
HOMEWORK-3

SIDDHANT CHAUDHARY
BMC201953

17. Suppose that R is an integral domain containing a field F such that R is a
finite dimensional vector space over F . Show that R itself must be a field. Hint:
Imitate the proof of Artin Chapter 11 problem 7.1 that we did in Lecture 2. First
show that the appropriate map is linear as a map of F -vector spaces.

Solution. It is enough to show that every non-zero element of R is a unit, since
R is already given to be an integral domain. Suppose

dimF R = n

Now suppose x ∈ R such that x 6= 0. First, we claim that x is not nilpotent. For
the sake of contradiction, suppose x is nilpotent. Then, the set

{k > 0 | xk = 0}
is non-empty, and hence contains a least element by the Well-Ordering Prin-
ciple. Since x 6= 0, this least element is > 1. If this least element is k, then we
have

0 = xk = x · xk−1

which contradicts the fact that R is an integral domain. So, x is not nilpotent.
Now consider the n+ 1 non-zero elements

1, x, x2, ..., xn

which must be linearly dependent. So, there are a0, a1, ..., an ∈ F not all zero
such that

a0 + a1x+ ...+ anx
n = 0

Let 0 ≤ k < n be the smallest index for which ak 6= 0 (k < n because R is an
integral domain and x 6= 0). Moreover, observe that atleast two of the a′is must
be non-zero because x 6= 0 and R is an integral domain. So, the above equation
reads

akx
k + ...+ anx

n = 0

which can be written as
xk(ak + ...+ anx

n−k) = 0

and hence we have
ak + ...+ anx

n−k = 0

So, we have
ak = −ak+1x− ...− anx

n−k = x(−ak+1 − ...− anx
n−k−1)

and multiplying both sides by a−1
k , we see that x is a unit. This completes our

proof and shows that R is indeed a field. ■
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18. Chinese Remainder Theorem. Let I and J be ideals of a ring R. Suppose
I + J = R (we say in this case that I and J are coprime). Show that R/? ∼=
R/I × R/J . Identify what ? is and identify the idempotents corresponding to
the product decomposition (compare Artin Chapter 11 problem 6.8. The ideal
? measures the non-uniqueness of solutions).
Solution. Let I1, I2 be ideals of a ring R such that

I1 + I2 = R

Then it is true that
I1I2 = I1 ∩ I2

Moreover the homomorphism R
φ−→ R/I1 ×R/I2 given by

ϕ(s) = (s+ I1, s+ I2)

is surjective, and hence by the First Isomorphism Theorem it follows that
R/(I1I2) = R/(I1 ∩ I2) ∼= R/I1 ×R/I2

So, it follows that
? = I1 ∩ I2 = I1I2

The claim about the intersection of the ideals being equal to their product is
proven in part (i) of problem 19. below. So I will only prove the surjectivity of
the map in question here.
As a first observation, the fact that ϕ is indeed a ring homomorphism is clear

because each quotient map is a ring homomorphism. Now, let (a1+ I1, a2+ I2) ∈
R/I1 ×R/I2 be any element. We need to show that there is some element s ∈ R
such that

(s+ I1, s+ I2) = (a1 + I1, a2 + I2)

which is equivalent to showing that
s ≡ a1(mod I1)(†)
s ≡ a2(mod I2)

We will first find elements s1, s2 ∈ R such that
s1 = 1(mod I1) , s1 = 0(mod I2)
s2 = 0(mod I1) , s2 = 1(mod I2)

To do this, observe that we have
I1 + I2 = R

This means that there are x ∈ I1, y ∈ I2 such that x + y = 1. I claim that s1 = y
and s2 = x are the required elements, and this is immediate by the fact that
x+ y = 1.
Finally having found s1, s2, we put

s = a1s1 + a2s2

It is then easy to see that s satisfies the system of equations (†). This completes
the proof of surjectivity of the given map, and hence the proof of CRT.
Now by the CRT we know that if I, J are coprime ideals then

R/(IJ) = R/(I ∩ J) ∼= R/I ×R/J

Let us identify the idempotents corresponding to this product decomposition.
From Lecture 5, we know that the idempotents corresponding to the product
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R/I×R/J are (1I , 0) and (0, 1J), where 1I ∈ R/I and 1J ∈ R/J are the respective
identity elements. To find these, let x ∈ I, y ∈ J be elements of R with x+ y = 1.
Then observe that x = 1(mod J ), and hence x+ J is the identity element of R/J .
Similarly, y + I is the identity element of R/I . So, the idempotents are (y + I, 0)
and (0, x+ J). ■
19. Suppose I and J are coprime ideals of a ring R.
(i) Show that if I + J = R then IJ = I ∩ J . You may refer to problem 18.
Solution. Let I1, I2 be coprime ideals of a ring R. Here we will show that

