HOMEWORK - 0

SIDDHANT CHAUDHARY
BMC201953

Let a be a non-zero integer and let b be an integer. We carry out the following step by step development.
(i) Long Division. Carefully state the meaning of saying that we can do long division of b by a to get quotient q and remainder r. This is crucial to all that follows.

Solution: This means the following: given such integers a and b, there are integers q and r such that

$$
b=a q+r
$$

with $0 \leq r<|a|$. We want a to be non-zero, otherwise the condition on the size of the remainder won't make sense. This fact can be proven using the wellordering principle on \mathbb{Z}.
(ii) Meaning of GCD. Define what it means for an integer d to be a gcd of a and b. Try to capture the notion of 'greatest' using only divisibility, not size. Defined this way, $\operatorname{gcd}(a, b)$ is essentially unique. Explain how.

Solution: Let a, b be two integers. We call an integer d a greatest common divisor of a and b if $d \mid a$ and $d \mid b$, and for every $k \in \mathbb{Z}$ such that $k \mid a$ and $k \mid b$, it is true that $k \mid d$. In simpler words, every common divisor of a and b also divides their greatest common divisor.

Now, we can show that given that a gcd of a, b exists, it is unique upto multiplication by units. In \mathbb{Z}, this reduces to the fact that the gcd of two numbers is unique upto sign. So suppose d_{1} and d_{2} are two candidates for $\operatorname{gcd}(a, b)$. So, this means that $d_{1} \mid a, b$ and $d_{2} \mid a, b$. But by our definition, this also means that $d_{1} \mid d_{2}$ and $d_{2} \mid d_{1}$. In \mathbb{Z}, this is possible if and only if $d_{1}= \pm d_{2}$, and hence the gcd (if it exists) is unique upto sign.
(iii) Euclidean Algorithm. Use long division to prove existence of $\operatorname{gcd}(a, b)$ and to calculate it. Note that at this stage you do NOT know anything about primes, much less about prime factorization. See step (vii) below.

Solution: Suppose a, b are integers with $a \neq 0$ (the case when both integers are zero will be handled separately). So, by long division, there are integers q, r such that

$$
b=a q+r
$$

and $0 \leq r<|a|$. We show a key fact.
Lemma 0.1. If a, b, q, r are as above, then

$$
\operatorname{gcd}(a, b)=\boldsymbol{\operatorname { g c d }}(a, r)
$$

provided atleast one of the above exists.
Date: September 2020.

Proof: Without loss of generality, suppose $d=\operatorname{gcd}(a, b)$ exists. So, $d \mid a$ and $d \mid b$, and by the equation $r=b-a q$, it is clear that $d \mid r$. Now, suppose $k \mid a$ and $k \mid r$. Then, the equation $b=a q+r$ implies $k \mid b$, and hence we have that $k \mid d$. This shows that $d=\operatorname{gcd}(a, r)$. On the other hand if we suppose that $\operatorname{gcd}(a, r)$ exists, by similar arguments we can show that $\operatorname{gcd}(a, b)$ is equal to $\operatorname{gcd}(a, r)$. This completes the proof.

So, Lemma 0.1 shows that proving the existence of $\operatorname{gcd}(a, b)$ is the same as proving the existence of $\operatorname{gcd}(a, r)$. The benefit is that by going from (a, b) to (a, r), we have reduced the size of the argument.

So, consider the following chain of equations:

$$
\begin{aligned}
b & =a q_{1}+r_{1} \\
a & =r_{1} q_{2}+r_{2} \\
r_{1} & =r_{2} q_{3}+r_{3} \\
& \cdots \\
r_{n} & =r_{n+1} q_{n+2}+r_{n+2}
\end{aligned}
$$

and we assume that $r_{n+2}=0$. This assumption makes sense because for each i,

$$
r_{i}>r_{i+1} \geq 0
$$

because at each step, we are strictly reducing the size of the remainder. Now, we claim that r_{n+1}, which is the last non-zero remainder, is a gcd of a, b. To show this, observe that

$$
\operatorname{gcd}\left(r_{n}, r_{n+1}\right)=r_{n+1}
$$

because $r_{n+1} \mid r_{n}$. Applying Lemma 0.1 repeatedly, we see that

$$
r_{n+1}=\operatorname{gcd}\left(r_{n+1}, r_{n}\right)=\operatorname{gcd}\left(r_{n}, r_{n-1}\right)=\ldots=\operatorname{gcd}\left(r_{1}, a\right)=\operatorname{gcd}(a, b)
$$

and this is an algorithm to find the ged of two numbers. This algorithm also proves the existence of a gcd, but the same can be also proven by using linear combinations.

