HOMEWORK-3

SIDDHANT CHAUDHARY
BMC201953
17. Suppose that R is an integral domain containing a field F such that R is a finite dimensional vector space over F. Show that R itself must be a field. Hint: Imitate the proof of Artin Chapter 11 problem 7.1 that we did in Lecture 2. First show that the appropriate map is linear as a map of F-vector spaces.

Solution. It is enough to show that every non-zero element of R is a unit, since R is already given to be an integral domain. Suppose

$$
\operatorname{dim}_{F} R=n
$$

Now suppose $x \in R$ such that $x \neq 0$. First, we claim that x is not nilpotent. For the sake of contradiction, suppose x is nilpotent. Then, the set

$$
\left\{k>0 \mid x^{k}=0\right\}
$$

is non-empty, and hence contains a least element by the Well-Ordering Principle. Since $x \neq 0$, this least element is >1. If this least element is k, then we have

$$
0=x^{k}=x \cdot x^{k-1}
$$

which contradicts the fact that R is an integral domain. So, x is not nilpotent.
Now consider the $n+1$ non-zero elements

$$
1, x, x^{2}, \ldots, x^{n}
$$

which must be linearly dependent. So, there are $a_{0}, a_{1}, \ldots, a_{n} \in F$ not all zero such that

$$
a_{0}+a_{1} x+\ldots+a_{n} x^{n}=0
$$

Let $0 \leq k<n$ be the smallest index for which $a_{k} \neq 0(k<n$ because R is an integral domain and $x \neq 0$). Moreover, observe that atleast two of the $a_{i}^{\prime} s$ must be non-zero because $x \neq 0$ and R is an integral domain. So, the above equation reads

$$
a_{k} x^{k}+\ldots+a_{n} x^{n}=0
$$

which can be written as

$$
x^{k}\left(a_{k}+\ldots+a_{n} x^{n-k}\right)=0
$$

and hence we have

$$
a_{k}+\ldots+a_{n} x^{n-k}=0
$$

So, we have

$$
a_{k}=-a_{k+1} x-\ldots-a_{n} x^{n-k}=x\left(-a_{k+1}-\ldots-a_{n} x^{n-k-1}\right)
$$

and multiplying both sides by a_{k}^{-1}, we see that x is a unit. This completes our proof and shows that R is indeed a field.
18. Chinese Remainder Theorem. Let I and J be ideals of a ring R. Suppose $I+J=R$ (we say in this case that I and J are coprime). Show that $R / ? \cong$ $R / I \times R / J$. Identify what? is and identify the idempotents corresponding to the product decomposition (compare Artin Chapter 11 problem 6.8. The ideal ? measures the non-uniqueness of solutions).

Solution. Let I_{1}, I_{2} be ideals of a ring R such that

$$
I_{1}+I_{2}=R
$$

Then it is true that

$$
I_{1} I_{2}=I_{1} \cap I_{2}
$$

Moreover the homomorphism $R \xrightarrow{\varphi} R / I_{1} \times R / I_{2}$ given by

$$
\varphi(s)=\left(s+I_{1}, s+I_{2}\right)
$$

is surjective, and hence by the First Isomorphism Theorem it follows that

$$
R /\left(I_{1} I_{2}\right)=R /\left(I_{1} \cap I_{2}\right) \cong R / I_{1} \times R / I_{2}
$$

So, it follows that

$$
?=I_{1} \cap I_{2}=I_{1} I_{2}
$$

The claim about the intersection of the ideals being equal to their product is proven in part (i) of problem 19. below. So I will only prove the surjectivity of the map in question here.

As a first observation, the fact that φ is indeed a ring homomorphism is clear because each quotient map is a ring homomorphism. Now, let $\left(a_{1}+I_{1}, a_{2}+I_{2}\right) \in$ $R / I_{1} \times R / I_{2}$ be any element. We need to show that there is some element $s \in R$ such that

$$
\left(s+I_{1}, s+I_{2}\right)=\left(a_{1}+I_{1}, a_{2}+I_{2}\right)
$$

which is equivalent to showing that

$$
\begin{align*}
s & \equiv a_{1}\left(\bmod I_{1}\right) \\
s & \equiv a_{2}\left(\bmod I_{2}\right)
\end{align*}
$$

We will first find elements $s_{1}, s_{2} \in R$ such that

$$
\begin{array}{lll}
s_{1}=1\left(\bmod I_{1}\right) & , & s_{1}=0\left(\bmod I_{2}\right) \\
s_{2}=0\left(\bmod I_{1}\right) & , & s_{2}=1\left(\bmod I_{2}\right)
\end{array}
$$

To do this, observe that we have

$$
I_{1}+I_{2}=R
$$

This means that there are $x \in I_{1}, y \in I_{2}$ such that $x+y=1$. I claim that $s_{1}=y$ and $s_{2}=x$ are the required elements, and this is immediate by the fact that $x+y=1$.

