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4. FunnyRingStructure. Given a ringR, show thatwe get a new ring structure
on the same set R as follows: define a new addition ⊕ by a⊕ b = a+ b− 1 and a
newmultiplication� by a�b = a+b−ab. You can prove this by going through the
axioms, but that is not the point of this exercise at all. Instead prove the claim
by simultaneously showing that the new ring structure is actually isomorphic
to the original ring. (The basic observation is that if there is any bijection from
a group/vector space/ring/whatever structure to some set S, then one can
make S into the same structure by using f as a dictionary.)

Solution. As in the statement given in the parenthesis, it is enough to exhibit a
bijection f from R to R which will act as a recipe for the funny ring structure.
Consider the setmap f : R → R given by

f(a) = 1− a

It is clear that f is injective, because
1− a = 1− b =⇒ a = b

for any a, b ∈ R. Moreover, f is surjective, because given any a ∈ R we have
f(1− a) = 1− (1− a) = a

and so we conclude that f is a bijection. Now, we will use the bijection f as a
recipe to give another ring structure toR. For any a, b ∈ Rwedefine operations
+funny and ·funny as

a+funny b := f(f−1(a) + f−1(b)) = a+ b− 1 = a⊕ b

a ·funny b := f(f−1(a) · f−1(b)) = a+ b− ab = a� b

and let
0funny = f(0) = 1

1funny = f(1) = 0

So, it follows that the operations+funny and⊕ coincide, and ·funny and� coincide.
Moreover, R is a ring under the operations +funny and ·funny because the ring
axioms hold for+ and ·, so they automatically hold for these new operations as
well. Finally, by the above definition we have that

f(a+ b) = f(a)⊕ f(b)

f(a · b) = f(a)� f(b)

for any a, b ∈ R, implying that f is actually a ring isomorphism between R and
the funny version of R (note that we didn’t check f(1) = 1funny, because that is
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a part of our definition). This shows that the funny ring is isomorphic to the
original one, completing the proof.

Before doing problem 5., I will try to prove a general fact which was mentioned
in Lecture 3. As a note, wherever I use the term the gcd, I mean the gcd upto
units.

Proposition 0.1. Let p(x), g(x) ∈ Z[x] be any two polynomials such that the gcd
of the coefficients of p(x) is 1, and the gcd of the coefficients of g(x) is 1. Then,
the gcd of the coefficients of p(x)g(x) is also 1.

Proof. For the sakeof contradiction, suppose thegcdof the coefficients of p(x)g(x)
is not 1 (i.e not a unit). Also, suppose

p(x) = a0 + a1x+ ...+ anx
n

g(x) = b0 + b1x+ ...+ bmx
m

Suppose the gcd of the coefficients of p(x)g(x) is d, where d is not a unit (and
clearly d 6= 0 as p(x), g(x) are non-zero). So by prime factorisation in Z, there
is some prime factor P of d. So, P divides each coefficient of p(x)g(x). But by
our assumption, there are coefficients ar and bs such that P does not divide
ar and bs. Pick the largest such r and s (i.e P divides ai for each i > r, and P
divides bi for each i > s). We can choose the largest such r and s since we are
dealing with polynomials, which have finitely many non-zero coefficients. Now
the coefficient of the term xr+s in p(x)g(x) (which by assumption is divisible by
P ) is

r+s∑
i=0

aibr+s−i = arbs +
r−1∑
i=0

aibr+s−i +
r+s∑

i=r+1

aibr+s−i

Now, if 0 ≤ i ≤ r − 1, then r + s − i ≥ s + 1, and hence P |br+s−i for each such i.
Similarly, if i ≥ r+1, then P |ai for each such i. So, the above equation combined
with these facts implies thatP |arbs. SinceP is a prime, this implies thatP divides
one of ar or bs, but this is clearly a contradiction. Hence, this shows that the gcd
of the coefficients of p(x)g(x)must be a unit, i.e it must be 1. ■
Remark 0.1.1. I think the above proof can be modified to rings where factor-
ization into irreducibles holds, but for now that is not important.