Now, if both a and b are zero, then by definition, their gcd will be 0 .
(iv) GCD as linear combination. Why can $\operatorname{gcd}(a, b)$ be written in the form $x a+y b$ and how can we find such integers x and y ? To what extent are x and y unique?

Solution: We claim that $\operatorname{gcd}(a, b)$ can always be written as a \mathbb{Z}-linear combination of a, b, and we can show this using the algorithm described in (iii). We have the equations

$$
\begin{aligned}
& b=a q_{1}+r_{1} \\
& a=r_{1} q_{2}+r_{2} \\
& r_{1}=r_{2} q_{3}+r_{3} \\
& \quad \ldots \\
& r_{n}=r_{n+1} q_{n+2}
\end{aligned}
$$

and we showed that $r_{n+1}=\operatorname{gcd}(a, b)$. Observe that

$$
r_{1}=b-a q_{1}
$$

i.e r_{1} is a \mathbb{Z}-linear combination of a, b. Inductively, suppose r_{i} is a linear comination of a, b for every $1 \leq i \leq k$ for some $k<n+1$. Then, observe that

$$
r_{k+1}=r_{k-1}-r_{k} q_{k+1}
$$

and since both r_{k-1}, r_{k+1} are \mathbb{Z}-linear combinations of a, b, it follows that r_{k+1} is also a \mathbb{Z}-linear combination of a, b. This shows that r_{n+1} is a \mathbb{Z}-linear combination of (a, b), and hence

$$
\operatorname{gcd}(a, b)=a x+b y
$$

for some $x, y \in \mathbb{Z}$. Observe that the division algorithm also gives us possible values for x, y.

Now, suppose

$$
a x_{1}+b y_{1}=a x_{2}+b y_{2}
$$

for some integers $x_{1}, y_{1}, x_{2}, y_{2}$. Then,

$$
a\left(x_{1}-x_{2}\right)=b\left(y_{2}-y_{1}\right)
$$

Dividing both sides by $\operatorname{gcd}(a, b)$, we see that

$$
\frac{a}{\operatorname{gcd}(a, b)}\left(x_{1}-x_{2}\right)=\frac{b}{\operatorname{gcd}(a, b)}\left(y_{2}-y_{1}\right)
$$

Now, it can be shown that for any $a, b \in \mathbb{Z}$ atleast one of which is non-zero,

$$
\operatorname{gcd}\left(\frac{a}{\operatorname{gcd}(a, b)}, \frac{b}{\operatorname{gcd}(a, b)}\right)=1
$$

So, we get that

$$
\left.\frac{b}{\operatorname{gcd}(a, b)} \right\rvert\,\left(x_{1}-x_{2}\right)
$$

and that

$$
\left.\frac{a}{\operatorname{gcd}(a, b)} \right\rvert\,\left(y_{2}-y_{1}\right)
$$

where we have used the fundamental fact (which is not hard to prove) that if $c \mid a b$ and $\operatorname{gcd}(c, a)=1$, then $c \mid b$. So, it follows that

$$
x_{2}=x_{1}-t \frac{b}{\operatorname{gcd}(a, b)}
$$

and that

$$
y_{2}=y_{1}+t \frac{a}{\operatorname{gcd}(a, b)}
$$

for some integers $t \in \mathbb{Z}$. So, if a solution x_{1}, y_{1} is already known, all other solutions are given by a parametric formula.
(v) Two ways to think of a prime number. Suppose p is an integer other than $0, \pm 1$. Show the equivalence: ' p has no factors other than $\pm p$ and ± 1 ' \Longleftrightarrow 'if $p \mid a b$ then $p \mid a$ or $p \mid b^{\prime}$. Under these conditions we call p a prime number.

