, let 1, z1, z2, ..., zr be the elements of Z(G). So,
a partition of G is

{1}, {z1}, ..., {zr}, K1, ..., Kk
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so we get

|G| = |Z(G)|+
k∑
i=1

|Ki|

= |Z(G)|+
k∑
i=1

|G : CG(gi)|

and hence we are done.
The class equation has a very important consequence on the groups of prime power

order:

Theorem 24.6. Suppose G is a group such that |G| = pα, where p is a prime and
α > 0. Then, Z(G) is non-trivial.

Proof: By the class equation, we have

|G| = |Z(G)|+
r∑

k=1

|G : CG(gk)|

where g1, ..., gr are representatives of distinct conjugacy classes, and are not in the
center. It follows that CG(gk) 6= G for any k, and hence |G : CG(gk)| is a power of p.
Also, we know that p divides |G|, and so it implies that p divides |Z(G)|. So, Z(G) is
non-trivial.

This leads to an interesting corollary:

Theorem 24.7. Suppose G is a group of order p2. Then G is abelian.

Proof: By the previous theorem, we know that the center is non-trivial. So, it
follows that G/Z(G) is cylic, which means that G is abelian.

We can actually prove a stronger statement: G is isomorphic to one of the groups
Zp2 or Zp × Zp. If G has an element of order p2, then it is isomorphic to Zp2 . So,
suppose G does not have any element of order p2. Take any element x of order p, and
take any element y /∈ 〈x〉, so that y also has order p. Since 〈x, y〉 has order greater
than p, it must be true that P = 〈x, y〉. Also, the product 〈x〉 × 〈y〉 has p2 elements.
The isomorphism between P and 〈x〉 × 〈y〉 is given by

(xa, yb) 7→ xayb

and hence it follows that P ∼= Zp × Zp.
Next, we will look at conjugation in Sn:

Theorem 24.8. Suppose σ is a permutation in Sn such that

σ = (a1 a2 ...)(b1 b2 , )...

Let τ ∈ Sn. The cycle decomposition of τστ−1 is

τστ−1 = (τ(a1) τ(a2)...)(τ(b1) τ(b2)...)...

Proof: Suppose σ(i) = j. Then, we have

τστ−1(τ(i)) = τ(j)

Hence, the proof is complete.
Using this theorem, we can see how conjugacy works in Sn. We define the notion of

cycle type in Sn. Given a cycle σ in Sn consisting of k disjoint cycles (including the fixed
elements), the cycle type of σ is defined as the sequence of integers n1 ≤ n2 ≤ ... ≤ nk,
where ni is the length of the ith cycle in the decomposition.
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Theorem 24.9. Two elements of Sn are conjugate if and only if they have the same
cycle types. The number of conjugacy classes of Sn is equal to the number of partitions
of n.

Note: Before proving the theorem, I will mention an interpretation of this, which
makes it much more natural. As in linear algebra, two matrices are conjugates of each
other, if they represent the same linear mapping, just the chosen basis are different.
A very similar thing occurs in permutations. Suppose I have 4 objects, namely A, B,
C and D. I label the objects in two ways: {1, 2, 3, 4} and {1, 4, 2, 3}. Consider the
permutation which swaps the first two objects. In the first labelling, this permutation
is

(1 2)(3 4)

and in the second labelling, this permutation is

(1 4)(2 3)

These permutations as objects of S4 are different, but the underlying permutation is
the same. So, these must be conjugates of each other, and in fact this is true. We will
now formally prove this idea:

Proof: Let σ and φ be two permutations in Sn having the same cycle types. Let the
cycle type be n1 ≤ n2 ≤ ... ≤ nk. Write the product decomposition of both σ and φ
in the order of the cycle type.

Now, we consider τ ∈ Sn defined as follows: for any element i ∈ {1, ..., n}, find the
cycle in which it is located in the decomposition of σ. Suppose it is in the pth cycle,
and suppose within the cycle, it is located at the qth position. We map i to the element
present in the pth cycle in the decomposition of φ located at the qth position. It is
hence clear that τ is a bijection, hence a permutation.

Also, by our construction, we have

φ(i) = τστ−1(i)

and hence φ and σ are conjugates of each other.
To prove the second part of the theorem, observe that every cycle-type is a partition

of n. So, it follows that the number of conjugacy classes of Sn is equal to the number
of partitions of n.

The previous theorem gives us a very powerful to compute the order of the central-
izers of various permutations (and not just the order, infact the whole centralizer).
We prove this in the next theorem:

Theorem 24.10. Suppose σ is an m-cycle in Sn. Then, we have

|CSn(σ)| = m(n−m)!

In fact, we have

CSn(σ) = P = {σiτ | 0 ≤ i ≤ m− 1, τ ∈ Sn−m}

Proof: Observe that the number of elements in the conjugacy class of σ is equal to
the number of m-cycles, which is n!

m(n−m)!
. So, we have that

|CSn(σ)| = |S|m(n−m)!

n!
= m(n−m)!

Now, we know that {1, σ, ..., σm−1} is a subset of CSn(σ). Also, any permutation of
Sn that is disjoint from σ commutes with it. Now, the total number of permutations
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that are disjoint from σ are (n−m)!. So, we have

|P | = m(n−m)!

and hence it follows that CSn(σ) = P .

25. Exercises on Page 130

1. Suppose G has a left action on a set A, denoted by g · a, and let a · g be the
corresponding right action. We will show that the equivalence classes under both the
actions are the same.

So, suppose a = g · b for some g ∈ G. Then, we have

g−1 · a = b

which means that

a · g = b

and hence a is related to b under the left action if and only if it is related to b under
the right action.

2. In this exercise, we will find the conjugacy classes and their sizes in each of the
groups:

(a) D8: The center of the group is {1, r2}. For an element x not in the center, we
know that the size of the conjugacy class is |D8 : CD8(x)|. Now, {1, r2} ≤ CD8(x), and
it is easy to see that x ∈ CD8(x), so that for every such x, we have

|CD8(x)| = 4

So, the class equation of D8 is

8 = 2 + 2 + 2 + 2

So, the conjugacy classes are:

{1}, {r2}, {r, r3}, {s, sr2}, {sr, sr3}

(b) Q8 : The center of the group is 〈−1〉. As before, it is easy to see that the order
of the centralizer of every element not in the center is 4. So, the class equation is

8 = 2 + 2 + 2 + 2

The conjugacy classes are

{1}, {−1}, {i,−i}, {j,−j}, {k,−k}

(c) A4: First, we note that the center of A4 is trivial. Now, any element of A4 is
either a 3-cycle, or product of two 2-cycles. Clearly, a permutation is only conjugate
to permutations of the same cycle-type. It can be then seen that the conjugacy classes
are

{1}, {(1 2)(3 4), (1 3)(2 4), (1 4)(2 3)}, {(1 2 3), (1 3 4), (1 4 2), (2 4 3)},
{(1 3 2), (1 4 3), (1 2 4), (2 3 4)}
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3. First, we make some general remarks. Let A and B be groups, and let A × B
be their direct product. Now, (x1, y1) and (x2, y2) are in the same conjugacy class in
A× B if and only of x1, x2 are in the same conjugacy class in A and y1, y2 are in the
same conjugacy class in B.
(a) Z2 × S3: Since Z2 is abelian, each element has a singleton conjugacy class. So,

there are 12 singleton conjugacy classes of Z2 × S3.
Similarly, given a direct product, the conjugacy classes can be determined from the

conjugacy classes of the individual groups.

5. Suppose Z(G) has index n. We know that if x ∈ G, the size of the conjugacy class
is CG(x). But, Z(G) ≤ CG(x), and hence |CG(x)| ≥ |Z(G)|. This means that

n = |G : Z(G)| ≥ |G : CG(x)|

so that the conjugacy class of x has atmost n elements.

6. Suppose G is a non-abelian group of order 15. Then, |Z(G)| has order either 1, 3
or 5. Clearly, Z(G) cannot have order 3 or 5, because that would imply that G/Z(G)
is cyclic, which would imply that G is abelian. Hence, |Z(G)| = 1.