Finally having found s_{1}, s_{2}, we put

$$
s=a_{1} s_{1}+a_{2} s_{2}
$$

It is then easy to see that s satisfies the system of equations (\dagger). This completes the proof of surjectivity of the given map, and hence the proof of CRT.

Now by the CRT we know that if I, J are coprime ideals then

$$
R /(I J)=R /(I \cap J) \cong R / I \times R / J
$$

Let us identify the idempotents corresponding to this product decomposition. From Lecture 5, we know that the idempotents corresponding to the product
$R / I \times R / J$ are $\left(1_{I}, 0\right)$ and $\left(0,1_{J}\right)$, where $1_{I} \in R / I$ and $1_{J} \in R / J$ are the respective identity elements. To find these, let $x \in I, y \in J$ be elements of R with $x+y=1$. Then observe that $x=1(\bmod J)$, and hence $x+J$ is the identity element of R / J. Similarly, $y+I$ is the identity element of R / I. So, the idempotents are ($y+I, 0$) and $(0, x+J)$.
19. Suppose I and J are coprime ideals of a ring R.
(i) Show that if $I+J=R$ then $I J=I \cap J$. You may refer to problem 18.

Solution. Let I_{1}, I_{2} be coprime ideals of a ring R. Here we will show that

$$
I_{1} \cdot I_{2}=I_{1} \cap I_{2}
$$

Because I_{1}, I_{2} are coprime, there are elements $x \in I_{1}, y \in I_{2}$ such that $x+y=1$. First, suppose $a \in I_{1} \cap I_{2}$. Then, we can write

$$
a x+a y=a
$$

and the LHS is clearly in $I_{1} \cdot I_{2}$, and hence $a \in I_{1} \cdot I_{2}$. This shows $I_{1} \cap I_{2} \subseteq I_{1} \cdot I_{2}$. Conversely, suppose $a \in I_{1} \cdot I_{2}$, and hence

$$
a=\sum_{i=1}^{n} a_{i} b_{i}
$$

where $a_{i} \in I_{1}, b_{i} \in I_{2}$ for each i and $n \in \mathbb{N}$. Because $a_{i} \in I_{1}$ for each i and because I_{1} is an ideal, it follows that $a_{i} b_{i} \in I_{1}$ for each i, and hence $a \in I_{1}$. Similarly, it can be shown that $a \in I_{2}$, so that $a \in I_{1} \cap I_{2}$, and hence $I_{1} \cdot I_{2} \subseteq I_{1} \cap I_{2}$. This completes the proof.
(ii) For principal ideals in a domain show that a sort of converse holds: if $a R \cap$ $b R=a b R$ then $\operatorname{gcd}(a, b)$ exists and is 1 . Deduce that if R is a PID, then converse to (i) is true.
Solution. Let a, b be non-zero elements of R such that $a R \cap b R=a b R$. We will show that $\operatorname{gcd}(a, b)$ exists and is equal to 1 . To show that $\operatorname{gcd}(a, b)$ is 1 , it is enough to show that any common divisor of a and b must be a unit. For the sake of contradiction, suppose d is a non-unit common divisor of a, b. So, we have that

$$
\begin{aligned}
a & =k_{1} d \\
b & =k_{2} d
\end{aligned}
$$

for some $k_{1}, k_{2} \in R$. Now consider the element $k_{1} k_{2} d$. Clearly, this is a common multiple of a, b and hence lies in the intersection $a R \cap b R$. So, we see that

$$
k_{1} k_{2} d=m a b
$$

for some $m \in R$. This is the same as the equation

$$
k_{2} a=m a b
$$

Since $a \neq 0$ and R is an integral domain, we can cancel a from either side of the equation to get

$$
k_{2}=m b
$$

Substituting in the original equation, we get

$$
b=m b d
$$

and again since $b \neq 0$, cancelling it from both sides we get

$$
1=m d
$$

which contradicts that d is not a unit. So, every common factor of a, b must be a unit, and hence $\operatorname{gcd}(a, b)$ exists and is equal to 1 .

