HOMEWORK-2

SIDDHANT CHAUDHARY
BMC201953

Norm in Gaussian Integers. For any $a+i b \in \mathbb{Z}[i]$, define

$$
N(a+i b):=(a+i b)(a-i b)=a^{2}+b^{2}
$$

Then, we see that $N: \mathbb{Z}[i] \rightarrow \mathbb{Z}_{\geq 0}$. Moreover, observe the following chain of equalities.

$$
\begin{aligned}
N[(a+i b)(c+i d)] & =N[a c-b d+i(a d+b c)] \\
& =(a c-b d)^{2}+(a d+b c)^{2} \\
& =a^{2} c^{2}+b^{2} d^{2}+a^{2} d^{2}+b^{2} c^{2} \\
& =\left(a^{2}+b^{2}\right)\left(c^{2}+d^{2}\right) \\
& =N(a+i b) N(c+i d)
\end{aligned}
$$

and hence N is a multiplicative function. We can easily extend this norm to $\mathbb{Q}[i]$ by defining

$$
N(p+i q)=p^{2}+q^{2}
$$

where $p, q \in \mathbb{Q}$. By the same proof, this norm will also be multiplicative.
Theorem 0.1. $\mathbb{Z}[i]$ is a Euclidean Domain with respect to the above norm. More specifically, let $a, b \in \mathbb{Z}[i]$ with $a \neq 0$. Then, there are $q, r \in \mathbb{Z}[i]$ such that

$$
b=a q+r
$$

and

$$
0 \leq N(r) \leq \frac{N(a)}{2}
$$

Proof. The idea is simple. Suppose $b=c+i d$ and $a=e+i f$. Then, using multiplication by conjugates, write the fraction

$$
\frac{b}{a}=\frac{b \bar{a}}{N(a)}=g+i h
$$

where $g, h \in \mathbb{Q}$ are rational. Now, let p be the closest integer to g and let q be the closest integer to h. Then, we know that

$$
|g-p|,|h-q| \leq \frac{1}{2}
$$

So, our candidate is $q=p+i q$. Now, put

$$
r=b-a q
$$

Date: November 2020.
and we see that $b=a q+r$. Now, we have the following.

$$
\begin{aligned}
r & =b-a q \\
& =a(g+i h)-a(p+i q) \\
& =a[(g-p)+i(h-q)]
\end{aligned}
$$

and by the multiplicativity of the norm in $\mathbb{Q}[i]$, this implies

$$
\begin{aligned}
N(r) & =N(a) N[(g-p)+i(h-q)] \\
& =N(a)\left[(g-p)^{2}+(h-q)^{2}\right] \\
& \leq \frac{N(a)}{2}
\end{aligned}
$$

and this completes the proof.
Remark 0.1.1. In the following problems, I will heavily use the fact that

$$
\frac{R /(a)}{(\bar{b})} \cong \frac{R}{(a, b)} \cong \frac{R /(b)}{(\bar{a})}
$$

which was proven in Lecture 4 as a consequence of the Third Isomorphism Theorem. So instead of mentioning this every time, I will just say: by the Third Isomorphism Theorem.
11. Artin Chapter 11: 4.3 b and e (Here take identify to mean find cardinality and whether the ring is a field/integral domain. You can say more if you like.)
Solution. (b) $\mathbb{Z}[i] /(2+i)$. By Theorem 0.1 , we know that $\mathbb{Z}[i]$ is a PID as it is a Euclidean Domain. We first show that $(2+i)$ is a maximal ideal in $\mathbb{Z}[i]$. To see this, suppose $z \in \mathbb{Z}[i]$ is any factor of $2+i$. By the multiplicativity of the norm, it follows that

$$
N(z) \mid N(2+i)=1^{2}+2^{2}=5
$$

Since 5 is a prime in \mathbb{Z}, it follows that $N(z)=1$ or $N(z)=5$. Now again by the multiplicativity of the norm, it is easy to see that an element $z \in \mathbb{Z}[i]$ is a unit iff. $N(z)=1$. So, the above shows that any factor of $2+i$ is either a unit or an associate of $2+i$, implying that $2+i$ is an irreducible element. So, $(2+i)$ is a maximal ideal, and hence $\mathbb{Z}[i] /(2+i)$ is a field.