Now, let x be any non-identity element. Now, the conjugacy class of x must have
order 3 or 5. So, we need to write 14 as a sum of 3s and 5s. The only possible way
this is true is

14 = 3 + 3 + 3 + 5

and so the class equation must be

15 = 1 + 3 + 3 + 3 + 5

8. Here, we will show that Z(Sn) = 1 for all n ≥ 3. Suppose there is some permutation
which commutes with all permutations of Sn. Let σ be the permutation. Assume that
there some i which is not fixed, and let σ(i) = j, so that j 6= i. There are two possible
cases:

(1) In this first case, σ(j) = i. Now, take any k distinct from i and j. Let β be a
permutation which has (i j k) as one of its cycles in its cycle decomposition.
Observe that

σβ(i) = i

and

βσ(i) = k

so that σβ 6= βσ
(2) In the second case, suppose σ(j) = k, where k is distinct from i and j. Let β

be a permutation that swaps i and j. So, we have

σβ(i) = k

and βσ(i) = i and again σβ 6= βσ

So, this means that all elements must be fixed, and hence Z(Sn) = 1.



44 SIDDHANT CHAUDHARY

9. Let us show that
|CSn((1 2)(3 4))| = 8(n− 4)!

where n ≥ 4. We know that |Sn : CSn(x)| is the size of the conjugacy class of x in Sn.
If x = (1 2)(3 4), then we know that the elements in its conjugacy class have the same
cycle type. There are 1

2

(
n
4

)(
4
2

)
permutations having the cycle type (2, 2). So, it follows

that

|CSn((1 2)(3 4))| = 2n!(
n
4

)(
4
2

) = 8(n− 4)!

10. Suppose σ = (1 2 3 4 5) is the 5-cycle in S5. We will explicitly find the required
τ ∈ S5.

(a) τστ−1 = σ2, and one possible τ is τ = (2 3 5 4)
(b) τστ−1 = σ2, and one possible τ is τ = (2 5)(3 4)
(c) τστ−1 = σ−2, and one possible τ is τ = (2 4 5 3)

13. Here, we will find all finite groups having exactly two conjugacy classes. Observe
that 1 is always in Z(G), and hence it is in its own conjugacy class. Let x be any
non-identity element. It follows that

|G|
|CG(x)|

= |G| − 1

which is only possible if |G| − 1 = 1, i.e when |G| = 2. So, such a group must be
isomorphic to Z2.

17. Suppose A is any non-empty set. Let

D = {σ ∈ SA| |M(σ)| <∞}
We will show that D is a normal subgroup of SA. First, let us show that it is a
subgroup of SA.

If σ moves finitely many points of A, then it is easy to see that σ−1 also moves
finitely many points of A, and hence σ−1 ∈ D. Next, suppose σ1, σ2 ∈ D. If x is a
point moved by σ1σ2, then σ2(x) can only assume finitely many values (because σ1

moves only finitely many points). Therefore, x can only assume finitely many values,
because σ2 is a bijection, and hence σ1σ2 moves only finitely many values. Hence, D
is a subgroup of SA.

Now, let us show that D is a normal subgroup. So, let σ ∈ D and let τ ∈ SA. We
will show that τστ−1 moves only finitely many points. If x ∈ A and if τ−1(x) is a
point fixed by σ, then

τστ−1(x) = x

and hence τστ−1 also fixes x. So, for τστ inverse to move x, τ−1(x) can only assume
finitely many values, and hence x can only assume finitely many values. This means
τστ−1 ∈ D, and hence D is a normal subgroup of SA.

19. Suppose H is a normal subgroup of G, and suppose K is a conjugacy class of G
contained in H and let x ∈ K. We will show that K is a union of k conjugacy classes
of equal size in H, where k = |G : HCG(x)|.

Now, observe that the size of the conjugacy class of x in H is |H : CH(x)|, and we
know that CH(x) = CG(x) ∩H. By the second isomorphism theorem, we have

|HCG(x)|
|H|

=
|CG(x)|
|CH(x)|
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and hence

|H : CH(x)| = |HCG(x)|
|CG(x)|

=
|K|

|G : HCG(x)|
=
|K|
k

So, it follows that the size of the conjugacy class of x in H is
K

k
. So, there are k

conjugacy classes of equal size.
Now, consider a conjugacy class K in Sn consisting of even permutations. We know

that K ⊆ An, and that An is a normal subgroup of Sn. So, by what we just proved,
K will be a union of k equally-sized conjugacy classes in An, where

k = |Sn : AnCSn(x)|

and x ∈ K. Now, observe that AnCSn(x) is a subgroup of Sn, which has order ≥ n!

2
.

So, either the order is
n!

2
, or the order is n!. So, either K is a single conjugacy class,

or it is a union of two conjugacy classes.

20. Suppose σ ∈ An. First, suppose all elements in the conjugacy class of σ in Sn are
also conjugate in An. By the previous exercises, it follows that

k = |Sn : AnCSn(σ)| = 1

which means that

|AnCSn(σ)| = n!

and therefore, it means that σ commutes with an odd permutation.

Conversely, if σ commutes with an odd permutation, then |AnCSn(σ)| > n!

2
, which

means that |AnCSn(σ)| = n!, and hence there is only one conjugacy class in An.

21. In this exercise, we will formulate a criterion to check when conjugacy classes in
Sn are preserved in An, and when they are splitted.

Let K be a conjugacy class in Sn and suppose K ⊆ An. We show that if σ ∈ Sn,
then σ does not commute with any odd permutation if and only if the cycle type of σ
consists of distinct odd integers.

So, suppose σ ∈ Sn does not commute with an odd permutation. Clearly, σ cannot
be an odd permutation. Now, let the cycle decomposition of σ be

σ = σ1...σk

where each σi is a cycle. If σi is an even length cycle for some i, then σi is an odd
permutation, and clearly σ commutes with σi. Hence, σi cannot be an even length
cycle for any i, and hence the cycle type of σ consists of only odd integers. Now,
we show that the cycle type cannot have two equal odd integers. For the sake of
contradiction, suppose σi and σj have the same odd length. Let σi = (a1 a2 ... ak) and
σj = (b1 b2 ... bk). Consider the product of k transpositions given by

τ = (a1 b1)(a2 b2)...(ak bk)

We will show that τ commutes with σiσj, and hence τ will commute with σ, which
will be a contradiction. Observe that
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22. Let n be an odd integer, and let us consider the set of all n-cycles, which form a
conjugacy class in the symmetric group. Let σ be an n-cycle. So, it is an even per-
mutation, and its cycle type consists of distinct odd integers. So, it doesn’t commute
with any odd permutation, and hence this conjugacy class splits into two conjugacy
classes in An.

23. Let M be a maximal subgroup of a group G. Observe that M ≤ NG(M), and
hence either NG(M) = M or NG(M) = G.

Now, let M be subgroup of G that is not normal in G. We will show that the
number of non-identity elements of G that are contained in conjugates of M is at most
(|M | − 1)|G : M |. Consider the action of G on all subgroups of G by conjugation.
Under this action, the size of the orbit of M is

|G : NG(M)| = |G : M |

because M is not normal. Also, the number of non-identity elements in any conjugate
of M is |M | − 1. The bound is then obvious.

29. Let p be a prime, and suppose G is a group of order pα. We will show that G
contains a subgroup of order pβ, for every 1 ≤ β ≤ α. We will do so by induction on
α.

Clearly, the statement is trivial for α = 1. So, let α > 1, and assume that the
statement is true for all integers less than α. We know that G has a non-trivial center,
and hence let

|Z(G)| = pβ

where 1 ≤ β ≤ α.
We will consider two cases: first, suppose Z(G) = G. In that case, apply Cauchy’s

theorem to G (since G is abelian, we are using the abelian version of Cauchy) and
hence we get a subgroup of order p. Let it be N (clearly it is normal). Now, consider
the group G/N of order pα−1. By induction, G/N contains a subgroup of order pk, for
every 1 ≤ k ≤ α − 1. Take a subgroup K/N of G/N of order pk. Then, clearly, K is
a subgroup of G of order p1+k, where 1 ≤ k ≤ α− 1. So, the claim follows.

In the second case, suppose |Z(G)| = pβ, where β < α. Then, by induction, Z(G)
contains subgroups of order pk, for every 1 ≤ k ≤ β. Now, consider the group G/Z(G)
of order α− β. Again, by induction, this group contains a subgroup K/Z(G) of order
pk, for every 1 ≤ k ≤ α − β, and hence K is a subgroup of G of order pk+β. Again,
the claim follows.