Corollary 0.1.1. Let p(x), g(x) ∈ Z[x] be any two polynomials. Suppose d1 is the
gcd of the coefficients of p(x) and d2 is the gcd of the coefficients of g(x). Then
the gcd of the coefficients of p(x)g(x) is d1d2.

Proof. Clearly, we canwrite p(x) = d1p
′(x) and g(x) = d2g

′(x), where p′(x), g′(x) ∈
Z[x] such that the gcd of the coefficients of p′(x) is 1, and the gcd of the coeffi-
cients of g′(x) is also 1. Also, we see that

p(x)g(x) = d1d2p
′(x)g′(x)

By Proposition 0.1, we know that the gcd of the coefficients of p′(x)g′(x) is 1.
Hence, it follows that the gcd of the coefficients of p(x)g(x) is d1d2, completing
the proof. ■

Proposition 0.2. Let Z[x] φ−→ C be a ring homomorphism such that ϕ(x) = a for
some a ∈ C. Then, Ker ϕ is a principal ideal in Z[x].
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Proof. Throughout I will assume the standard inclusions Z ↪→ Q ↪→ C (and
hence the standard inclusions of the corresponding polynomial rings as well).
First, if Ker ϕ is trivial, then it is clear that Ker ϕ = (0), i.e it is a principal ideal
in Z[x]. So, assume that the kernel is not trivial. So, there is some non-zero
polynomial d(x) ∈ Z[x] such that d(a) = 0. Among all such polynomials, let d(x)
be the one with least degree such that the gcd of the coefficients of d(x) is 1 (it
is easy to see that choosing such a d(x) is possible by factoring out the gcd if
necessary). We claim that

Ker ϕ = (d(x))

To prove this, suppose p(x) ∈ Ker ϕ. We know that p(x) and d(x) are both poly-
nomials in the ringQ[x] (by the standard inclusion). SinceQ is a field, Euclidean
Division holds, and there are polynomials q(x), r(x) ∈ Q[x] such that

p(x) = q(x)d(x) + r(x)

where either deg r < deg d or r(x) = 0. Let l1 be the LCM of the denominators
of the coefficients of q(x), and similarly let l2 be the LCM of the denominators of
the coefficients of r(x) (so that l1, l2 ∈ Z− {0}). Then, we can write

q(x) =
q′(x)

l1
and r(x) =

r′(x)

l2

where q′(x), r′(x) ∈ Z[x]. So we get

l1l2p(x) = l2q
′(x)d(x) + l1r

′(x)

and this is an equation in Z[x]. Clearly, we see that

l1r
′(a) = 0

and hence r′(a) = 0 as l1 6= 0. Since deg r′(x) = deg r(x) < deg d(x), by the
definition of d(x) it must be true that r′(x) = 0. Hence, we get

l1l2p(x) = l2q
′(x)d(x) =⇒ l1p(x) = q′(x)d(x)

Suppose s is the gcd of the coefficients of p(x). Then, the gcd of the coefficients
of l1p(x) is l1s, and hence the gcd of the coefficients of q′(x)d(x) is l1s. By our
assumption, the gcd of the coefficients of d(x) was 1, and hence it must be true
that the gcd of the coefficients of q′(x) is l1s (this is where we apply Corollary
0.1.1). All this fuss was to show that

q′(x)

l1
∈ Z[x]

so that p(x) is a Z[x]-multiple of d(x). This shows that

Ker ϕ ⊆ (d(x))

Conversely, any Z[x]-multiple of d(x) is clearly a member of Ker ϕ. This com-
pletes the proof. ■

5. Artin Chapter 11: 3.3 c and e on kernel of maps from polynomial rings. Find
as few (and as simple) generators as you can.

