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Norm in Gaussian Integers. For any a+ ib ∈ Z[i], define

N(a+ ib) := (a+ ib)(a− ib) = a2 + b2

Then, we see that N : Z[i] → Z≥0. Moreover, observe the following chain of
equalities.

N [(a+ ib)(c+ id)] = N [ac− bd+ i(ad+ bc)]

= (ac− bd)2 + (ad+ bc)2

= a2c2 + b2d2 + a2d2 + b2c2

= (a2 + b2)(c2 + d2)

= N(a+ ib)N(c+ id)

and hence N is a multiplicative function. We can easily extend this norm to Q[i]
by defining

N(p+ iq) = p2 + q2

where p, q ∈ Q. By the same proof, this norm will also be multiplicative.

Theorem0.1. Z[i] is a Euclidean Domain with respect to the above norm. More
specifically, let a, b ∈ Z[i] with a ̸= 0. Then, there are q, r ∈ Z[i] such that

b = aq + r

and

0 ≤ N(r) ≤ N(a)

2

Proof. The idea is simple. Suppose b = c + id and a = e + if . Then, using multi-
plication by conjugates, write the fraction

b

a
=

ba

N(a)
= g + ih

where g, h ∈ Q are rational. Now, let p be the closest integer to g and let q be
the closest integer to h. Then, we know that

|g − p|, |h− q| ≤ 1

2

So, our candidate is q = p+ iq. Now, put

r = b− aq
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and we see that b = aq + r. Now, we have the following.
r = b− aq

= a(g + ih)− a(p+ iq)

= a[(g − p) + i(h− q)]

and by the multiplicativity of the norm in Q[i], this implies
N(r) = N(a)N [(g − p) + i(h− q)]

= N(a)[(g − p)2 + (h− q)2]

≤ N(a)

2
and this completes the proof. ■
Remark 0.1.1. In the following problems, I will heavily use the fact that

R/(a)

(b)
∼=

R

(a, b)
∼=

R/(b)

(a)

which was proven in Lecture 4 as a consequence of the Third Isomorphism
Theorem. So instead of mentioning this every time, I will just say: by the Third
Isomorphism Theorem.
11. Artin Chapter 11: 4.3 b and e (Here take identify to mean find cardinality
and whether the ring is a field/integral domain. You can say more if you like.)
Solution. (b) Z[i]/(2 + i). By Theorem 0.1, we know that Z[i] is a PID as it is a
Euclidean Domain. We first show that (2 + i) is a maximal ideal in Z[i]. To see
this, suppose z ∈ Z[i] is any factor of 2 + i. By the multiplicativity of the norm, it
follows that

N(z)|N(2 + i) = 12 + 22 = 5

Since 5 is a prime in Z, it follows that N(z) = 1 or N(z) = 5. Now again by the
multiplicativity of the norm, it is easy to see that an element z ∈ Z[i] is a unit
iff. N(z) = 1. So, the above shows that any factor of 2 + i is either a unit or an
associate of 2 + i, implying that 2 + i is an irreducible element. So, (2 + i) is a
maximal ideal, and hence Z[i]/(2 + i) is a field.
We now find the cardinality of this field, and we again use Theorem 0.1. Ob-

serve thatN(2+ i) = 5, and hence any remaindermodulo 2+ i has norm atmost
2 (here we use the inequality N(r) ≤ 5/2). Now the only elements of Z[i] with
norm atmost 2 are

0, 1,−1, i,−i, 1 + i, 1− i,−1 + i,−1− i

It can be easily seen that this list modulo (2 + i) can further be reduced to the
list

0, 1,−1, i,−i

because each of the elements 1 + i, 1 − i,−1 + i and −1 − i are equal to of the
elements in the above list modulo (2+ i). Finally, note that none of the elements
in the list

0, 1,−1, i,−i

are equal modulo (2+ i)which is easy to see by the multiplicativity of the norm,
and hence it follows that

Z[i]/(2 + i) = {0, 1,−1, i,−i}
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so that |Z[i]/(2 + i)| = 5.
(e) Z[x]/(x2 + 3, 5). As covered in lecture 4, we can use the Third Isomorphism
Theorem here. Observe that (x2+3, 5) is an ideal containing (5). So, we see that