31. Consider D2n, where n is even. We will show that the conjugacy classes of D2n

are:

{1}, {rk}, {r±1}, ..., {r±(k−1)}, {sr2b|b = 1, ..., k}{sr2b−1|b = 1, ..., k}
where n = 2k. From here, it will follows that the class equation for D2n is

2n = 2 + 2 + ...+ 2 + k + k

where in the above equation, there are k twos.
First, observe that the center is {1, rk}, and that explains the first two equivalence

classes. Now, let consider any element of the form rk1 , where 1 ≤ k1 ≤ n − 1, and
k1 6= k. Conjugating rk1 by any power of r will give k1. Now, if srk2 is any reflection,
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then

srk2rk1(srk2)−1 = srk2rk1r−k2s

= srk2s

= r−k2

and that explains the rest of the conjugacy classes of powers of r.
Now, let srk1 be any reflection. Conjugating this reflection by a rotation rk2 , we get

rk2srk1r−k2 = srk1−2k2

and so srk1 is conjugate to all reflections srk3 , where the parity of k3 is the same as
that of k1. This explains the last two conjugacy classes.

26. Automorphisms

In this section, we revisit automorphisms. We know that if G is a group, then
the set of automorphisms of G, denoted by Aut(G), also forms a group. Observe
that automorphisms are permutations of G, and hence they are a subgroup of SG.
Specifically, they are structure preserving permutations.

We now introduce the idea of an inner automorphism:

Theorem 26.1. Let G be a group, and let H � G. Let G act on H by conjugation,
and let π be the permutation representation. Then, for every g ∈ G, π(g) is an
automorphism of H. In particular, π is a homomorphism from G to Aut(H). The
kernel of π is CG(H). So, G/CG(H) is isomorphic to some subgroup of Aut(H).

Proof: First, for g ∈ G, us show that the map π(g) is in Aut(H). Clearly, π(g)
is a permutation of H. It remains to show that it is a homomorphism as well. But,
observe that for h1, h2 ∈ H, we have

π(g)(h1h2) = g(h1h2)g−1 = π(g)(h1)π(g)(h2)

and hence the first part of the claim is proven.
Now, let g ∈ G such that π(g) = 1, where 1 is the identity automorphism. Then,

we have that

ghg−1 = h

for all h ∈ H, and hence g ∈ CG(H). So, it follows that Ker(π) = CG(H), and
hence by the first isomorphism theorem, G/CG(H) is isomorphic to some subgroup of
Aut(H).

Respecting this theorem, if we let H = G, then we observe that π(g) is an auto-
morphism of G. This kind of an automorphism is called an inner automorphism of G,
and the set of inner automorphisms forms a subgroup of Aut(G).

This theorem leads to an important result:

Theorem 26.2. Suppose H is a subgroup of a group G. Consider the subgroup
NG(H) of H. Then, NG(H)/CG(H) is isomorphic to some subgroup of Aut(H).

Proof: We know that H is a normal subgroup of NG(H). By the previous theorem, if
we let NG(H) act on H via conjugation, then we see that NG(H)/CG(H) is isomorphic
to some subgroup of Aut(H).

If we put H = G above, then we see that

G/Z(G) ∼= Inn(G)
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Now, we define the notion of characteristic subgroups. If H ≤ G, we say that H is
characteristic in G, if every automorphism of G maps H to itself. We will prove some
properties of charateristic subgroups in the coming exercises.

Let’s look at the automorphism group of the cyclic group:

Theorem 26.3. Aut(Zn) is isomorphic to the multiplicative group (Z/nZ)×, which
has order φ(n).

Proof: Let σ ∈ Aut(Zn), where Zn = 〈x〉. We then know that σ(x) = xa, where
(a, n) = 1. So, consider the map

σ 7→ a

and we will show that this is an isomorphism. Clearly, this is a one-one and onto map.
To see that it is a homomorphism, observe that if σ1(x) = xa1 and σ2(x) = xa2 , then
we have σ1σ2(x) = xa1a2 , which means that

σ1σ2 7→ a1a2

and hence it is a homomorphism. This completes the proof.

Exercises on Page 137

1. In this exercise, we will show that for any group G, Inn(G) � Aut(G). So suppose
σ ∈ Inn(G) and suppose τ ∈ Aut(G). So, we know that for any x ∈ G, we have

σ(x) = gxg−1

for some g ∈ G. Now, we have

τστ−1(x) = τ(gτ−1(x)g−1) = τ(g)x[τ(g)]−1

and hence τστ−1 ∈ Inn(G), showing that Inn(G)�Aut(G). The quotient Aut(G)/Inn(G)
is called the outer automorphism group of G

2. Suppose G is an abelian group of order pq, where p and q are distinct primes. We
will show that G is cyclic. By Cauchy’s theorem, there are elements g1, g2 of order p
and q respectively. Because G is abelian, it follows that (g1g2)pq = 1. We claim that
|g1g2| = pq. Clearly, |g1g2| cannot be 1, and the only other possibilities are p, q and
pq. If the order is p, then we will have gp2 = 1, which would imply that p|q, which is a
contradiction. Similarly, the order cannot be q. Hence, the order is pq, and the group
is cyclic.

3. Consider an automorphism of D8. Since r has order 4, the only possible images
of r are r and r3. Similarly, the element s has atmost 4 possible images, which are
s, sr, sr2 and sr4. It thus follows that

|D8| ≤ 2 · 4 = 8

4. We will show that |Aut(Q8)| ≤ 24. We know that Q8 is generated by elements i
and j. So, under an automorphism, i and j must be mapped to a pair of generators.
There 12 pairs of generators. Hence, it follows that |Aut(D8)| ≤ 2 · 12 = 24.
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6. Let H be a characteristic subgroup of G. Let g ∈ G. Then, then map σg : G→ G
given by

σg(x) = gxg−1

is an inner automorphism of G. Since H is characteristic, it follows that for any h ∈ H,
ghg−1 ∈ H. Since g was arbitrary, it follows that H �G.

Now, we give an example of a normal subgroup that is not characteristic. Consider
V4 = {1, a, b, c}, and the automorphism σ sending 1 → 1, a → b, b → c and c → a.
Consider the normal subgroup {1, a}. It is easy to see that this subgroup is not
characteristic.

7. Suppose H is the unique subgroup of a given order in a group G. Let σ be any
automorphism of G. Then, σ(H) is also a subgroup of G of the same order. But, this
means that σ(H) = H, and hence H is characteristic.

8. Let G be a group with subgroups H and K with H ≤ K.
(a) Suppose H char K and K � G. We will show that H � G. This is a kind of

”transitivity” property of normal groups.
Let g ∈ G. Since K is normal in G, let G act on K by conjugation. Let π be the

permutation representation. Then, for any g ∈ G, π(g) is in Aut(K). Since H char K,
it follows that π(g)(H) = H, and hence for any h ∈ H, ghg−1 ∈ H. Since g was
arbitrary, it follows that H �G.

(b) Suppose H char K and K char G. We will show that H char G. Let φ ∈
Aut(G). Then, we know that φ(K) = K. So, φ restricted to K is an automorphism
of K. Since H is characteristic in K, we then have φ(H) = H. This shows that
H char G. So, being characteristic is a transitive property of groups.

Now, it is easy to see that V4 is characterisitc in A4, because any automorphism
of A4 must map elements of order 2 to elements of order 2. Also, A4 is character-
istic in S4, because even permutations must be mapped to even permutations under
automorphisms. Hence, it follows that V4 is characteristic in S4.

9. Here, we will show that every subgroup of 〈r〉 is normal in D2n. Let φ be any
automorphism of D2n. Then, r must be mapped to a generator of 〈r〉, and hence it
clearly follows that 〈r〉 is characteristic in D2n. Now, any subgroup of 〈r〉 is normal in
〈r〉, because this group is abelian. Hence, it follows that any subgroup of 〈r〉 is normal
in D2n.

12. Let G be a group of order 3825, and let H be a normal subgroup of order 17.
Consider the action of G on H by conjugation, and let π be the permutation rep-

resentation. Then, π : G → Aut(H), and since |H| = 17, we see that Aut(H) ∼=
(Z/17Z)×. Now, observe that kerπ = CG(H), and hence G/CG(H) is isomorphic to
some subgroup of (Z/17Z)×. The latter group has order 16, and the only choice is
G/CG(H) ∼= 1, and hence CG(H) = G, implying that H ≤ Z(G).