We now find the cardinality of this field, and we again use Theorem 0.1. Observe that $N(2+i)=5$, and hence any remainder modulo $2+i$ has norm atmost 2 (here we use the inequality $N(r) \leq 5 / 2$). Now the only elements of $\mathbb{Z}[i]$ with norm atmost 2 are

$$
0,1,-1, i,-i, 1+i, 1-i,-1+i,-1-i
$$

It can be easily seen that this list modulo $(2+i)$ can further be reduced to the list

$$
0,1,-1, i,-i
$$

because each of the elements $1+i, 1-i,-1+i$ and $-1-i$ are equal to of the elements in the above list modulo $(2+i)$. Finally, note that none of the elements in the list

$$
0,1,-1, i,-i
$$

are equal modulo $(2+i)$ which is easy to see by the multiplicativity of the norm, and hence it follows that

$$
\mathbb{Z}[i] /(2+i)=\{\overline{0}, \overline{1}, \overline{-1}, \bar{i}, \overline{-i}\}
$$

so that $|\mathbb{Z}[i] /(2+i)|=5$.
(e) $\mathbb{Z}[x] /\left(x^{2}+3,5\right)$. As covered in lecture 4, we can use the Third Isomorphism Theorem here. Observe that $\left(x^{2}+3,5\right)$ is an ideal containing (5). So, we see that

$$
\frac{\mathbb{Z}[x]}{\left(x^{2}+3,5\right)} \cong \frac{\mathbb{Z}[x] /(5)}{\left(x^{2}+3,5\right) /(5)}
$$

Observe that $\mathbb{Z}[x] /(5) \cong \mathbb{F}_{5}[x]$, as we proved in class. Moreover, the quotient $\left(x^{2}+3,5\right) /(5)$ will just be generated by the element $\overline{x^{2}+3}$ (where the bar represents passing to the quotient). So, we see that

$$
\frac{\mathbb{Z}[x]}{\left(x^{2}+3,5\right)} \cong \frac{\mathbb{Z}[x] /(5)}{\left(x^{2}+3,5\right) /(5)} \cong \frac{\mathbb{F}_{5}[x]}{\left(x^{2}+3\right)}
$$

Because \mathbb{F}_{5} is a field, $\mathbb{F}_{5}[x]$ is a PID. Now consider the ideal $\left(x^{2}+3\right)$. Note that any non-trivial factor of $x^{2}+3$ in $\mathbb{F}_{5}[x]$ must be a linear polynomial, which is equivalent to saying that $x^{2}+3$ has a root in \mathbb{F}_{5}. But this is clearly not the case. So, it follows that $x^{2}+3$ is an irreducible in $\mathbb{F}_{5}[x]$, and hence this implies that $\left(x^{2}+3\right)$ is a maximal ideal in this ring (and this is where $\mathbb{F}_{5}[x]$ being a PID helps). Now, $\mathbb{F}_{5}[x] /\left(x^{2}+3\right)$ is a field. Finding the cardinality of this field is not hard. By Euclidean Division, any polynomial in $\mathbb{F}_{5}[x]$ is equal to some polynomial of degree atmost 1 modulo ($x^{2}+3$). So, this means

$$
\mathbb{F}_{5}[x] /\left(x^{2}+3\right)=\left\{\overline{a x+b} \mid a, b \in \mathbb{F}_{5}\right\}
$$