Z[x]
(x2 + 3, 5)

∼=
Z[x]/(5)

(x2 + 3, 5)/(5)

Observe that Z[x]/(5) ∼= F5[x], as we proved in class. Moreover, the quotient
(x2 +3, 5)/(5)will just be generated by the element x2 + 3 (where the bar repre-
sents passing to the quotient). So, we see that

Z[x]
(x2 + 3, 5)

∼=
Z[x]/(5)

(x2 + 3, 5)/(5)
∼=

F5[x]

(x2 + 3)

Because F5 is a field, F5[x] is a PID. Now consider the ideal (x2 + 3). Note that
any non-trivial factor of x2 + 3 in F5[x] must be a linear polynomial, which is
equivalent to saying that x2 + 3 has a root in F5. But this is clearly not the case.
So, it follows that x2 + 3 is an irreducible in F5[x], and hence this implies that
(x2+3) is amaximal ideal in this ring (and this is where F5[x] being a PID helps).
Now, F5[x]/(x

2 + 3) is a field. Finding the cardinality of this field is not hard.
By Euclidean Division, any polynomial in F5[x] is equal to some polynomial of
degree atmost 1 modulo (x2 + 3). So, this means

F5[x]/(x
2 + 3) = {ax+ b | a, b ∈ F5}

where again the bar represents the image under the quotient. It is also clear
that a1x+ b1 ̸= a2x+ b2 if (a1, b1) ̸= (a2, b2), because x2 + 3 is a polynomial of
degree 2, and hence cannot divide any polynomial of lesser degree. So, there
are 5× 5 = 25 choices for a, b above, showing that

|F5[x]/(x
2 + 3)| = 25

■
12. Artin Chapter 11: 5.3.
Solution. Wewill describe the ringobtainedbyadjoiningan inverseof 2 toZ/12Z.
This is equivalent to describing the ring

Z/12Z[x]
(2x− 1)

where the inverse of 2will be the element x, where as usual the bar represents
passing to the quotient.
Now by the Third Isomorphism Theorem, we see that

Z[x]
(12, 2x− 1)

∼=
Z/12Z[x]
(2x− 1)

where on the right hand side, 2x−1 ∈ Z/12Z[x] and on the left hand side, 2x−1 ∈
Z[x]. This is just a reiteration of the fact that we can introduce new relations in
any order, which we covered in Lecture 4. So, it is enough to describe the ring
Z[x]/(12, 2x− 1).
Now, observe that

12x− 6(2x− 1) = 6

This means that (12, 2x− 1) = (6, 2x− 1), because 6|12. Again, note that
6x− 3(2x− 1) = 3
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and hence (6, 2x− 1) = (3, 2x− 1) because 3|6. So, we have

Z[x]
(12, 2x− 1)

=
Z[x]

(3, 2x− 1)

The good thing now is that 3 is a prime in Z. Again by the Third Isomorphism
Theorem, we see that

Z[x]
(12, 2x− 1)

=
Z[x]

(3, 2x− 1)
∼=

F3[x]

(2x− 1)

where in the extreme right hand side, 2x − 1 ∈ F3[x]. Now, consider the evalu-
ation map F3[x]

eval2−1−−−−→ F3. This map is clearly surjective, and the kernel of this
map is (2x− 1). So, it follows that

F3[x]

(2x− 1)
∼= F3

So, it follows that adjoining an inverse of 2 to Z/12Z gives us F3. ■

13. Artin Chapter 11: 5.4 a and b

Solution. Consider the ring Z. We will describe the ring obtained by adjoining
an element α to Z with the given relations.
(a) 2α = 6, 6α = 15. This is equivalent to describing the ring

Z[x]
(2x− 6, 6x− 15)

First observe that
6x− 15− 3(2x− 6) = 3

and because 3|6x− 15, it follows that (2x− 6, 6x− 15) = (2x− 6, 3). As usual, by
the Third Isomorphism Theorem, we see that

Z[x]
(2x− 6, 6x− 15)

=
Z[x]

(2x− 6, 3)
∼=

F3[x]

2x

and this is because when we quotient Z[x] by the ideal (3), the image of 2x −
6 is 2x ∈ F3[x]. Again, consider the evaluation map F3[x]

eval0−−−→ F3, which is a
surjective map and its kernel is (x) = (2x). So we see that