13. Let G be a group of order 203, and suppose H is a normal subgroup of order 7.
By a similar argument as in the previous problem, we see that G/CG(H) is isomorphic
to some subgroup of (Z/7Z)×, and since the latter group has order 6, it follows that
CG(H) = G, showing that H ≤ Z(G).

Now, G/H ∼= Z29, and since H ≤ Z(G), it follows that G is abelian (very similar to
the fact that if G/Z(G) is cyclic, then G is abelian).
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27. Sylow’s Theorems

In this section, we will prove and use Sylow’s theorems, which are arguably some
of the most important theorems in group theory. Let’s begin with some definitions.

A group G of order pa, for some a ∈ N, is called a p-group. Subgroups of G which
are p-groups are called p-subgroups.

If |G| = pαm, where p does not divide m, then a subgroup Q of G of order pα is
called a Sylow p-subgroup of G. The set of Sylow p subgroups is denoted by Sylp(G),
and the number of Sylow p-subgroups of G is denoted by np(G).

Let’s now state the Sylow theorems:

Theorem 27.1. Let G be a finite group of order pαm, where p does not divide m.

(1) Sylow p-subgroups of G exist, i.e the set Sylp(G) is non-empty.
(2) Let P ∈ Sylp(G). If Q is any p-subgroup of G, then Q is contained inside some

conjugate of P , i.e Q ≤ gPg−1 for some g ∈ G. Hence, all Sylow p-subgroups
are conjugates of each other.

(3) If np is the cardinality of Sylp(G), then we have that

np = 1(mod p)

Further, np is the index of the normalizer NG(P ), and hence it follows that

n|m

Proof: We will prove (1) by induction on the order of G. If |G| = 1, then the
statement is trivial. So, let |G| = pαm, where p does not divide m, and assume that
the statement is true for all groups of order less than |G|.

We consider two cases: first, suppose p divides |Z(G)|. Since Z(G) is abelian, we
apply Cauchy’s theorem for abelian groups to Z(G), and hence Z(G) has a subgroup
of order p. Let this subgroup be N . Clearly, N is a normal subgroup of G. Consider
the quotient group G/N , which has order pα−1m. By induction, this quotient group
has a subgroup, say P/N , of order pα−1. It follows that N ≤ P ≤ G is a subgroup of
order pα, and hence it is a Sylow-p subgroup of G.

In the second case, assume that p does not divide Z(G). Let the class equation of
G be

|G| = |Z(G)|+
n∑
i=1

|G : CG(gi)|

where {g1, ..., gn} are the representatives of distinct conjugacy classes, none of which
is in Z(G). So, it must be true that p does not divide atleast one of |G : CG(gj)|. Let
H = CG(gj). It follows that |H| = pαk, where p does not divide k. Clearly, H < G,
and by induction, H has a subgroup of order pα. So, G also has a subgroup of order
pα, and this proves (1).

Now, let P be a Sylow-p subgroup of G, and let S = {P1, ..., Pr} be the set of all
conjugates of P . Let Q be a p-subgroup of G. Then, Q acts on S via conjugation. Let

S = O1 ∪ ... ∪Os

be the orbits of S under this action. Let P1, ..., Ps be the representatives of these
orbits. Then, we have that

|Oi| = |Q : NQ(Pi)| = |Q : Q ∩NG(Pi)| = |Q : Q ∩ Pi|
where we used the fact that Q∩NG(Pi) = Q∩Pi, which we will prove after the proof
of this theorem.
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Now, we will show that r = 1(mod p). To prove this, put Q = P1. Then,

|O1| = 1

and for 2 ≤ i ≤ s, we have

|Oi| = |P1 : P1 ∩ Pi|

Moreover, observe that Pi 6= P1 for 2 ≤ i ≤ s, and hence it follows that p divides |Oi|
(because each Pi is a p subgroup) for 2 ≤ i ≤ s. So,

r = |O1|+ ...+ |Os| = 1(mod p)

Now, let us prove (2). Let Q be a p-subgroup of G. Suppose, for the sake of
contradiction, Q � gPg−1 for any g ∈ G. We have that |Oi| = |Q : Q ∩ Pi|, and since
Q is not contained in any Pi, it follows that p divides |Oi|. However, this would imply
that r = 0(mod p), which is a contradiction. Hence, Q ≤ gPg−1, for some g ∈ G.

Finally, (2) shows that all Sylow p-subgroups are conjugates of each other. This
means that the action of G on S creates one orbit. So, it follows that

np = |G : NG(P )|

for any P ∈ Sylp(G). Since (np, p) = 1, it follows that np|m.
We now prove the lemma that we used:

Lemma: If P ∈ Sylp(G) and Q is any p-subgroup of G, then Q ∩ NG(P ) = Q ∩ P .
Proof: One inclusion is clear. So, we prove that Q ∩ NG(P ) ⊆ Q ∩ P . Let H =
Q ∩ NG(P ). Consider the group PH (it is a group because H ≤ NG(P )). The order
of this group is

|PH| = |P ||H|
|P ∩H|

which means the order of the group is a power of p. Also, P ≤ PH, implying that
|PH| ≥ pα. But, α is the largest possible power of a p-group, and hence we see that
|PH| = pα. So, PH = P , and hence H ≤ P , implying that H ≤ Q ∩ P . This
completes the proof.

A useful corollary follows from this:

Theorem 27.2. Let P be a Sylow-p subgroup of G. The following are equivalent:

(1) P is the unique Sylow-p subgroup of G.
(2) P is normal in G.
(3) P is characteristic in G.
(4) All subgroups generated by elements of p-power order are p-groups.

Proof: First, if (1) holds, then it clearly follows that P �G, because for any g ∈ G,
gPg−1 ∈ Sylp(G). (1) follows from (2) in a similar way. If (3) holds, then (2) holds.
If (2) holds, then (1) holds, and clearly it will follow that (3) also holds.

Now, suppose (1) holds. Let X be the set of all elements of p-power order. For any
x ∈ X, observe that 〈x〉 is a p-subgroup, and hence 〈x〉 is contained in some conjugate
of P , and hence 〈x〉 is contained in P . So, 〈X〉 ≤ P , and hence 〈X〉 is a p-group, and
hence (4) follows. The converse can be easily proven.

Let’s now do some applications of Sylow’s theorems, which help us to restrict the
structure of some groups to a great extent:
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Groups of order pq, where p < q and p does not divide q − 1: Let G be such a
group. Let Q be a Sylow-q subgroup. Then, nq divides p, and nq = 1(mod q). So, the
only choice is nq = 1, and hence Q is normal. Now, let P be a Sylow-p subgroup, and
again np = 1mod p. By the given condition, the only choice is np = 1, so that P is
also normal. Let P = 〈x〉 and let Q = 〈y〉. The idea is to show that x and y commute,
and hence it will follows that |xy| = pq, proving that G ∼= Zpq.

Consider CG(P ). Since P �G, we know that G/CG(P ) is isomorphic to a subgroup
of Aut(P ), and |Aut(P )| = p−1. So, it follows that the only possible order of G/CG(P )
is 1, and hence CG(P ) = G, showing that xy = yx. Hence, the proof is complete.

Groups of order 12: Here, consider n3. We know that n3 = 1 mod 3, and also n3|4.
So, either n3 = 1 or n3 = 4. Here, we show that if n3 = 4 (i.e no Sylow-3 subgroup is
normal), then G ∼= A4.

Let G act on the set of Sylow-3 subgroups by conjugation. Since there are four of
them, we see that the permutation representation is π : G→ S4. The kernel K of π is
the intersection

Kerπ =
⋂

P∈Syl3(G)

NG(P )

Now, since n3 is the index |G : NG(P )| for any P ∈ Syl3(G), we see that |NG(P )| = 3
for all P ∈ Syl3(G). However, since |P | = 3 for any such P , it follows that P = NG(P )
for all P ∈ Syl3(G). So,

Kerπ =
⋂

P∈Syl3(G)

NG(P ) =
⋂

P∈Syl3(G)

P = 1

because distinct 3-subgroups must intersect trivially. So, G is isomorphic to some
subgroup of S4.