Solution. For 3.3 c, the map is Z[x] φ−→ R given by f(x) 7→ f(1 +
√
2), which is

equivalent to saying ϕ(x) = 1 +
√
2. Via the standard inclusion R ↪→ C, we can
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interpret this as a homomorphismZ[x] φ−→ C. Nowwecan just applyProposition
0.2. Observe that if d(x) = (x− 1)2 − 2, then

d(1 +
√
2) = 0

and hence Ker ϕ is non-trivial. Now, no linear polynomial in Z[x] has 1 +
√
2 as

one of its roots, because 1+
√
2 is an irrational number. So, d(x) is infact a non-

zero polynomial of least degree in Ker ϕ. Moreover, it is easily seen that the gcd
of the coefficients of d(x) is 1, and hence by Proposition 0.2, we see that

Ker ϕ = (d(x)) = ((x− 1)2 − 2)

For 3.3 e, the map is C[x, y, z] φ−→ C[t] that is identity on C and maps x 7→ t, y 7→ t2

and z 7→ t3. Observe that the polynomials f1(x, y, z) = y−x2 and f2(x, y, z) = z−x3

are in the kernel of this homomorphism. I claim that
Ker ϕ = (f1, f2) = (y − x2, z − x3)

First, suppose g(x, y, z) ∈ (y − x2, z − x3), so that
g(x, y, z) = r1(x, y, z)(y − x2) + r2(x, y, z)(z − x3)

for some r1, r2 ∈ C[x, y, z]. In this case, it is clear that g(x, y, z) ∈ Ker ϕ, and
hence (y − x2, z − x3) ⊆ Ker ϕ. We now show the reverse inclusion. Suppose
g(x, y, z) ∈ Ker ϕ, which means that

g(t, t2, t3) = 0

We know that C[x, y, z] ∼= C[x, y][z]. Moreover, z − x3 is a monic polynomial in
C[x, y][z]. So, applying Euclidean Division in C[x, y][z], we see that

g(x, y, z) = q(x, y, z)(z − x3) + r(x, y, z)

for some q, r ∈ C[x, y, z] such that either r = 0, or the degree of z in R is less
than 1, i.e r(x, y, z) does not contain any monomial involving z, so that r(x, y, z) ∈
C[x, y]. So for ease of notation, let us write r(x, y, z) = r(x, y), and hence

g(x, y, z) = q(x, y, z)(z − x3) + r(x, y)

Now, since g(x, y, z) and z − x3 are in Ker ϕ, it follows that r(x, y) ∈ Ker ϕ, i.e
r(t, t2) = 0

Now,wewill apply a very similar reasoningagain. Weknow thatC[x, y] ∼= C[x][y],
and y − x2 is a monic polynomial in C[x][y]. So by Euclidean Division in C[x][y],
we have

r(x, y) = q′(x, y)(y − x2) + r′(x, y)

for some q′, r′ ∈ C[x, y] such that either r′(x, y) = 0, or the degree of y in r′(x, y) is
less than 1, i.e r′(x, y) does not contain any monomial involving y. So again, for
easy of notation, we write r′(x, y) = r′(x). Again, because r(x, y), y − x2 ∈ Ker ϕ,
it follows that r′(x) ∈ Ker ϕ, which implies that

r′(t) = 0

But because r′(x) is a polynomial in x, it must be true that r′(x) = 0. So, we have
r(x, y) = q′(x, y)(y − x2)

Putting it all together, we obtain
g(x, y, z) = q(x, y, z)(z − x3) + q′(x, y)(y − x2)
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which shows that g ∈ (y−x2, z−x3), and hence showing Ker ϕ ⊆ (y−x2, z−x3).
So this shows that

Ker ϕ = (y − x2, z − x3)

Remark0.2.1. Above, I used the fact thatC[x, y, z] ∼= C[x, y][z] ∼= C[x][y][z]. These
kindof isomorphismsof polynomials ringsarenot difficult to prove, but I couldn’t
include a proof because the document is already too long.