F3[x]

2x
∼= F3

and this is the ring we obtain.
(b) 2α− 6 = 0, α− 10 = 0. This is equivalent to describing the ring

Z[x]
(2x− 6, x− 10)

Consider the evaluation map Z[x] eval10−−−→ Z which is clearly surjective and its
kernel is x− 10. So, we see that

Z[x]
(x− 10)

∼= Z
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Moreover, under this map, 2x − 6 is mapped to 20 − 6 = 14. So again, by the
Third Isomorphism Theorem, we see that

Z[x]
(2x− 6, x− 10)

∼=
Z

(14)
∼= Z/14Z

and hence this is the ring obtained. ■
14. Artin Chapter 11: 5.5 (Hint: consider maximal ideals.)
Solution. Yes, there is such a field F , but such a field F must have characteris-
tic 2. First, we prove that any field whose characteristic is not 2 cannot satisfy
the above isomorphism.
Suppose there is a field F such that

F [x]/(x2) ∼= F [x]/(x2 − 1)

So, the total number of ideals in both the rings given above must be the same.
By theCorrespondenceTheorem, there is an inclusion preserving bijection be-
tween ideals of F [x]/(x2) and ideals of F [x] containing (x2), and a similar state-
ment holds for F [x]/(x2 − 1). Also, we know that F [x] is a PID (infact a Euclidean
Domain) and hence every ideal of F [x] is principal.
Now, suppose (d(x)) is an ideal of F [x] containing (x2) for some d(x) ∈ F [x]. We
immediately see that deg d(x) ≤ 2. Now, if d(x) has degree 2, i.e

d(x) = ax2 + bx+ c

then there is some s ̸= 0 in F such that
x2 = s · (ax2 + bx+ c) = sax2 + sbx+ sc

implying that b = c = 0 and s = a−1. So, we see that d(x) = ax2, and because a is
a unit, we have (d(x)) = (x2). Next, suppose d(x) has degree 1, i.e

d(x) = ax+ b

Then, there are p, q ∈ F with p ̸= 0 such that
x2 = (px+ q)(ax+ b)

and this immediately implies that ap = 1, b + q = 0 and bq = 0, which in turn
implies that b = q = 0. In that case, we have d(x) = ax, and hence (d(x)) = (x).
Finally, if d(x) has degree 0, then d(x) must be a unit in F [x], and in that case
(d(x)) = F [x]. So, this shows that the only ideals of F [x] containing (x2) are F [x],
(x) and (x2), and hence the ring F [x]/(x2) has exactly three ideals.
However, observe that the ideals F [x], (x − 1), (x + 1) and (x2 − 1) are all

distinct ideals containing (x2 − 1) (because F does not have characteristic 2,
the ideals (x − 1) and (x + 1) are distinct because x − 1, x + 1 are not asso-
ciates). So, F [x]/(x2 − 1) has atleast four ideals. But, this contradicts the fact
that F [x]/(x2) ∼= F [x]/(x2 − 1), and hence there is no such field F .
Now, consider F = Z/2Z, which has characteristic 2. In this case, observe

that
x2 − 1 = (x− 1)(x+ 1) = (x+ 1)2

and hence we want to show that
F [x]/(x2) ∼= F [x]/((x+ 1)2)

First, consider the unique homomorphism F [x]
φ−→ F [x] such that x φ−→ x + 1. φ

is clearly an isomorphism, because it has an inverse map, namely the unique
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homomorphism F [x]
Φ−→ F [x] with x

Φ−→ x − 1 (this is very similar to what we did
in HW-1). Now, consider the natural projection map

F [x]
π−→ F [x]/((x+ 1)2)

which is a surjective homomorphism, and Ker π = (x+1)2. Composing this with
the map φ, we get the map π ◦ φ which can be represented as

F [x]
φ−→ F [x]

π−→ F [x]/((x+ 1)2)

Because both φ and π are surjective, we see that π ◦ φ is also surjective. So, by
the First Isomorphism Theorem, we see that

F [x]/Ker (π ◦ φ) ∼= F [x]/((x+ 1)2)