Now each P ∈ Syl3(G) contains two elements of order 3, and hence G contains
4 × 2 = 8 elements of order 3. Consider π(G), to which G is isomorphic. Now, π(G)
contains 8 elements of order 3, and we know that all these elements are contained in
A4. So, π(G) intersects with A4 on atleast 8 elements. Since |π(G)| = |A4| = 12, it
follows that π(G) = A4, and hence G ∼= A4.

Groups of order p2q, where p and q are distinct primes: Let G be such a group.
We consider two cases.

First, suppose p > q. Then, np = 1, and hence if P ∈ Sylp(G), then P �G.
Next, suppose p < q. Then, nq = 1( mod q) and nq|p2. If nq = 1, then Q�G, where

Q ∈ Sylq(G). The only other choice is nq = p2. In that case, we see that q|p2− 1, and
hence the only choice is q = p− 1, which forces p = 2 and q = 3, and so |G| = 12.

28. Exercises on Page 146

4. First consider D12. Any Sylow-2 subgroup is either cyclic or isomorphic to V4.
Clearly, D12 does not contain any element of order 4, and hence the only Sylow-2
subgroups are isomorphic to V4. It is easy to see that one such group is {1, r3, s, sr3}.
All other Sylow-2 subgroups are conjugates of this. Moreover, observe that any Sylow-
2 subgroup cannot be normal because D2n is not abelian, and hence n2 = 3. So, all
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Sylow-2 subgroups are:

{1, r3, s, sr3}
{1, r3, sr4, sr}
{1, r3, sr2, sr5}

Now, any Sylow-3 subgroup must be cyclic. Hence, the only Sylow-3 subgroup is

{1, r2, r4}

5. Consider D2n, and let p be an odd prime. Let P ∈ Sylp(D2n). We will show that
P is cyclic and normal.

Suppose P ∈ Sylp(D2n). Observe that P cannot contain any reflection, because
reflections have order 2, and p is an odd prime. So, it follows that P ≤ 〈r〉. So, P is
cyclic. Moreover, observe that 〈r〉 has a unique subgroup of order pα, where pα is the
largest power of p dividing n, and hence by this uniqueness, P must be normal.

9. It is easy to see that |SL2(F3)| = 24, and hence any Sylow-3 subgroup must be
cyclic. Also, n3 (the number of Sylow-3 subgroups) can only be 1 or 4. Observe that
the following matrix has order 3: (

1 1
0 1

)
and hence this is one Sylow-3 subgroup. Explicitly, it is{(

1 0
0 1

)
,

(
1 1
0 1

)(
1 2
0 1

)}
Similarly, observe that the following matrix also has order 3:(

1 0
1 1

)
and hence its corresponding Sylow-3 subgroup is{(

1 0
0 1

)
,

(
1 0
1 1

)(
1 0
2 1

)}
and it follows that n4 = 4. It is not hard to see that the other Sylow-3 subgroups are:{(

1 0
0 1

)
,

(
0 1
2 2

)(
2 2
1 0

)}
and {(

1 0
0 1

)
,

(
0 2
1 2

)(
2 1
2 0

)}
and these are all the Sylow-3 subgroups.

10. Consider the subgroup G of SL2(F3) given by

G =

〈(
0 −1
1 0

)
,

(
1 1
1 −1

)〉
Also, we know that n2 ∈ {1, 3}.
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11. Suppose G = SL2(F3). Here, we will find Z(G), and show that G/Z(G) ∼= A4.
First, we have that |GL2(F3)| = (32 − 1)(32 − 3) = 8 · 6 = 48 and also we have

|GL2(F3) : SL2(F3)| = 2

and hence |SL2(F3)| = 24. Now, by a previous exercise, we know that

SL2(F3) =

〈(
1 1
0 1

)
,

(
1 0
1 1

)〉
Now it is easy to see that x ∈ Z(G) if and only if it commutes with the two matrices(

1 1
0 1

)
,

(
1 0
1 1

)
Now, suppose x ∈ Z(G) such that

x =

(
a b
c d

)
So, we have the two equations(

a b
c d

)(
1 1
0 1

)
=

(
1 1
0 1

)(
a b
c d

)
(
a b
c d

)(
1 0
1 1

)
=

(
1 0
1 1

)(
a b
c d

)
and the above two equations imply that b = c = 0 and a = d, and hence x is of the
form

x =

(
a 0
0 a

)
where a 6= 0. So, it follows that

Z(G) =

〈(
2 0
0 2

)〉
We will now show that G/Z(G) ∼= A4. To show this, we will show that any Sylow-3

subgroup of G/Z(G) is not normal, and by facts about groups of order 12, this will
prove that G/Z(G) ∼= A4. To show that any Sylow-3 subgroup of G/Z(G) is not
normal, it is enough to show that there are atleast two Sylow-3 subgroups. Now,
subgroups of G/Z(G) are in bijection with subgroups of G containing Z(G). So, it is
enough to show that there are atleast two subgroups of order 6 in G which contain
Z(G) (it will then follow that there are atleast two Sylow-3 subgroups in G/Z(G)).

Now, consider the following subgroups of G:

H1 =

〈(
1 1
0 1

)〉
=

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 2
0 1

)}
H2 =

〈(
1 0
1 1

)〉
=

{(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)}

Since Z(G) is normal in G, consider the subgroups H1Z(G) and H2Z(G) (these are
groups because Z(G) is normal). Also, it is easy to see that the order of both of these
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groups is 6. We will show that H1Z(G) 6= H2Z(G). To show this, we have

H1Z(G) =

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 2
0 1

)
,

(
2 0
0 2

)
,

(
2 2
0 2

)
,

(
2 1
0 2

)}
H2Z(G) =

{(
1 0
0 1

)
,

(
1 0
1 1

)
,

(
1 0
2 1

)
,

(
2 0
0 2

)
,

(
2 0
2 2

)
,

(
2 0
1 2

)}
and obviously these are two distinct subgroups of order 6 containing Z(G).

So, this proves that G/Z(G) ∼= A4.

13. Let G be a group of order 56.

29. Direct Products and the Structure Theorem

Let G1, ..., Gn be arbitrary groups. We define the direct product of these groups as

G1 ×G2 × ...×Gn

where the operation of the group is done componentwise. This definition may also be
extended to any collection of groups (see exercises).

A simple fact follows from the definition:

|G1 ×G2 × ...×Gn| = |G1||G2|...|Gn|
and if one of the groups is infinite, so is the direct product.

Next, we will prove how direct products have copies of each group occuring in the
product:

Theorem 29.1. Let G = G1 × ...×Gn.

(1) Let 1 ≤ i ≤ n. Then,

Gi
∼= {(1, 1, ..., gi, 1, ..., 1)| gi ∈ Gi}

So, G has a copy that is isomorphic to Gi. If we denote this subgroup of G by
Gi, then Gi �G, and

G/Gi
∼= G1 × ...×Gi−1 ×Gi+1 × ...×Gn

(2) For each i, we define the projection map πi : G→ Gi as

πi[(g1, ..., gi, ..., gn)] = gi

πi is a surjective homomorphism and

Ker(φ) ∼= G/Gi

(3) If x ∈ Gi and y ∈ Gj for some i 6= j, then

xy = yx

Proof: It is clear that Gi is isomorphic to {(1, 1, ..., gi, 1, ..., 1)| gi ∈ Gi}, and from
now on let us denote this isomorphic copy as Gi. Let us now show that Gi � G.
Consider the map (g1, ..., gi, ..., gn) 7→ (g1, ..., gi−1, gi+1, ..., gn). This map is clearly a
surjective homomorphism. Its kernel is Gi, and hence Gi�G. By the first isomorphism
theorem, we have

G/Gi
∼= G1 × ...×Gi−1 ×Gi+1 × ...×Gn

Proving (2) is very similar. It is easy to see that the projection map is a surjective
homomorphism. The kernel of the map is the set {(g1, ..., gi−1, 1, gi+1, ..., gn)}, and this
is clearly isomorphic to G/Gi.

Statement (3) is trivial.



56 SIDDHANT CHAUDHARY

Let’s look at the following examples:

(1) Suppose V is a group such that vp = 1 for all v ∈ V , where p is a prime. If
|V | = pn, for some n ∈ N, then V is called the elementary abelian group of
order pn. Observe that, if p is a prime, then

G = Zp × Zp × ...× Zp
is an elementary abelian group of order n (there are n factors in the product).