6. Artin Chapter 11: 3.6 and 3.7 on ring automorphisms of R[x, y] and of Z[x].
Do these exercises cleanly by using substitution principle as much as you can.
While it is true that an isomorphism is a bijective ring homomorphism, it may be
better to think of it equivalently as a (ring) map f such that there is an inverse
(ring)map g in theopposite direction, i.e such that f◦g and g◦f are the respective
identity maps.

Solution. First, we do 3.6. Let R be any ring, and let f(y) be a fixed polynomial
in R[y]. We show that the map R[x, y] → R[x, y] defined by x 7→ x + f(y) and
y 7→ y is an automorphism of R[x, y], and we will use the substitution principle
to do this. Let R ι−→ R[x, y] be the standard inclusion map (which is clearly a ho-
momorphism). By the substitution principle, there is a unique homomorphism
R[x, y]

φ−→ R[x, y] such that ϕ(x) = x + f(y), ϕ(y) = y and the following diagram
commutes.

R R[x, y]

R[x, y]

ι

ι

φ

Again, by the substitution principle, there is a unique homomorphism R[x, y]
Φ−→

R[x, y] such that Φ(x) = x− f(y),Φ(y) = y and the following diagram commutes.

R R[x, y]

R[x, y]

ι

ι

Φ

We will now show that R[x, y]
Φ◦φ−−→ R[x, y] is the identity homomorphism, and a

similar proof will show that R[x, y]
φ◦Φ−−→ R[x, y] is the identity homomorphism,

and that will show that ϕ is an automorphism, which will complete our proof.
So, let p ∈ R[x, y] be any element given by the multi-index notation

p(x, y) =
∑

(i1,i2)∈Z2
≥0

a(i1,i2)x
i1yi2
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(where the above sum is finite). We have

ϕ(p) = ϕ

 ∑
(i1,i2)∈Z2

≥0

a(i1,i2)x
i1yi2


=

∑
(i1,i2)∈Z2

≥0

ϕ(a(i1,i2)x
i1yi2)

=
∑

(i1,i2)∈Z2
≥0

ϕ(a(i1,i2))[ϕ(x)]
i1 [ϕ(y)]i2

=
∑

(i1,i2)∈Z2
≥0

a(i1,i2)[x+ f(y)]i1yi2

where in the last step we used the fact that ϕ restricts to the inclusion onR. So,
we have that

Φ(ϕ(p)) = Φ

 ∑
(i1,i2)∈Z2

≥0

a(i1,i2)[x+ f(y)]i1yi2


=

∑
(i1,i2)∈Z2

≥0

Φ(a(i1,i2)[x+ f(y)]i1yi2)

=
∑

(i1,i2)∈Z2
≥0

Φ(a(i1,i2))[Φ(x+ f(y))]i1 [Φ(y)]i2

=
∑

(i1,i2)∈Z2
≥0

a(i1,i2)x
i1yi2

= p(x, y)

where in the second last step, we used the fact that Φ restricts to the inclusion
on R and that

Φ(x+ f(y)) = Φ(x) + Φ(f(y)) = x− f(y) + f(y) = x

So, this shows thatΦ◦ϕ = idR[x,y], and hence by the discussion above this shows
that ϕ is an automorphism.
Next, we find all automorphisms of the polynomial ring Z[x]. Suppose Z[x] φ−→

Z[x] is an automorphism. Consider the restriction ϕ|Z, which is a homomor-
phism from Z to Z[x]. We know that there is only one homomorphism from Z to
any ring, i.e the characteristic homomorphism. In this case, ϕ|Z is simply the
standard inclusion Z ↪→ Z[x]. Now suppose x φ−→ f(x), where f(x) ∈ Z[x] is some
polynomial of degree n, where n ≥ 1 (n = 0 is not possible since ϕ is surjective).
So, for any polynomial p(x) ∈ Z[x] of degreem ≥ 1, we see that

p(x)
φ−→ p(f(x)) (this uses the fact that ϕ|Z) is the inclusion

and sinceZ is an integral domain, we see that p(f(x)) has degreemn. From this,
it follows that n = 1 is the only valid possibility, because otherwise the image of
ϕ will not contain any polynomial of degree 1. So, suppose x