Solution: First, we will show the given equivalence. So, suppose p has no factors other than $\pm p$ and ± 1. Then, suppose $p \mid a b$ for some $a, b \in \mathbb{Z}$. Then, if $p \mid a$, we are done. So, suppose $p \nmid a$. We know that $\operatorname{gcd}(p, a)$ exists. Moreover, because of the assumption that $p \nmid a$, it must be true that

$$
\operatorname{gcd}(p, a)=1
$$

because the only factors of p are ± 1 and $\pm p$. So, there are integers $x, y \in \mathbb{Z}$ such that

$$
p x+a y=1
$$

and hence

$$
b p x+b a y=b
$$

Now, by our assumption, $p \mid a b$, so the above equation implies $p \mid b$.

Conversely, suppose p is an integer such that $p \mid a b$ implies $p \mid a$ or $p \mid b$. Let d be a factor of p, so that

$$
p=d k
$$

for some $k \in \mathbb{Z}$. Hence, $p \mid d k$, so that $p \mid d$ or $p \mid k$. Without loss of generality, suppose $p \mid d$, so that $d=p k^{\prime}$ for some $k^{\prime} \in \mathbb{Z}$. So, we have

$$
p=p k^{\prime} k
$$

and hence

$$
p\left(k^{\prime} k-1\right)=0
$$

implying that $k^{\prime} k=1$, and hence $k= \pm 1$, which means that $d= \pm p$. Similarly, if we assume that $p \mid k$, then we will obtain $d= \pm 1$ and $k= \pm p$, so the only factors of p are ± 1 and $\pm p$.
(vi) Existence of prime factorization. Why can each non-zero integer n other than ± 1 be written as a finite product of prime numbers?

Solution: We can assume that only positive integers are being considered, as a factorization for a negative integer can be obtained from its additive inverse. The existence of a factorization can be proven using induction. For the base case, we have $n=2$. We know that if d is a factor of 2 , then $|d| \leq 2$. So, the only possible non-zero values of d are $\pm 1, \pm 2$, and hence it follows that 2 is prime in \mathbb{Z}. For the inductive case, suppose all $2 \leq k \leq m$ have a prime factorisation. Consider the integer $m+1$. If $m+1$ is a prime, then we are done, because the factorisation is

$$
m+1=m+1
$$

So suppose $m+1$ is not a prime. Then, we have that

$$
m+1=a b
$$

where a, b are positive integers such that $a, b>1$. Clearly, we have that $a<m+1$ and $b<m+1$, so by the inductive hypothesis,

$$
\begin{array}{r}
a=p_{1} p_{2} \ldots p_{s} \\
b=q_{1} q_{2} \ldots q_{t}
\end{array}
$$

for some $s, t \in \mathbb{N}$ where each p_{i}, q_{j} is a prime in \mathbb{Z}. So, we see that

$$
m+1=p_{1} p_{2} \ldots p_{s} q_{1} q_{2} \ldots q_{t}
$$

and hence $m+1$ also can be written as a product of primes. This completes the proof.
(vii) Uniqueness of prime factorization. In what way is an expression of n as a product of primes unique? Formulate this carefully and prove it.

Solution: First, suppose n is a non-zero integer. From (vi), we know that n can be written as a product of primes. We show that this factorisation is unique (in some sense). Suppose

$$
n=p_{1} p_{2} p_{3} \ldots p_{s}=q_{1} q_{2} q_{3} \ldots q_{t}
$$

where each p_{i}, q_{j} is a prime. This means that

$$
p_{1} \mid q_{1} q_{2} \ldots q_{t}
$$

Because p_{1} is a prime, this means that p_{1} divides atleast one of q_{1}, \ldots, q_{t}. Without loss of generality, suppose $p_{1} \mid q_{1}$. But, recall that q_{1} is a prime number, and hence
the only possible values for p_{1} are $\pm q_{1}$ (because p_{1} cannot be ± 1). Hence, the equation reduces to

$$
\left(\pm q_{1}\right) p_{2} \ldots p_{s}=q_{1} q_{2} \ldots q_{t}
$$

and since \mathbb{Z} has the cancellation property, we have

$$
\pm p_{2} \ldots p_{s}=\left(\pm p_{2}\right) \ldots p_{s}=q_{2} \ldots q_{t}
$$