(2) Let p be a prime. We will show that the elementary abelian group of order p2,
denoted by Ep2 , has exactly p + 1 subgroups of order p. Clearly, a subgroup
of order p must be cyclic, i.e it must be generated by some element of Ep2 .
Clearly, all elements have order p, and hence they generate subgroups of order
p. Also, any two subgroups of order p are either equal or intersect trivially.
In each such subgroup, there are p − 1 possible generators. Hence, the p2 − 1
elements are partitioned into sets containing p − 1 elements. So, the total
number of subgoups is

p2 − 1

p− 1
= p+ 1

30. Exercises on Page 156

1. We will show that

Z(G1 × ...×Gn) = Z(G1)× ...× Z(Gn)

If x ∈ Z(G1 × ...×Gn), and if x = (x1, ..., xn), then observe that xi ∈ Z(Gi) for each
i, and hence x ∈ Z(G1)× ...×Z(Gn). Conversely, if (x1, ..., xn) ∈ Z(G1)× ...×Z(Gn),
then it is easy to see that x = (x1, ..., xn) ∈ Z(G1 × ...×Gn). Hence equality follows,
and so a direct product is abelian if and only if each factor is abelian.

4. Suppose A and B are finite groups, and let p be a prime. We will show that there
is a bijection between Sylp(A× B) and the set of all P ×Q, where P ∈ Sylp(A) and
Q ∈ Sylp(B). This will prove that

np(A×B) = np(A)np(B)

First, if P ∈ Sylp(A) and Q ∈ Sylp(B), then P × Q ∈ Sylp(A × B), which is a
trivial fact. Conversely, suppose P ′ ∈ Sylp(A × B). By Sylow’s theorem, A contains
a Sylow-p subgroup, say PA, and similarly let PB be a Sylow-p subgroup of B. Then,
PA × PB ∈ Sylp(A×B), and hence P ′ and PA × PB are conjugates. So,

P ′ = (hPAh
−1)× (kPBk

−1)

for some (h, k) ∈ A×B, and hence P ′ = P ×Q. This completes the proof.
This proof easily extends to finite direct product of finite groups.

5. Consider Q8×Z4. Each subgroup of each factor is normal, but still we will exhibit
a subgroup which is not normal. Consider the cyclic subgroup 〈(i, 1)〉, which explicitly
is 〈(i, 1)〉 = {(1, 0), (i, 1), (−1, 2), (−i, 3)} Now, we have

(j, 1)(i, 1)(j, 1)−1 = (jij−1, 1) = (−i, 1)

and hence this subgroup is not normal.

6. Here, we will show that all subgroups of Q8×E2n are normal. Just to be clear, we
identify Q× E2n with Q× Z2 × Z2 × ...× Z2, where the factor Z2 appears n times.
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7. Suppose G1, ..., Gn are groups, and let π ∈ Sn. Consider the map

φπ : G1 × ...×Gn → Gπ−1(1) × ...×Gπ−1(n)

given by

φπ(g1, ..., gn) = (gπ−1(1), ..., gπ−1(n))

Let us show that φπ is an isomorphism (and hence changing the order of factors is a
direct product does not change the isomorphism type).

First, let us show that φπ is a homomorphism. To see this, if (g1, ..., gn) and
(h1, ..., hn) ∈ G1 × ...×Gn, then we have

φπ(g1h1, ..., gnhn) = (gπ−1(1)hπ−1(1), ...., gπ−1(n)hπ−1(n))

φπ(g1, ..., gn)φπ(h1, ..., hn)

Now, it is easy to see that Kerφπ = (1, ..., 1), which implies that φπ is one-one. Finally,
that φπ is onto is trivial. So, it is an isomorphism.
Remark: Observe that, we used π−1 in the indices. There would be no harm to use

π either, but this usage will be justified in the next problem. The bottom-line is that
we are just reordering factors in the direct product.

8. Suppose G1 = G2 = ... = Gn, and let G = G1 × ... × Gn. Let π ∈ Sn, and again
consider φπ as in the previous exercise.

Clearly, φπ is an automorphism of G, and hence φπ ∈ Aut(G). Next, consider the
map π 7→ φπ from Sn to Aut(G). We will show that this is an injective homomorphism.

11. Let p be a prime and let n ∈ Z+. Here we will find the number of subgroups of
order p in the group Epn .

Any subgroup of order p must be cyclic. Also, any non-identity element of such a
subgroup is a generator of the subgroup. So, the non-identity elements of Epn , which
are pn − 1 in number, are split into classes each of size p − 1, which give rise to the
same subgroup. So, the total number of subgroups of order p is

pn − 1

p− 1

16. In this exercise, we will prove some statements about arbitrary direct products.
Let I be any indexing set, and let Gα be a group for every α. Let

∏
Gα be the direct

product of these groups.
First, we show that the arbitrary direct product contains an isomorphic copy for

every index. To show this, let β be fixed, and consider the subset Gβ ×
∏

α 6=β{1α},
which is evidently a subgroup of the direct product, and the map gβ 7→ c, where the
map c ∈

∏
Gα satisfies c(β) = gβ and c(α) = 1α for α 6= β, gives an isomorphism

Gβ
∼= Gβ ×

∏
α 6=β{1α} (one can say all of this by saying that the projection onto the

βth factor is an isomorphism). Also, it is not difficult to see that each factor is infact
a normal subgroup, and the isomorphism∏

Gα/Gβ
∼=
∏
α 6=β

Gα

holds.
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17. Now, we will look at the restricted direct product. Again, let I be any indexing
set. The restricted direct product or direct sum of the family of groups is the subset
of
∏
Gα where all but finitely many coordinates are the identity. It is clear that the

direct sum/restricted direct product is a subgroup of the direct product. It is also
easy to see that the direct sum is a normal subgroup of the direct product.

Fundamental Theorem of Finitely Generated Groups. : We will not prove this
theorem here, but we will see its consequences.

Theorem 30.1. Suppose G is a finitely generated abelian group. Then,

G ∼= Zr × Zn1 × Zn2 × ...× Zns
where r, n1, ..., ns are integers satisfying ni|ni−1 for each 2 ≤ i ≤ s. Also, this expres-
sion is unique.

The integer r above is called the free rank of the group G and the integers n1, ..., ns
are called the invariant factors of G. Clearly, a finitely generated abelian group is
finite if and only if its free rank is 0. Also, if G is finite, then its order will be the
product of its invariant factors.

Now, finite abelian groups are clearly finitely generated. Hence, using this theorem,
we can list all finite abelian groups of a given order. So, suppose G is a finite abelian
group of order n. Then, if n1, ..., ns are its invariant factors, then n1...ns = n, and since
ni|ni−1, it is clear that each prime divisor of n divides n1. So we have the following
theorem:

Theorem 30.2. If n is a product of distinct primes (i.e n is square free), then upto
isomorphism the only finite abelian group of order n is Zn, the cyclic group.

So as we can observe, the decomposition of an abelian group of order n strictly
depends on the factorisation of n.

Next, we will state the Primary Decomposition Theorem for finite abelian groups,
which we will prove later. This theorem is equivalent to the fundamental theorem of
finitely generated abelian groups for finite abelian groups. The theorem is as follows:

Theorem 30.3. Suppose G is a finite abelian group of order n, where n = pα1
1 ...p

αk
k .

Then

(1) G ∼= A1 × ... × Ak where each |Ai| = pαii (also observe that each Ai(the iso-
morphic copy) is a Sylow-pi subgroup of G, so in other words G is the direct
product of its Sylow subgroups).

(2) For each A ∈ {A1, ..., Ak} with |A| = pα, we have

A ∼= Zpβ1 × ...× Zpβt
where t and βi depend on i.

(3) The decomposition in (1) and (2) is unique.

The numbers pβi above are called the elementary divisors of G. Note that these are
different from the invariant factors of G.

So, respecting the above theorem, it is enough to finite all finite abelian groups of
prime power order. Suppose |A| = pα, for some α. Then we can easily see that

A ∼= Zpβ1 × ...× Zpβt
where β1 + ... + βt = α, and also βi ≥ βi+1 ≥ 1 for each i. So, finite abelian groups
of prime power order are in one-to-one correspondence with partitions of α ordered in
descending order.
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So, if n = pα1
1 ...p

αk
k , and qi is the number of (non-isomorphic) finite abelian groups

of order piαi , then the number of finite abelian groups of order n is q1...qk.
In the exercises, we will see how to find elementary divisors from invariant factors

and vice-versa. First, let us prove the following simple theorem:

Theorem 30.4. Let m,n ∈ Z+.