Now, we will show that Ker (π ◦ φ) = (x2), and that will finish our proof.
It is easy to see that Ker π ◦ φ = φ−1[((x + 1)2)]. So, it is enough to show that

φ−1[((x + 1)2)] = (x2). First, suppose p(x) ∈ (x2), so that p(x) = x2d(x) for some
d(x) ∈ F [x]. In that case, we have

φ(p(x)) = (x+ 1)2d(x+ 1) ∈ ((x+ 1)2)

and hence (x2) ⊆ φ−1[((x + 1)2)]. Conversely, suppose p(x) ∈ F [x] is such that
φ(p(x)) ∈ ((x+ 1)2), i.e p(x+ 1) = (x+ 1)2d(x) for some d(x) ∈ F [x]. Applying the
map Φ (the inverse of φ) to both sides, we see that

p(x) = (x− 1 + 1)2d(x− 1) ∈ (x2)

This completes the proof. ■

15. Artin Chapter 11: 8.2 b, c and d, also identify which of the given rings are
fields.

Solution. First, because R is a field, we know that R[x] is a PID.
(b) R[x]/(x2). Observe that (x2) is not a maximal ideal in R[x], since (x2) ⊂ (x),
hence R[x]/(x2) is not a field. Now by the Correspondence Theorem, there is
an inclusion preserving bijection between ideals of R[x]/(x2) and ideals of R[x]
containing (x2). It is easy to see that the only ideals of R[x] containing (x2) are
R[x], (x) and (x2) (the fact that R[x] is a PID comes in handy here). So, it follows
that (x)/(x2), which is an ideal of R[x]/(x2), is the only maximal ideal of R[x]/(x2).
(c) R[x]/(x2 − 3x+ 2). We see that

x2 − 3x+ 2 = (x− 1)(x− 2)

and hence (x2−3x+2) is not amaximal ideal inR[x], and so this ring is not a field.
We again rely on the Correspondence Theorem. Observe that the only ideals
of R[x]which contain (x2 − 3x+2) are R[x] , (x− 1) , (x− 2) and (x2 − 3x+2). The
ideals (x− 1) and (x− 2) are distinct since these two linear polynomials are not
associates. So, it follows that R[x]/(x2 − 3x+2) has twomaximal ideals, namely
(x− 1)/(x2 − 3x+ 2) and (x− 2)/(x2 − 3x+ 2).
(d) R[x]/(x2 + x+1). We will show that (x2 + x+1) is amaximal ideal in R[x], and
henceR[x]/(x2+x+1)will be a field. Now any non-trivial factor of x2+x+1must
be a linear polynomial, but that would mean that x2 + x + 1 has a root in R[x].
But it is easily seen that this is not true by the quadratic formula. So, (x2+x+1)
is a maximal ideal, and hence R[x]/(x2 + x + 1) is a field, meaning that the only
maximal ideal in this field is the 0 ideal. ■
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16. Artin Chapter 11: Suppose you are given a finite fieldE. Show that |E| = pn

for a prime number p. (Hints: (i) First identify p from F using the first isomor-
phism theorem. Which other ring should you use? (ii) If a field F is subfield of
a ring E, then note that E is in particular a vector space over F with the given
operations. We will use this repeatedly, especially when E is a field as well. In
particular we can consider dimension of E over F , which we call the degree of
E over F , denoted [E : F ].)

Solution. Consider the characteristic map Z char−−→ E, and let Ker char = pZ for
some p ∈ Z. Because E is a finite field, p = 0 is not possible (because Z is an
infinite set). Moreover, we know that p is the characteristic of the field E, and
since it is non-zero, it must be a prime (becauseE is an integral domain). By the
First Isomorphism Theorem, we see that

Z/(pZ) ∼= char(Z)
and hence E contains F = Z/pZ as a subfield. Because E is also a field, let
us prove that E is a vector space over F , where the action of F on E is simply
left-multiplication. We already know that E is an (additive) abelian group, so
we only need to check the compatibility of the action of F over E. But this is
an immediate consequence of the distributive law in E. So E is indeed a vector
space over F .
Now, suppose the dimension of E as a vector space is n. By basic vector

space theory we see that
E ∼= F n := F × F × ...× F

where the above isomorphism is a vector space isomorphism and since |F | = p,
we see that |E| = |p|n. This completes the proof. ■
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