where again the bar represents the image under the quotient. It is also clear that $\overline{a_{1} x+b_{1}} \neq \overline{a_{2} x+b_{2}}$ if $\left(a_{1}, b_{1}\right) \neq\left(a_{2}, b_{2}\right)$, because $x^{2}+3$ is a polynomial of degree 2 , and hence cannot divide any polynomial of lesser degree. So, there are $5 \times 5=25$ choices for a, b above, showing that

$$
\left|\mathbb{F}_{5}[x] /\left(x^{2}+3\right)\right|=25
$$

12. Artin Chapter 11: 5.3.

Solution. We will describe the ring obtained by adjoining an inverse of 2 to $\mathbb{Z} / 12 \mathbb{Z}$. This is equivalent to describing the ring

$$
\frac{\mathbb{Z} / 12 \mathbb{Z}[x]}{(2 x-1)}
$$

where the inverse of 2 will be the element \bar{x}, where as usual the bar represents passing to the quotient.

Now by the Third Isomorphism Theorem, we see that

$$
\frac{\mathbb{Z}[x]}{(12,2 x-1)} \cong \frac{\mathbb{Z} / 12 \mathbb{Z}[x]}{(2 x-1)}
$$

where on the right hand side, $2 x-1 \in \mathbb{Z} / 12 \mathbb{Z}[x]$ and on the left hand side, $2 x-1 \in$ $\mathbb{Z}[x]$. This is just a reiteration of the fact that we can introduce new relations in any order, which we covered in Lecture 4. So, it is enough to describe the ring $\mathbb{Z}[x] /(12,2 x-1)$.

Now, observe that

$$
12 x-6(2 x-1)=6
$$

This means that $(12,2 x-1)=(6,2 x-1)$, because $6 \mid 12$. Again, note that

$$
6 x-3(2 x-1)=3
$$

and hence $(6,2 x-1)=(3,2 x-1)$ because $3 \mid 6$. So, we have

$$
\frac{\mathbb{Z}[x]}{(12,2 x-1)}=\frac{\mathbb{Z}[x]}{(3,2 x-1)}
$$

The good thing now is that 3 is a prime in \mathbb{Z}. Again by the Third Isomorphism Theorem, we see that

$$
\frac{\mathbb{Z}[x]}{(12,2 x-1)}=\frac{\mathbb{Z}[x]}{(3,2 x-1)} \cong \frac{\mathbb{F}_{3}[x]}{(2 x-1)}
$$

where in the extreme right hand side, $2 x-1 \in \mathbb{F}_{3}[x]$. Now, consider the evaluation map $\mathbb{F}_{3}[x] \xrightarrow{\text { eval }_{2}-1} \mathbb{F}_{3}$. This map is clearly surjective, and the kernel of this map is $(2 x-1)$. So, it follows that

$$
\frac{\mathbb{F}_{3}[x]}{(2 x-1)} \cong \mathbb{F}_{3}
$$

So, it follows that adjoining an inverse of 2 to $\mathbb{Z} / 12 \mathbb{Z}$ gives us \mathbb{F}_{3}.
13. Artin Chapter 11: 5.4 a and b

Solution. Consider the ring \mathbb{Z}. We will describe the ring obtained by adjoining an element α to \mathbb{Z} with the given relations.
(a) $2 \alpha=6,6 \alpha=15$. This is equivalent to describing the ring

$$
\frac{\mathbb{Z}[x]}{(2 x-6,6 x-15)}
$$

First observe that

$$
6 x-15-3(2 x-6)=3
$$

and because $3 \mid 6 x-15$, it follows that $(2 x-6,6 x-15)=(2 x-6,3)$. As usual, by the Third Isomorphism Theorem, we see that

$$
\frac{\mathbb{Z}[x]}{(2 x-6,6 x-15)}=\frac{\mathbb{Z}[x]}{(2 x-6,3)} \cong \frac{\mathbb{F}_{3}[x]}{2 x}
$$