(1) Zm × Zn ∼= Zmn if and only if (m,n) = 1.
(2) If n = pα1

1 ...p
αk
k then

Zn ∼= Zpα11
× ...× Zpαkk

Proof: (2) follows from (1) easily by induction. So, we will only prove (1).
First, suppose Zmn ∼= Zm ×Zn. This means that Zm ×Zn is cyclic, and let (x, y) ∈

Zm × Zn be a generator. The order of the element (x, y) is [m,n], where [m,n] is the
lcm. This means that [m,n] = mn, and hence (m,n) = 1.

Conversely, suppose (m,n) = 1, and let x be a generator of Zm and let y be a
generator of Zn. The order of (x, y) is mn, and hence Zm × Zn ∼= Zmn.

Finally, we have two important definitions. If G is a finite abelian group with
invariant factors (n1, .., nt), then t is called the rank of G. If G is any group, the
exponent is the smallest positive integer n such that xn = 1 for all x ∈ G (if no such
number exists then exponent is ∞).

31. Exercises on Page 165

1. In this exercise, we will give the number of non-isomorphic abelian groups of the
given order. In the following, let G be an abelian group of the given order. Suppose
n = pα1

1 ..p
αk
k . Then, by the primary decomposition theorem, it is easy to see that the

number of non-isomorphic groups G is equal to P (α1)...P (αk), where P (t) represents
the number of partitions of t.

(a) Order 100. We have 100 = 22 · 52, and the number of partitions of 2 is 2. So,
there are 4 non-isomorphic possibilities for G.

(b) Order 576. We have that 576 = 26 · 32. The number of partitions of 6 is 11, and
the number of partitions of 2 is 2. So, there are 22 non-isomorphic possibilities for G.

2. and 3. In these two exercises combined, we will see how to find the invariant
factors as well as the elementary divisors. Here, we only consider abelian groups, so
there is no ambiguity.

(a) Order 270. First, we will find the elementary divisors, because they are easier
to find. We have that 270 = 2 ·5 ·33. So, we see that G ∼= Z2×B×Z5, where |B| = 33.
There are three partitions of 3, and hence there are three possibilities for B, which are
Z27, Z9 × Z3 and Z3 × Z3 × Z3. So, G has 3 possibilities, which are

Z2 × Z27 × Z5

Z2 × Z9 × Z3 × Z5

Z2 × Z3 × Z3 × Z3 × Z5

The invariant factors are (210), (90, 3) and (30, 3, 3).
(b) Order 9801. We repeat the method. We have 9801 = 34 × 112. The number of

partitions of 4 is 5, and the number of partitions of 2 is 2. So, there are 10 choices of
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G, which are

Z81 × Z121

Z81 × Z11 × Z11

Z27 × Z3 × Z121

Z27 × Z3 × Z11 × Z11

Z9 × Z9 × Z121

Z9 × Z9 × Z11 × Z11

Z9 × Z3 × Z3 × Z121

Z9 × Z3 × Z3 × Z11 × Z11

Z3 × Z3 × Z3 × Z3 × Z121

Z3 × Z3 × Z3 × Z3 × Z11 × Z11

The corresponding invariant factors are: (9801), (891, 11), (3267, 3), (297, 33), (1089, 9),
(99, 99), (1089, 3, 3), (99, 33, 3), (363, 3, 3, 3), (33, 33, 3, 3)

Using the Fundamental theorem and Primary Decomposition theorem, we can also
find the elementary divisors from invariant factors in a very similar fashion. This
shows the power of these two theorems.

4. In this exercise, we will see how to determine whether direct products of cyclic
groups are isomorphic. We will do only one part.

Here, {a1, ..., an} denotes Za1 × ...× Zan .
(c) Here, we are given the groups {52 ·72, 32 ·5 ·7}, {32 ·52 ·7, 5 ·72}, {3 ·52, 72, 3 ·5 ·7},
{52 · 7, 32 · 5, 72}.

We will use the fact that two finite abelian groups are isomorphic if and only if they
have the same set of elementary divisors. The given groups are

Z52·72 × Z32·5·7 ∼= Z32 × Z52 × Z5 × Z72 × Z7

Z32·52·7 × Z5·72 ∼= Z32 × Z52 × Z5 × Z72 × Z7

Z3·52 × Z72 × Z3·5·7 ∼= Z3 × Z3 × Z52 × Z5 × Z72 × Z7

Z52·7 × Z32·5 × Z72
∼= Z32 × Z52 × Z5 × Z72 × Z7

And hence once easily sees that the first, second and third groups are isomorphic to
each other.

The idea here was to split each cyclic group into primes, and look at the elementary
divisors.

5. Let G be a finite abelian group of type (n1, ..., nt). We will show that G contains
an element of order m if and only if m|n1. We write G as

G ∼= Zn1 × ...× Znt
Let (a1, ..., at) ∈ G. Clearly, the order of this element is the lcm of the orders of ai in
Zni . Moreover, each of these orders divide n1, and hence it follows that if the order of
this element is m, then m|n1.

Conversely, if m|n1, then there is an element a1 of order 1 in Zn1 , and hence the
element (a1, 1, ..., 1) has order m in G. This proves the claim.

From this, it is easy to conclude that the exponent of G is n1.
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9. Let A = Z60×Z45×Z12×Z36. We will find the number of elements of order 2 and
the number of subgroups of index 2.

First, we rewrite G in terms of its elementary divisors:

G ∼= Z22 × Z22 × Z22 ××Z32 × Z32 × Z3 × Z3 × Z5 × Z5

Now, any subgroup of G may be written in terms of its elementary divisors as well.
Any subgroup

Recognition Theorems: Now, we will see how to recognize direct products. Let’s
begin with some definitions. Let x, y ∈ G. Define

[x, y] = x−1y−1xy

to be the commutator of x and y. Define G′ to be the subgroup of G generated by all
commutators of elements of G.

Intuitively, the commutator sort of approximates how much the elements x and y
commute. This is justified by the following:

Theorem 31.1. Let G be a group, and let x, y ∈ G and H ≤ G. Then

(1) xy = yx[x, y]
(2) H �G if and only if [H,G] ≤ H.
(3) Let σ ∈ Aut(G). Then, [σ(x), σ(y)] = σ([x, y]). G′ char G and G/G′ is abelian.
(4) G/G′ is the largest abelian quotient of G in the sense if H � G and G/H is

abelian, then G′ ≤ H. Conversely, if G′ ≤ H, then H is normal and G/H is
abelian.

(1) is immediate from the definition. To prove (2), suppose H �G. Let x ∈ H and
y ∈ G. Then, we see that [x, y] = x−1y−1xy ∈ H, and hence [H,G] ≤ H. Conversely, if
[H,G] ≤ H, then it follows that for any y ∈ G and x ∈ H, we have that x−1y−1xy ∈ H,
and hence H �G.

Now, suppose σ is an automorphism. Then, we have

[σ(x), σ(y)] = σ(x−1)σ(y−1)σ(x)σ(y) = σ(x−1y−1xy) = σ[x, y]

which proves the formula. Next, we will show that G′ is characteristic. To show this,
it is enough to show that for any x, y ∈ G, σ[x, y] ∈ G′. But this is clear from the fact
that σ[x, y] = [σ(x), σ(y)], and this proves the claim.

Next, let us show that G/G′ is abelian. Suppose x, y ∈ G. Then, we see that
x−1y−1xy ∈ G′, and hence xyG′ = yxG′, so that G/G′ is abelian.

Next, we will prove (4). Suppose H � G and G/H is abelian. It then follows that
(xy)H = (yx)H for all x, y ∈ G, and hence [x, y] ∈ H. This means that G′ ≤ H.
Conversely, suppose G′ ≤ H. Now, since G/G′ is abelian, it follows that

H/G′ �G/G′

and hence H �G by the fourth isomorphism theorem. Moreover, we have

(G/G′)/(H/G′) ∼= G/H

and hence G/H is abelian.
Next, we have a useful result:

Theorem 31.2. Suppose H,K are subgroups of G. Consider an element of HK. The
number of ways of writing this element as a product hk, where h ∈ H and k ∈ K is
|H ∩K|.
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Proof: Suppose x ∈ HK. Then, we x = hk for some h ∈ H and k ∈ K. Now, for
every element y ∈ H ∩K, we can write

x = hk = (hy−1)(yk)

so this gives us atleast |H ∩ K| ways of writing x as a product. To show that there
are exactly |H ∩K| ways, observe that if

hk = h1k1

then h1−1h = k1k
−1 = y so that y ∈ |H ∩K|. This proves the claim.