φ−→ ax+ b for some
a, b ∈ Z, a 6= 0. We know that the polynomial x is in the range of ϕ. By the above
discussion, its pre-image must be a linear polynomial, i.e suppose

cx+ d
φ−→ x
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for some c, d ∈ Z with c 6= 0. But, we know that
ϕ(cx+ d) = ϕ(cx) + ϕ(d)

= ϕ(c)ϕ(x) + ϕ(d)

= c(ax+ b) + d

= cax+ cb+ d

wherewe have again used the fact that ϕ|Z is the inclusionmap. So, we see that
cax+ cb+ d = x, and this means that c, a are units in Z, and hence a = ±1. So, it
follows that x φ−→ ±x+ b, where b ∈ Z.
Conversely, let us show that the unique homomorphism Z[x] φ−→ Z[x] given by

x
φ−→ x+ b

for some b ∈ Z is an automorphism of Z[x] (and a similar proof will work for
x

φ−→ −x + b). To do this, we just need to exhibit an inverse for ϕ. Consider the
unique homomorphism Z[x] Φ−→ Z[x] given by

x
Φ−→ x− b

Let us show that Φ◦ϕ is the identity mapping, and a similar proof will show that
ϕ ◦Φ is the identity mapping, and that will show that ϕ is an automorphism. But
this is easy to see, because for any p(x) ∈ Z[x], we have

Φ(ϕ(p(x))) = Φ(p(x+ b)) = p(x− b+ b) = p(x)

and this shows that Φ ◦ ϕ = idZ[x]. So, ϕ is an automorphism of Z[x]. Hence, all
automorphisms ϕ of Z[x] restrict to the inclusion map on Z and are of the form
x

φ−→ ±x+ b for some b ∈ Z.

Proposition 0.3 (Frobenius Map). Let R be a ring of prime characteristic p.
Then the map R → R defined by x 7→ xp is a ring homomorphism.

Proof. We will prove this using the binomial theorem for commutative rings
(which was proven in Lecture 1). Suppose x, y ∈ R. Then, we know that

(x+ y)p =

p∑
k=0

(
p

k

)
xkyp−k

where for any c ∈ Z≥0,
cx := x+ x+ x+ ...+ x (c times)

Now suppose 1 ≤ k < p. We have(
p

k

)
=

p(p− 1)!

k!(p− k)!

Because p is a prime, for such a k we see that
(p− 1)!

k!(p− k)!

is an integer. So, we have shown that p|
(
p
k

)
for each 1 ≤ k < p. Consequently,

because R has characteristic p, we see that for 1 ≤ k < p(
p

k

)
xkyn−k = 0
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So, we have
(x+ y)p = xp + yp

so that the map x 7→ xp preserves addition. Moreover, for any x, y ∈ R we have

(xy)p = xpyp

and hence the map preserves multiplication as well. Finally,

1p = 1

and so this shows that the map is a ring homomorphism, completing the proof.
■

7. Artin Chapter 11: 3.9 on nilpotent/unipotent elements. You may appeal to
the very standard Frobenius map in exercise 3.8, but prove it for yourself! (The
definition used here is non-standard. Usual ring theory definition is unipotent
= 1 + nilpotent, but here use the given definition.)