and this is because when we quotient $\mathbb{Z}[x]$ by the ideal (3), the image of $2 x-$ 6 is $2 x \in \mathbb{F}_{3}[x]$. Again, consider the evaluation map $\mathbb{F}_{3}[x] \xrightarrow{\text { eval }_{0}} \mathbb{F}_{3}$, which is a surjective map and its kernel is $(x)=(2 x)$. So we see that

$$
\frac{\mathbb{F}_{3}[x]}{2 x} \cong \mathbb{F}_{3}
$$

and this is the ring we obtain.
(b) $2 \alpha-6=0, \alpha-10=0$. This is equivalent to describing the ring

$$
\frac{\mathbb{Z}[x]}{(2 x-6, x-10)}
$$

Consider the evaluation map $\mathbb{Z}[x] \xrightarrow{\text { eval }_{10}} \mathbb{Z}$ which is clearly surjective and its kernel is $x-10$. So, we see that

$$
\frac{\mathbb{Z}[x]}{(x-10)} \cong \mathbb{Z}
$$

Moreover, under this map, $2 x-6$ is mapped to $20-6=14$. So again, by the Third Isomorphism Theorem, we see that

$$
\frac{\mathbb{Z}[x]}{(2 x-6, x-10)} \cong \frac{\mathbb{Z}}{(14)} \cong \mathbb{Z} / 14 \mathbb{Z}
$$

and hence this is the ring obtained.

14. Artin Chapter 11: 5.5 (Hint: consider maximal ideals.)

Solution. Yes, there is such a field F, but such a field F must have characteristic 2 . First, we prove that any field whose characteristic is not 2 cannot satisfy the above isomorphism.

Suppose there is a field F such that

$$
F[x] /\left(x^{2}\right) \cong F[x] /\left(x^{2}-1\right)
$$

So, the total number of ideals in both the rings given above must be the same. By the Correspondence Theorem, there is an inclusion preserving bijection between ideals of $F[x] /\left(x^{2}\right)$ and ideals of $F[x]$ containing $\left(x^{2}\right)$, and a similar statement holds for $F[x] /\left(x^{2}-1\right)$. Also, we know that $F[x]$ is a PID (infact a Euclidean Domain) and hence every ideal of $F[x]$ is principal.
Now, suppose $(d(x))$ is an ideal of $F[x]$ containing $\left(x^{2}\right)$ for some $d(x) \in F[x]$. We immediately see that $\operatorname{deg} d(x) \leq 2$. Now, if $d(x)$ has degree 2 , i.e

$$
d(x)=a x^{2}+b x+c
$$

then there is some $s \neq 0$ in F such that

$$
x^{2}=s \cdot\left(a x^{2}+b x+c\right)=s a x^{2}+s b x+s c
$$

implying that $b=c=0$ and $s=a^{-1}$. So, we see that $d(x)=a x^{2}$, and because a is a unit, we have $(d(x))=\left(x^{2}\right)$. Next, suppose $d(x)$ has degree 1, i.e

$$
d(x)=a x+b
$$

Then, there are $p, q \in F$ with $p \neq 0$ such that

$$
x^{2}=(p x+q)(a x+b)
$$

and this immediately implies that $a p=1, b+q=0$ and $b q=0$, which in turn implies that $b=q=0$. In that case, we have $d(x)=a x$, and hence $(d(x))=(x)$. Finally, if $d(x)$ has degree 0 , then $d(x)$ must be a unit in $F[x]$, and in that case $(d(x))=F[x]$. So, this shows that the only ideals of $F[x]$ containing $\left(x^{2}\right)$ are $F[x]$, (x) and $\left(x^{2}\right)$, and hence the ring $F[x] /\left(x^{2}\right)$ has exactly three ideals.