Now suppose R is a PID, and we show that the converse to (i) will hold. So let I, J be non-zero ideals of R such that $I J=I \cap J$. Also, suppose $I=a R, J=b R$, and this equation will mean

$$
a R \cap b R=a b R
$$

Applying the result we just proved, we see that $\operatorname{gcd}(a, b)=1$. However, we know that $(a, b)=(d)$ for some $d \in R$, and hence it follows that d must be a unit. This implies that $a R+b R=I+J=R$, and this proves the converse.
(iii) In general converse to (i) is not true. Give an example in $\mathbb{Z}[x]$ (which even has unique factorization into primes, as we will see).
Solution. The counterexample is easy to give. Let $I=(2)$ and let $J=(3 x)$, where $R=\mathbb{Z}[x]$. Observe that I is the set of all polynomials in $\mathbb{Z}[x]$ with even coefficients, and J is the set of all polynomials with zero constant term and such that each coefficient is a multiple of 3 . It then immediately follows that

$$
I \cap J=(6 x)=I \cdot J
$$

However, we claim that $I+J \neq R$. For the sake of contradiction, suppose $I+J=$ R, which means that $(2,3 x)=R$. This would imply that 1 can be written as a linear combination of 2 and $3 x$, i.e

$$
1=2 p(x)+q(x) 3 x
$$

But this is a contraidiction; observe that $2 p(x)$ is a polynomial with even coefficients, and $q(x) 3 x$ has no constant term. So, $I+J \neq R$ and this is the required counterexample.

20. Artin Chapter 11: M. 4 (Do both parts but submit only part a.)

Solution. In this exercise we will classify rings that satisfy a certain criterion. (a) Rings that contain \mathbb{C} and have dimension 2 as a vector space over \mathbb{C}. Let R be such a ring. Because R contains \mathbb{C}, there is an inclusion $\mathbb{C} \hookrightarrow R$, which we will use. First we choose a basis of R. So let $\{1, r\}$ be a basis of R, and clearly $r \in R-\mathbb{C}$, because all elements of \mathbb{C} are \mathbb{C} multiples of 1 . Now, consider the unique ring homomorphism $\mathbb{C}[x] \xrightarrow{\varphi} R$ which restricts to the inclusion on \mathbb{C} and maps $x \mapsto r$. Since $\mathbb{C}[x]$ is a PID, $\operatorname{Ker} \varphi=(f(x))$ for some polynomial $f(x) \in \mathbb{C}[x]$. By the First Isomorphism Theorem, we have

$$
R \cong \frac{\mathbb{C}[x]}{(f(x))}
$$

Note that the above isomorphism also gives us a vector space isomorphism. Now we know that $\mathbb{C}[x] /(f(x))$ is a \mathbb{C}-vector space of dimension n, where $n=$ $\operatorname{deg}(f(x))$ (this was proven in Lecture 5). Since $\operatorname{dim} R=2$, we must have that $\operatorname{deg}(f(x))=2$, i.e $f(x)$ is a quadratic polynomial.

Now, we know that \mathbb{C} is algebraically closed, and hence every polynomial completely factors into linear factors in $\mathbb{C}[x]$. Now there are two cases to handle.
(1) In the first case, $f(x)=a(x-c)^{2}$ for some $c \in \mathbb{R}$ and $a \neq 0$, i.e f has a double root in \mathbb{C}. So, we see that $(f(x))=\left((x-c)^{2}\right)$. Now, it is not hard to see that the quotient $\mathbb{C}[x] /\left((x-c)^{2}\right)$ is isomorphic to the quotient
$\mathbb{C}[x] /\left(x^{2}\right)$; consider the map $\mathbb{C}[x] \xrightarrow{\Psi} \mathbb{C}[x]$ given by $\Psi(x)=x-c$. Compose this with the quotient map: $\mathbb{C}[x] \xrightarrow{\Psi} \mathbb{C}[x] \xrightarrow{\boldsymbol{T}} \mathbb{C}[x] /\left((x-c)^{2}\right)$, and from here the argument is very similar to what we did in HW-2 problem 14. So, in this case we see that $R \cong \mathbb{C}[x] /\left((x-c)^{2}\right) \cong \mathbb{C}[x] /\left(x^{2}\right)$.
(2) In the second case, $f(x)=a\left(x-c_{1}\right)\left(x-c_{2}\right)$ where $c_{1} \neq c_{2}$ and $a \neq 0$, i.e f has two distinct roots in \mathbb{C}. So we observe that $(f(x))=\left(\left(x-c_{1}\right)\left(x-c_{2}\right)\right)$. Now, consider the two ideals $\left(x-c_{1}\right)$ and $\left(x-c_{2}\right)$. We have