I1 · I2 = I1 ∩ I2

Because I1, I2 are coprime, there are elements x ∈ I1, y ∈ I2 such that x+ y = 1.
First, suppose a ∈ I1 ∩ I2. Then, we can write

ax+ ay = a

and the LHS is clearly in I1 · I2, and hence a ∈ I1 · I2. This shows I1 ∩ I2 ⊆ I1 · I2.
Conversely, suppose a ∈ I1 · I2, and hence

a =
n∑

i=1

aibi

where ai ∈ I1, bi ∈ I2 for each iandn ∈ N. Because ai ∈ I1 for each iandbecause
I1 is an ideal, it follows that aibi ∈ I1 for each i, and hence a ∈ I1. Similarly, it can
be shown that a ∈ I2, so that a ∈ I1∩I2, and hence I1 ·I2 ⊆ I1∩I2. This completes
the proof. ■
(ii) For principal ideals in a domain show that a sort of converse holds: if aR ∩
bR = abR then gcd(a, b) exists and is 1. Deduce that if R is a PID, then converse
to (i) is true.
Solution. Let a, b be non-zero elements of R such that aR ∩ bR = abR. We will
show that gcd(a, b) exists and is equal to 1. To show that gcd(a, b) is 1, it is enough
to show that any common divisor of a and b must be a unit. For the sake of
contradiction, suppose d is a non-unit common divisor of a, b. So, we have that

a = k1d

b = k2d

for some k1, k2 ∈ R. Now consider the element k1k2d. Clearly, this is a common
multiple of a, b and hence lies in the intersection aR ∩ bR. So, we see that

k1k2d = mab

for somem ∈ R. This is the same as the equation
k2a = mab

Since a 6= 0 and R is an integral domain, we can cancel a from either side of the
equation to get

k2 = mb

Substituting in the original equation, we get
b = mbd

and again since b 6= 0, cancelling it from both sides we get
1 = md
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which contradicts that d is not a unit. So, every common factor of a, b must be
a unit, and hence gcd(a, b) exists and is equal to 1.
Now suppose R is a PID, and we show that the converse to (i)will hold. So let

I, J be non-zero ideals of R such that IJ = I ∩ J . Also, suppose I = aR, J = bR,
and this equation will mean

aR ∩ bR = abR

Applying the result we just proved, we see that gcd(a, b) = 1. However, we know
that (a, b) = (d) for some d ∈ R, and hence it follows that d must be a unit. This
implies that aR + bR = I + J = R, and this proves the converse. ■
(iii) In general converse to (i) is not true. Give an example in Z[x] (which even
has unique factorization into primes, as we will see).

Solution. The counterexample is easy to give. Let I = (2) and let J = (3x),
where R = Z[x]. Observe that I is the set of all polynomials in Z[x] with even
coefficients, and J is the set of all polynomialswith zero constant termand such
that each coefficient is a multiple of 3. It then immediately follows that

I ∩ J = (6x) = I · J
However, we claim that I+J 6= R. For the sake of contradiction, suppose I+J =
R, which means that (2, 3x) = R. This would imply that 1 can be written as a
linear combination of 2 and 3x, i.e

1 = 2p(x) + q(x)3x

But this is a contraidiction; observe that 2p(x) is a polynomial with even coeffi-
cients, and q(x)3x has no constant term. So, I + J 6= R and this is the required
counterexample. ■

20. Artin Chapter 11: M.4 (Do both parts but submit only part a.)
Solution. In this exercise we will classify rings that satisfy a certain criterion.
(a) Rings that contain C and have dimension 2 as a vector space over C. Let R
be such a ring. Because R contains C, there is an inclusion C ↪→ R, which we
will use. First we choose a basis of R. So let {1, r} be a basis of R, and clearly
r ∈ R − C, because all elements of C are C multiples of 1. Now, consider the
unique ring homomorphism C[x] φ−→ R which restricts to the inclusion on C and
maps x 7→ r. Since C[x] is a PID, Ker ϕ = (f(x)) for some polynomial f(x) ∈ C[x].
By the First Isomorphism Theorem, we have

R ∼=
C[x]
(f(x))

Note that the above isomorphism also gives us a vector space isomorphism.
Now we know that C[x]/(f(x)) is a C-vector space of dimension n, where n =
deg(f(x)) (this was proven in Lecture 5). Since dimR = 2, we must have that
deg(f(x)) = 2, i.e f(x) is a quadratic polynomial.
Now, we know that C is algebraically closed, and hence every polynomial

completely factors into linear factors in C[x]. Now there are two cases to han-
dle.