Solution. (a) Suppose x ∈ R is a nilpotent element, i.e

xn = 0

for some n > 0. Let us show that (1 + x) is a unit in R. Consider the usual
algebraic identity

xk − 1 = (x− 1)(1 + x+ ...+ xk−1)

(the proof is by expanding the RHS) for any x ∈ R and k > 0. Here 1 is the
multiplicative identity of the ringR. Replacing x by−x in the above equation, we
see that

(−x)k − 1 = (−x− 1)(1− x+ x2 − ...+ (−1)k−1xk−1)

and multiplying by −1 on both sides, we get

−(−x)k + 1 = (x+ 1)(1− x+ x2 − ...+ (−1)k−1xk−1)

Now, put k = n above. Since xn = 0, we see that −(−x)n = −(−1)nxn = 0, and
hence

1 = (x+ 1)(1− x+ x2 − ...+ (−1)n−1xn−1)

which shows that (1 + x) is a unit in R.
(b) SupposeR has prime characteristic p 6= 0. Suppose a is a nilpotent element,
then we show that (1 + a) is unipotent, i.e some power of (1 + a) is 1. Suppose
n > 0 is such that an = 0. We know that the map R

φ−→ R given by x
φ−→ xp (the

Frobenius Map 0.3) is a ring homomorphism. Let k be a positive integer such
that pk > n. Then, applying the Frobenius map to (1 + a) k times, we see that

(1 + a)p
k

= ϕk(1 + a) = ϕk−1(1p + ap) = ϕk−2(1p
2

+ ap
2

) = ... = ϕ(1p
k−1

+ ap
k−1

) = 1p
k

+ ap
k

= 1

and hence this shows that (1 + a) is a unipotent element, completing the proof.
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8. Artin Chapter 11: 2.2 on units in F [[t]] + 3.10 on ideals in F [[t]]. Which of the
ideals you found are maximal? Which are prime?

Solution. Tomake thingseasier, Iwill denote the formal powerseries (a0, a1, a2, ...)
as

a0 + a1t+ a2t
2 + ... =

∞∑
n=0

ant
n

We claim that the only units in the ring F [[t]] are those power series which have
a non-zero constant term. To prove this, suppose

∞∑
n=0

ant
n ·

∞∑
n=0

bnt
n = 1

i.e (a0, a1, ...) and (b0, b1, ...) are units in F [[t]]. This implies that a0b0 = 1, i.e a0, b0 6=
0. Conversely, suppose (a0, a1, a2, ....) is an element of F [[t]] such that a0 6= 0.
Then, define

b0 = a−1
0

and inductively define

bn := −a−1
0

n∑
k=1

akbn−k

for n ≥ 1. In that case, it is easily seen that a0b0 = 1 and for any n ≥ 1,
n∑

k=0

akbn−k = 0

implying that
∞∑
n=0

ant
n ·

∞∑
n=0

bnt
n = 1

and hence (a0, a1, a2, ...) is a unit in F [[t]]. This completes the proof and charac-
terises all units of F [[t]].

Next, we compute all ideals of F [[t]]. I claim that all the ideals of F [[t]] are the
trivial ideals 0 and F [[t]], and (tn) for n ≥ 1. It is clear that for any n ≥ 1, (tn)
is an ideal of F [[t]]. Conversely, let I be any non-trivial ideal of F [[t]]. Since I is
non-trivial, it is non-empty. Now, among all elements of I , let (a0, a1, a2, ...) ∈ I
be a non-zero element such that the number

n := min{i ≥ 0 | ai 6= 0}
is minimal. Observe that n = 0 is not possible, because otherwise the element
(a0, a1, a2, ...) will be a unit in F [[t]], which will imply that I = F [[t]], and that con-
tradicts our assumption that I is a proper ideal. So, n ≥ 1. We will show that
I = (tn). Observe that by our notation
(a0, a1, a2, ...) = (ant

n + an+1t
n+1 + ...) = tn · (an + an+1t+ ...) = tn · (an, an+1, an+2, ...)

Now, because an 6= 0, we see that the element (an, an+1, an+2, ...) is a unit in F [[t]],
and hence it follows that tn ∈ I , implying that (tn) ⊆ I . To prove the reverse
inclusion, suppose (b0, b1, b2, ...) ∈ I , and we see that the number

r := min{i ≥ 0 | bi 6= 0}



10 SIDDHANT CHAUDHARY BMC201953

satisfies r ≥ n. So, we see that
(b0, b1, b2, ...) = (brt

r + br+1t
r+1 + ...) = tn · (brtr−n + br+1t

r+1−n + ...) ∈ (tn)

and this implies that I ⊆ (tn), and hence it follows that I = (tn). So, we have
characterised all the ideals of F [[t]].