We will now look at the recognition theorem:

Theorem 31.3. Suppose G is a group with subgroups H and K such that

(1) H and K are normal.
(2) H ∩K = 1

then

HK ∼= H ×K

Proof: Clearly, we know that HK is a subgroup. Consider the map

ϕ : HK → H ×K

given by

hk 7→ (h, k)

This is clearly an onto map. It is one-one because H∩K = 1, and hence every element
can be written in exactly one way as a product. So, this map is a bijection.

Finally, we show that it is a homomorphism. To see this, we first observe that for
h1k1 and h2k2 in HK, we have

h1k1h2k2 = h1(k1h2k
−1
1 )k1k2 = h1h2(h−1

2 k1h2)k2

and hence since H ∩ K = 1, we have k1h2k
−1 = h2, which means that h2k1 = k1h2.

So, we have h1k1h2k2 = h1h2k1k2 and hence

ϕ(h1k1h2k2) = (h1h2, k1k2)

showing that ϕ is a homomorphism. This completes the proof.
Note: We can infact show that every element of H commutes with every element of

K by a similar argument.
For such subgroups H and K, we define HK to be the internal direct product and

H ×K to be the external direct product. The above theorem shows the this is only a
matter of notation.

32. Exercises on Page 173

33. Semi-Direct Producst

In the case of direct products, note that H and K were both normal in G, and only
then were we able to relate HK to H ×K. We can get rid of the requirement that K
is normal, and this leads us to the notion of semi-direct products.

First, suppose G is a group with H � G and K ≤ G (we don’t know about the
normality of K), such that H ∩ K = 1. Then, the there is still a bijection between
HK and H ×K. Also, as we did before, we have

h1k1h2k2 = h1(k1h2k
−1
1 )k1k2 = h1(k1 · h2)k1k2
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where K acts on H via conjugation, and hence we have a map π : K → Aut(H). Note
that if we know π apriori, then we can drop the reference to G whatsover, and we can
just talk in terms of H, K and π. This is the exact idea of as given below:

Theorem 33.1. Let H and K be groups, and let π : K → Aut(H) be a homomor-
phism (so it induces a group action of K on H). Let · denote this left action. Define G
to be the set of ordered pairs (h, k) with h ∈ H and k ∈ K, and define multiplication
in G by

(h1, k1)(h2, k2) = (h1k1 · h2, k1k2)

Then, the following are true:

(1) G is a group of order |H||K|.
(2) G contains isomorphic copies of H and K. Denote the isomorphic copy of H

in G by H. Then, H �G.
(3) H ∩K = 1, where H and K are the isomorphic copies.

Before proving the claim, we denote the group G by H o K, and call this the
semi-direct product.
Proof: First, let’s prove that G is a group. The identity element is (1, 1), because

for any (h, k) we have

(1, 1)(h, k) = (π(1)(h), k) = (h, k)

and also

(h, k)(1, 1) = (hπ(k)(1), k) = (h, k)

because π(k) is an automorphism of H.
Next, suppose (h, k) ∈ G. Then, we have

(h, k)((π(k))−1(h−1), k−1) = (1, 1)

and hence every element has an inverse. The proof of the associative laws is as follows:

[(h1, k1)(h2, k2)](h3, k3) = (h1k1 · h2, k1k2)(h3, k3)

= (h1k1 · h2(k1k2) · h3, k1k2k3)

= (h1k1 · h2k1 · (k2 · h3), k1k2k3)

= (h1k1 · (h2k2 · h3), k1k2k3)

= (h1, k1)[(h2k2 · h3, k2k3)]

= (h1, k1)[(h2, k2)(h3, k3)]

where we used that fact that k2 · ak2 · b = k2 · (ab) (this is true because π(k) is an
automorphism). The order of G is clearly |H||K|.

To prove (2), consider the set H ′ = {(h, 1)} and K ′ = {(1, k)}. We show that
H ′ ∼= H and K ′ ∼= K. Consider the map ϕ : H ′ → H given by (h, 1) 7→ h. This map
is obviously a bijection. It is also a homomorphism because

ϕ[(h1, 1)(h2, 1)] = ϕ[h1h2, 1] = h1h2

and this shows that isomorphism. The proof that K ′ ∼= K is also similar. From now,
we will refer to these isomorphic copies as H and K.
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Next, we will show that H is normal in G. To show this, let (h, k) ∈ G and
(x, 1) ∈ H. So, we have

(h, k)(x, 1)(h, k)−1 = (h, k)(x, 1)(k−1 · h−1, k−1)

= (hk · x, k)(k−1 · h−1, k−1)

= (hk · xh−1, 1) ∈ H
and hence H is normal.

The fact that H and K intersect trivially is clear. This completes the proof.
Remark: Observe that H oK = HK, where the H and K on the right hand side

are isomorphic copies inside H oK.
The notation for the semi-direct product is useful because it reminds us which of

the factors is normal, and the other factor need not be normal.
We now see when semi-direct products are the direct products:

Theorem 33.2. Let H and K be groups, and let π : K → Aut(H) be a homomor-
phism. Then, the following are equivalent:

(1) The identity map between H oK and H ×K is a homomorphism (and hence
an isomorphism).

(2) π is the trivial homomorphism from K to Aut(H).
(3) K �H oK

Proof: First, suppose (1) is true, and hence id : HoK → H×K is an isomorphism.
Now, let (h1, k1) and (h2, k2) ∈ H oK. Then, we have

id[(h1, k1)(h2, k2)] = (h1h2, k1k2)

but we know that

id[(h1, k1)(h2, k2)] = id(h1π(k1)(h2), k1k2) = (h1π(k1)(h2), k1k2)

which means that π(k1)(h2) = h2, and hence π(k1) is the trivial automorphism of H.
So, π : K → Aut(H) is the trivial homomorphism, and hence (2) follows.

Now, suppose (2) is true. Let (1, k0) ∈ K ≤ H oK, and let (h, k) ∈ H oK. First,
observe that (h, k)−1 = (k−1 · h−1, k−1) = (h−1, k−1) and hence

(h, k)(1, k0)(h, k)−1 = (h, k)(1, k0)(h−1, k−1)

= (h, kk0)(h−1, k−1)

= (1, kk0k
−1) ∈ K

and hence K �H oK.
Now, suppose (3) is true, i.e K �H oK. Let k0, k ∈ K, and let h ∈ H. Then, we

know that
(h, k)(1, k−1k0k)(k−1 · h−1, k−1) ∈ K

Upon actual multiplication, we see that

(h, k)(1, k−1k0k)(k−1 · h−1, k−1) = (hk · 1, k0k)(k−1 · h−1, k−1)

= (hk · 1(k0k) · (k−1 · h−1), k0)

= (hk0 · h−1, k0)

and hence this means that k0 · h−1 = h−1. Since h was arbitrary, it follows that π(k0)
is the trivial automorphism, and hence π : K → Aut(H) is the trivial homomorphism.

This means that mutiplication in H oK is the same as that in H ×K, and hence
the identity map is a homomorphism.
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As in the case of direct products, there is a recognition theorem for semi-direct
products as well. We now prove it:

Theorem 33.3. Suppose G is a group, and let H�G and K ≤ G with H∩K = 1. Let
π be the homomorphism π : K → Aut(H) that sends k to σk, where σk(h) = khk−1

for h ∈ H. Then, HK ∼= H oK. In particular if G = HK, then G ∼= H oK.

Proof: Consider the map ϕ : HK → H oK given by

ϕ(hk) = (h, k)

which is obviously a bijection. To prove that it is a homomorphism, we have

ϕ(h1k1h2k2) = ϕ(h1k1 · h2k1k2) = (h1k1 · h2, k1k2) = ϕ(h1k1)ϕ(h2, k2)

and hence HK ∼= H oK.
Let’s make a quick definition: Let H ≤ G. We say that K ≤ G is the complement

of H if G = HK and H ∩K = 1.
Now we look at some examples.

Example 33.4.