However, observe that the ideals $F[x],(x-1),(x+1)$ and $\left(x^{2}-1\right)$ are all distinct ideals containing $\left(x^{2}-1\right)$ (because F does not have characteristic 2, the ideals $(x-1)$ and $(x+1)$ are distinct because $x-1, x+1$ are not associates). So, $F[x] /\left(x^{2}-1\right)$ has atleast four ideals. But, this contradicts the fact that $F[x] /\left(x^{2}\right) \cong F[x] /\left(x^{2}-1\right)$, and hence there is no such field F.

Now, consider $F=\mathbb{Z} / 2 \mathbb{Z}$, which has characteristic 2 . In this case, observe that

$$
x^{2}-1=(x-1)(x+1)=(x+1)^{2}
$$

and hence we want to show that

$$
F[x] /\left(x^{2}\right) \cong F[x] /\left((x+1)^{2}\right)
$$

First, consider the unique homomorphism $F[x] \xrightarrow{\varphi} F[x]$ such that $x \xrightarrow{\varphi} x+1 . \varphi$ is clearly an isomorphism, because it has an inverse map, namely the unique
homomorphism $F[x] \xrightarrow{\Phi} F[x]$ with $x \xrightarrow{\Phi} x-1$ (this is very similar to what we did in HW-1). Now, consider the natural projection map

$$
F[x] \xrightarrow{\pi} F[x] /\left((x+1)^{2}\right)
$$

which is a surjective homomorphism, and $\operatorname{Ker} \pi=(x+1)^{2}$. Composing this with the map φ, we get the map $\pi \circ \varphi$ which can be represented as

$$
F[x] \xrightarrow{\varphi} F[x] \xrightarrow{\pi} F[x] /\left((x+1)^{2}\right)
$$

Because both φ and π are surjective, we see that $\pi \circ \varphi$ is also surjective. So, by the First Isomorphism Theorem, we see that

$$
F[x] / \operatorname{Ker}(\pi \circ \varphi) \cong F[x] /\left((x+1)^{2}\right)
$$

Now, we will show that $\operatorname{Ker}(\pi \circ \varphi)=\left(x^{2}\right)$, and that will finish our proof.
It is easy to see that $\operatorname{Ker} \pi \circ \varphi=\varphi^{-1}\left[\left((x+1)^{2}\right)\right]$. So, it is enough to show that $\varphi^{-1}\left[\left((x+1)^{2}\right)\right]=\left(x^{2}\right)$. First, suppose $p(x) \in\left(x^{2}\right)$, so that $p(x)=x^{2} d(x)$ for some $d(x) \in F[x]$. In that case, we have

$$
\varphi(p(x))=(x+1)^{2} d(x+1) \in\left((x+1)^{2}\right)
$$

and hence $\left(x^{2}\right) \subseteq \varphi^{-1}\left[\left((x+1)^{2}\right)\right]$. Conversely, suppose $p(x) \in F[x]$ is such that $\varphi(p(x)) \in\left((x+1)^{2}\right)$, i.e $p(x+1)=(x+1)^{2} d(x)$ for some $d(x) \in F[x]$. Applying the map Φ (the inverse of φ) to both sides, we see that

$$
p(x)=(x-1+1)^{2} d(x-1) \in\left(x^{2}\right)
$$

This completes the proof.
15. Artin Chapter 11: $8.2 \mathrm{~b}, \mathrm{c}$ and d, also identify which of the given rings are fields.

Solution. First, because \mathbb{R} is a field, we know that $\mathbb{R}[x]$ is a PID.
(b) $\mathbb{R}[x] /\left(x^{2}\right)$. Observe that $\left(x^{2}\right)$ is not a maximal ideal in $\mathbb{R}[x]$, since $\left(x^{2}\right) \subset(x)$, hence $\mathbb{R}[x] /\left(x^{2}\right)$ is not a field. Now by the Correspondence Theorem, there is an inclusion preserving bijection between ideals of $\mathbb{R}[x] /\left(x^{2}\right)$ and ideals of $\mathbb{R}[x]$ containing $\left(x^{2}\right)$. It is easy to see that the only ideals of $\mathbb{R}[x]$ containing $\left(x^{2}\right)$ are $\mathbb{R}[x],(x)$ and $\left(x^{2}\right)$ (the fact that $\mathbb{R}[x]$ is a PID comes in handy here). So, it follows that $(x) /\left(x^{2}\right)$, which is an ideal of $\mathbb{R}[x] /\left(x^{2}\right)$, is the only maximal ideal of $\mathbb{R}[x] /\left(x^{2}\right)$. (c) $\mathbb{R}[x] /\left(x^{2}-3 x+2\right)$. We see that