Finally, we determine which of these ideals are maximal and which are prime.
It is very clear that (t) is the only maximal ideal F [[t]], since the only ideals con-
taining (t) are itself and F [[t]]. For any n > 1, the ideal (tn) is contained in (t), and
hence it is not maximal. Now, since (t) is a maximal ideal, it is a prime ideal as
well. Now, we will see that the only prime ideals of F [[t]] are 0 and (t). To show
this, suppose n > 1. Now, observe that

tn = tn−1 · t
which implies that tn divides tn−1 · t. However, it is easy to see that tn cannot
divide either of tn−1 or t, and hence it follows that (tn) is not a prime ideal. So, it
follows that the onlymaximal ideal is (t), and the only prime ideals are 0 and (t).

Notation. LetD be any ring, and let f(x) ∈ D[x] be any non-zero polynomial. Let
c ∈ D be a root of f(x). I will use the notation mf(x)(c) to denote themultiplicity
of c as a root of f(x), wheremultiplicity is as defined in problem 9.
Lemma 0.4. Let D be an integral domain, and let c0 ∈ D be fixed. Suppose

f(x) = (x− c0)
mq(x)

for some non-zero polynomial q(x) ∈ D[x] and m ≥ 0. Suppose c 6= c0 is a root
of f(x). Then, c is a root of q(x), and

mq(x)(c) = mf(x)(c)

Proof. First, because D is an integral domain and c 6= c0, it follows that c must
be a root of q(x), and hence this means that mq(x)(c) ≥ 1. Also, since q(x) is a
factor of f(x), the definition of multiplicity implies

mq(x)(c) ≤ mf(x)(c)

Now, we prove the reverse inequality. We know that (x− c)mf(x)(c) is a factor of
f(x), and hence it is a factor of (x− c0)

mq(x). SinceD is an integral domain and
c 6= c0, we see that c is a root of q(x), so that q(x) = (x−c)q′(x) for some non-zero
q′(x) ∈ D[x]. So, we see that

(x− c)mf(x)(c)|(x− c0)
m(x− c)q′(x)

and the cancellation law in the integral domain D[x] implies that
(x− c)mf(x)(c)−1|(x− c0)

mq′(x)

Repeating the same argumentmf(x)(c)− 1 times, it will imply that

(x− c)mf(x)(c)|q(x)
which implies that

mf(x)(c) ≤ mq(x)(c)

and hence we conclude that
mq(x)(c) = mf(x)(c)

and this completes the proof. ■
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9. For c in a ringD and non-zero f(x) inD[x], define themultiplicity of c as a root
of f(x) to be the largest non-negative integer n such that f(x) = (x − c)nq(x) in
D[x]. Observe that this is well defined.
(i) In a domainD, show that∏

c root of f(x)

(x− c)multiplicity of c as a root of f(x)

is a factor of f(x). This generalizes an exercise done in the lecture.
(ii) Find a counterexample to (i) whereD is not a domain and f is amonic poly-
nomial with a root whose multiplicity equals your roll number.
(iii) For a finite field F of cardinality q, show that

xq − x =
∏
c∈F

(x− c)

You do NOT need to use the fact that F [x] has the unique factorization property.
(Hint: the set of nonzero elements in F form a group under multiplication. The
order of each element of a finite group is a factor of the order of the group.)