Then, we can keep repeating this argument finitely many times, and conclude that $s=t$, and that $p_{i}= \pm q_{j}$ for some $1 \leq j \leq s$ for every $1 \leq i \leq s$. So, if we combine equal primes and write n as a product of prime powers, we see that

$$
n= \pm p_{1}^{a_{1}} \ldots p_{k}^{a_{k}}
$$

where each p_{i} is a positive prime, each $a_{k} \geq 0$ and $0 \leq k \leq s$. Hence, it follows that the factorisation of n as a product of primes is unique upto sign.
(viii) Chinese Remainder Theorem. Suppose $\operatorname{gcd}(a, b)=1$. Prove that given any integer r and any integer s, there exists an integer n such that $a \mid n-r$ and $b \mid n-s$. How does one explicitly find such n ? To what extent is it unique?

Solution: Because $\operatorname{gcd}(a, b)=1$, we have

$$
a x+b y=1
$$

for some $x, y \in Z$. Put

$$
n=s a x+r b y
$$

Observe that

$$
n-r=s a x+r(b y-1)=s a x+r(-a x)
$$

so that $a \mid n-r$. Similarly,

$$
n-s=s(a x-1)+r b y=s(-b y)+r b y
$$

and hence $b \mid n-s$. So, the required integer n has been found.
To explicity compute n, we just need to solve the diophantine equation $a x+b y=$ 1 , which can be easily done using the long division method.

Finally, suppose n_{1}, n_{2} are integers such that

$$
\begin{gathered}
a \mid n_{1}-r \\
a \mid n_{2}-r \\
b \mid n_{1}-s \\
b \mid n_{2}-s
\end{gathered}
$$

This means that $a \mid n_{1}-n_{2}$ and $b \mid n_{1}-n_{2}$, so that $n_{1}-n_{2}$ is a common multiple of a, b. Now we know that $\operatorname{gcd}(a, b)=1$, and hence $\operatorname{Icm}(a, b)=a b$ (this can be proven easily). So, we see that $a b \mid n_{1}-n_{2}$, so that

$$
n_{2}=n_{1}+t a b
$$

for some integer $t \in \mathbb{Z}$. Hence, if one such integer n_{1} is found, all others can be written as a parametric formula.
(ix) Example. Carry out parts (iii) and (iv) for $(a, b)=$ (your roll number of form 201xxx, 2017). Then do part (viii) for $(r, s)=(20,19)$.

Solution: By roll number is

$$
201953
$$

The procedure in (iii) will be carried out as follows.

$$
\begin{aligned}
201953 & =2017 \cdot 100+253 \\
2017 & =253 \cdot 7+246 \\
253 & =246 \cdot 1+7 \\
246 & =7 \cdot 35+1 \\
7 & =1 \cdot 7+0
\end{aligned}
$$

So, it follows that

$$
\operatorname{gcd}(201953,2017)=1
$$

(iv) will be carried out as follows.

$$
\begin{aligned}
253 & =201953-2017 \cdot 100 \\
246 & =2017-253 \cdot 7=201953 \cdot(-7)+2017 \cdot 701 \\
7 & =253-246=201953 \cdot 8+2017 \cdot(-801) \\
1 & =246-7 \cdot 35=201953 \cdot(-287)+2017 \cdot 28736
\end{aligned}
$$

Finally, we carry out part (viii) for $(r, s)=(20,19)$, i.e we solve the system of congruences

$$
\begin{aligned}
& x \equiv 20(\bmod 201953) \\
& x \equiv 19(\bmod 2017)
\end{aligned}
$$

As highlighted in (viii), one solution is

$$
x=19 \cdot 201953 \cdot(-287)+20 \cdot 2017 \cdot 28736=57960531
$$

and any other solution is of the form

$$
x=57960531+407339201 t
$$

for $t \in \mathbb{Z}$.