$$
x^{2}-3 x+2=(x-1)(x-2)
$$

and hence $\left(x^{2}-3 x+2\right)$ is not a maximal ideal in $\mathbb{R}[x]$, and so this ring is not a field. We again rely on the Correspondence Theorem. Observe that the only ideals of $\mathbb{R}[x]$ which contain $\left(x^{2}-3 x+2\right)$ are $\mathbb{R}[x],(x-1),(x-2)$ and $\left(x^{2}-3 x+2\right)$. The ideals $(x-1)$ and $(x-2)$ are distinct since these two linear polynomials are not associates. So, it follows that $\mathbb{R}[x] /\left(x^{2}-3 x+2\right)$ has two maximal ideals, namely $(x-1) /\left(x^{2}-3 x+2\right)$ and $(x-2) /\left(x^{2}-3 x+2\right)$.
(d) $\mathbb{R}[x] /\left(x^{2}+x+1\right)$. We will show that $\left(x^{2}+x+1\right)$ is a maximal ideal in $\mathbb{R}[x]$, and hence $\mathbb{R}[x] /\left(x^{2}+x+1\right)$ will be a field. Now any non-trivial factor of $x^{2}+x+1$ must be a linear polynomial, but that would mean that $x^{2}+x+1$ has a root in $\mathbb{R}[x]$. But it is easily seen that this is not true by the quadratic formula. So, $\left(x^{2}+x+1\right)$ is a maximal ideal, and hence $R[x] /\left(x^{2}+x+1\right)$ is a field, meaning that the only maximal ideal in this field is the 0 ideal.
16. Artin Chapter 11: Suppose you are given a finite field E. Show that $|E|=p^{n}$ for a prime number p. (Hints: (i) First identify p from F using the first isomorphism theorem. Which other ring should you use? (ii) If a field F is subfield of a ring E, then note that E is in particular a vector space over F with the given operations. We will use this repeatedly, especially when E is a field as well. In particular we can consider dimension of E over F, which we call the degree of E over F, denoted $[E: F]$.)

Solution. Consider the characteristic map $\mathbb{Z} \xrightarrow{\text { char }} E$, and let Ker char $=p \mathbb{Z}$ for some $p \in \mathbb{Z}$. Because E is a finite field, $p=0$ is not possible (because \mathbb{Z} is an infinite set). Moreover, we know that p is the characteristic of the field E, and since it is non-zero, it must be a prime (because E is an integral domain). By the First Isomorphism Theorem, we see that

$$
\mathbb{Z} /(p \mathbb{Z}) \cong \operatorname{char}(\mathbb{Z})
$$

and hence E contains $F=\mathbb{Z} / p \mathbb{Z}$ as a subfield. Because E is also a field, let us prove that E is a vector space over F, where the action of F on E is simply left-multiplication. We already know that E is an (additive) abelian group, so we only need to check the compatibility of the action of F over E. But this is an immediate consequence of the distributive law in E. So E is indeed a vector space over F.

Now, suppose the dimension of E as a vector space is n. By basic vector space theory we see that

$$
E \cong F^{n}:=F \times F \times \ldots \times F
$$

where the above isomorphism is a vector space isomorphism and since $|F|=p$, we see that $|E|=|p|^{n}$. This completes the proof.