Solution. (i) Suppose D is an integral domain. Suppose f(x) ∈ D[x] is a non-
zero polynomial. For a root c of f(x), we will use the notationmf(x)(c) to denote
themultiplicity of c as a root of f(x). We will show that∏

c root of f(x)

(x− c)mf(x)(c)

is a factor of f(x). Observe that the above product is finite, since non-zero poly-
nomials in integral domains have finitely many roots. We will prove the claim
by induction on the degree of f(x). For the base case, we have deg f(x) = 0,
i.e f(x) is a constant (non-zero) polynomial. In that case, the claim is trivially
true, because the product will be empty. So the base case is true. Now sup-
pose the statement is true for all non-zero polynomials of degree atmost n, and
let f(x) ∈ D[x] be a non-zero polynomial of degree n+ 1. If f(x) has no roots in
D, then the product ∏

c root of f(x)

(x− c)mf(x)(c)

is empty, and in that case the statement still holds. So, suppose f(x) has a root
c0 in D. By the Factor Theorem, it follows that (x − c0) is a factor of f(x), and
this means thatmf(x)(c0) ≥ 1. By the definition of multiplicity, we see that

f(x) = (x− c0)
mf(x)(c0)q(x)(†)

for some non-zero polynomial q(x) ∈ D[x], and clearly deg(q(x)) < deg(f(x)).
Now, if c0 is the only root of f(x), then∏

c root of f(x)

(x− c)mf(x)(c) = (x− c0)
mf(x)(c0)

and this is clearly a factor of f(x). Now suppose c is any other root of f(x), i.e
c 6= c0. Lemma 0.4 then implies that c is a root of q(x) and

mq(x)(c) = mf(x)(c)
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Now, applying the induction hypothesis on q(x), we see that∏
c ̸=c0 root of f(x)

(x− c)mf(x)(c)

is a factor of q(x). Then, equation (†) implies that∏
c root of f(x)

(x− c)mf(x)(c)

is a factor of f(x). So by induction, the statement follows for all non-zero poly-
nomials in D[x], completing the proof.
(ii) Let D = Z/4Z, and evidently D is not an integral domain. Consider the poly-
nomial

f(x) = x201953

(my roll number is BMC201953). Clearly, the root x = 0 has multiplicity 201953
for this polynomial. Moreover, observe that

f(2) = 2201953 = 22 · 2201951 = 0

and hence this means that 2 is also a root of f(x), implying that x− 2 is a factor
of f(x) by the Factor Theorem. This means that mf(x)(2) ≥ 1. Moreover, since
1 and 3 are units modulo 4, it follows that the only roots of f are 0 and 2. Now,
note that ∏

c root of f(x)

(x− c)mf(x)(c) = x201953(x− 2)mf(x)(2)

andhence theabovepolynomial hasdegreegreater than 201953, sincemf(x)(2) ≥
1. This means that the above polynomial cannot be a factor of f(x), since in
any ring a polynomial cannot have a monic factor of degree greater than itself.
Since f(x) is itself monic, this gives us the required counterexample.
(iii) Let F be a finite field of cardinality q. We show that

xq − x =
∏
c∈F

(x− c)

First, we show that if y ∈ F , then yq − y = 0. This is clear if y = 0, so suppose
y 6= 0. So, y must be a unit in F . Now we know that the set of units of F form a
group under multiplication, and this group has q− 1 elements since F has q− 1
units. So, the order of y must be a factor of q − 1 (the order of the group), and
hence we see that

yq−1 = 1

which implies that
yq − y = 0

Now, this means that every y ∈ F is a root of the polynomial xq−x. So by Factor
Theorem, it follows that x− c divides xq − x for every c ∈ F . Using the fact that
F is an integral domain and applying the Factor Theorem q times, we see that

xq − x = g(x)
∏
c∈F

(x− c)

for some polynomial g(x) ∈ F [x]. Clearly, g(x) 6= 0. Also, the degree of the
polynomial ∏

c∈F

(x− c)
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is q, and hence it follows that the degree of g(x)must be 0, i.e g(x) = y for some
unit y ∈ F . Moreover, since xq − x and

∏
c∈F

(x− c) are monic, it follows that y = 1.

So, it follows that
xq − x =

∏
c∈F

(x− c)

and this completes the proof.
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