(1) In the first case, f(x) = a(x − c)2 for some c ∈ R and a 6= 0, i.e f has
a double root in C. So, we see that (f(x)) = ((x − c)2). Now, it is not
hard to see that the quotient C[x]/((x− c)2) is isomorphic to the quotient
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C[x]/(x2); consider the map C[x] Ψ−→ C[x] given by Ψ(x) = x− c. Compose
this with the quotient map: C[x] Ψ−→ C[x] π−→ C[x]/((x− c)2), and from here
the argument is very similar to what we did in HW-2 problem 14. So, in
this case we see that R ∼= C[x]/((x− c)2) ∼= C[x]/(x2).

(2) In the second case, f(x) = a(x− c1)(x− c2) where c1 6= c2 and a 6= 0, i.e f
has two distinct roots in C. So we observe that (f(x)) = ((x− c1)(x− c2)).
Now, consider the two ideals (x− c1) and (x− c2). We have

(x− c2)− (x− c1) = c1 − c2 6= 0

and hence multiplying by (c1 − c2)
−1 on both sides, we see that the ideals

(x− c1), (x− c2) are coprime. Note that ((x− c1)(x− c2)) = (x− c1) · (x− c2)
(product of ideals), which is immediate. So by the CRT which is proven in
problem 18., we see that
C[x]
(f(x))

=
C[x]

((x− c1)(x− c2))
=

C[x]
(x− c1) · (x− c2)

∼=
C[x]

(x− c1)
× C[x]

(x− c2)

Moreover, both of the ringsC[x]/(x−c1) andC[x]/(x−c2) are isomorphic
to C via the evaluation maps at c1 and c2 respectively. So in this case, we
see that R ∼= C2.

So the only rings having this property are C2 and C[x]/(x2). ■

21. Artin Chapter 12: 1.5.
Solution. Suppose a, b ∈ Z are coprime integers. We will show that there are
integersm,n such that

am + bn = 1(mod ab)
Because a, b are coprime, by the CRT we know that

Z/abZ ∼= Z/aZ× Z/bZ
Now the image of a inZ/aZ×Z/bZ is (0, amod b) and the image of b inZ/aZ×Z/bZ
is (bmod a, 0). So, we just need to show that there are integersm,n such that

(bmod a, 0)n + (0, amod b)m = 1 in Z/aZ× Z/bZ
because the same m,n will work for the images of a, b in Z/abZ. This helps be-
causewe can nowwork individually with components inZ/aZ andZ/bZ respec-
tively.
Because a, b are coprime, b is a unit in Z/aZ, i.e b is an element of the multi-

plicative group of units (Z/aZ)×. This group has order ϕ(a), and hence by La-
grange’s Theorem we see that

(b(mod a))φ(a) = bφ(a)(mod a) = 1(mod a)
So we can put n = ϕ(a). Similarly, we can put m = ϕ(b). This proves the exis-
tence of such integersm,n. ■

22. Artin Chapter 12: 5.6.
Solution. Suppose R = Z[

√
−3]. We will show that an integer p is prime in R iff.

the polynomial x2 + 3 is irreducible in Fp[x].
Our first observation is that

Z[x]
(x2 + 3)

∼= Z[
√
−3]
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To prove this, consider the unique homomorphism Z[x] φ−→ Z[
√
−3] given by x 7→√

−3 and that restricts to the identity on Z. This homomorphism is surjective
because given any a+ b

√
−3 ∈ Z[

√
−3], we see that

ϕ(a+ bx) = a+ b
√
−3

As I proved in HW-1, the kernel of this mapmust be a principal ideal in Z[x], and
the kernel is infact (x2 + 3). So this proves the required isomorphism.
Now, suppose an integer p is prime in Z[

√
−3]. This happens if and only if

Z[
√
−3]/(p) is an integral domain. By the above isomorphism, this is true if and

only if the ring
Z[x]/(x2 + 3)

(p)
∼=

Z[x]
(p, x2 + 3)

∼=
Fp[x]

(x2 + 3)

is an integral domain, where in the extreme right side x2 + 3 ∈ Fp[x] (we used
the fact that the order of taking quotients does not matter; this was proved in
Lecture 4 and I also mentioned it in HW-2). But again, this is true if and only if
the polynomial x2+3 is prime in Fp[x]. So, it is enough to show that x2+3 is prime
in Fp[x] if and only if it is irreducible.
One direction is clear: if x2 + 3 is irreducible in Fp[x], then the ideal (x2 + 3) is

maximal (because Fp[x] is a PID) and hence it is prime, because maximal ideals
are prime as well. For the converse, suppose x2 +3 is a prime element. For the
sake of contradiction, suppose x2+3was reducible, i.e it factors into linear fac-
tors in Fp[x]. But, this is a contradiction to the fact that x2 + 3 is prime, because
x2 + 3 being a quadratic polynomial cannot divide either of its linear divisors.
Hence, x2 + 3must be irreducible. This completes the proof. ■
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