$$
\left(x-c_{2}\right)-\left(x-c_{1}\right)=c_{1}-c_{2} \neq 0
$$

and hence multiplying by $\left(c_{1}-c_{2}\right)^{-1}$ on both sides, we see that the ideals $\left(x-c_{1}\right),\left(x-c_{2}\right)$ are coprime. Note that $\left(\left(x-c_{1}\right)\left(x-c_{2}\right)\right)=\left(x-c_{1}\right) \cdot\left(x-c_{2}\right)$ (product of ideals), which is immediate. So by the CRT which is proven in problem 18., we see that
$\frac{\mathbb{C}[x]}{(f(x))}=\frac{\mathbb{C}[x]}{\left(\left(x-c_{1}\right)\left(x-c_{2}\right)\right)}=\frac{\mathbb{C}[x]}{\left(x-c_{1}\right) \cdot\left(x-c_{2}\right)} \cong \frac{\mathbb{C}[x]}{\left(x-c_{1}\right)} \times \frac{\mathbb{C}[x]}{\left(x-c_{2}\right)}$
Moreover, both of the rings $\mathbb{C}[x] /\left(x-c_{1}\right)$ and $\mathbb{C}[x] /\left(x-c_{2}\right)$ are isomorphic to \mathbb{C} via the evaluation maps at c_{1} and c_{2} respectively. So in this case, we see that $R \cong \mathbb{C}^{2}$.
So the only rings having this property are \mathbb{C}^{2} and $\mathbb{C}[x] /\left(x^{2}\right)$.

21. Artin Chapter 12: 1.5.

Solution. Suppose $a, b \in \mathbb{Z}$ are coprime integers. We will show that there are integers m, n such that

$$
a^{m}+b^{n}=1(\bmod a b)
$$

Because a, b are coprime, by the CRT we know that

$$
\mathbb{Z} / a b \mathbb{Z} \cong \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}
$$

Now the image of a in $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ is ($0, a \bmod b$) and the image of b in $\mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}$ is $(b \bmod a, 0)$. So, we just need to show that there are integers m, n such that

$$
(b \bmod a, 0)^{n}+(0, a \bmod b)^{m}=1 \operatorname{in} \mathbb{Z} / a \mathbb{Z} \times \mathbb{Z} / b \mathbb{Z}
$$

because the same m, n will work for the images of a, b in $\mathbb{Z} / a b \mathbb{Z}$. This helps because we can now work individually with components in $\mathbb{Z} / a \mathbb{Z}$ and $\mathbb{Z} / b \mathbb{Z}$ respectively.

Because a, b are coprime, b is a unit in $\mathbb{Z} / a \mathbb{Z}$, i.e b is an element of the multiplicative group of units $(\mathbb{Z} / a \mathbb{Z})^{\times}$. This group has order $\varphi(a)$, and hence by Lagrange's Theorem we see that

$$
(b(\bmod a))^{\varphi(a)}=b^{\varphi(a)}(\bmod a)=1(\bmod a)
$$

So we can put $n=\varphi(a)$. Similarly, we can put $m=\varphi(b)$. This proves the existence of such integers m, n.
22. Artin Chapter 12: 5.6.

Solution. Suppose $R=\mathbb{Z}[\sqrt{-3}]$. We will show that an integer p is prime in R iff. the polynomial $x^{2}+3$ is irreducible in $\mathbb{F}_{p}[x]$.

Our first observation is that

$$
\frac{\mathbb{Z}[x]}{\left(x^{2}+3\right)} \cong \mathbb{Z}[\sqrt{-3}]
$$

To prove this, consider the unique homomorphism $\mathbb{Z}[x] \xrightarrow{\varphi} \mathbb{Z}[\sqrt{-3}]$ given by $x \mapsto$ $\sqrt{-3}$ and that restricts to the identity on \mathbb{Z}. This homomorphism is surjective because given any $a+b \sqrt{-3} \in \mathbb{Z}[\sqrt{-3}]$, we see that

$$
\varphi(a+b x)=a+b \sqrt{-3}
$$

As I proved in HW-1, the kernel of this map must be a principal ideal in $\mathbb{Z}[x]$, and the kernel is infact $\left(x^{2}+3\right)$. So this proves the required isomorphism.

Now, suppose an integer p is prime in $\mathbb{Z}[\sqrt{-3}]$. This happens if and only if $\mathbb{Z}[\sqrt{-3}] /(p)$ is an integral domain. By the above isomorphism, this is true if and only if the ring

$$
\frac{\mathbb{Z}[x] /\left(x^{2}+3\right)}{(p)} \cong \frac{\mathbb{Z}[x]}{\left(p, x^{2}+3\right)} \cong \frac{\mathbb{F}_{p}[x]}{\left(x^{2}+3\right)}
$$

is an integral domain, where in the extreme right side $x^{2}+3 \in \mathbb{F}_{p}[x]$ (we used the fact that the order of taking quotients does not matter; this was proved in Lecture 4 and I also mentioned it in HW-2). But again, this is true if and only if the polynomial $x^{2}+3$ is prime in $\mathbb{F}_{p}[x]$. So, it is enough to show that $x^{2}+3$ is prime in $\mathbb{F}_{p}[x]$ if and only if it is irreducible.

One direction is clear: if $x^{2}+3$ is irreducible in $\mathbb{F}_{p}[x]$, then the ideal $\left(x^{2}+3\right)$ is maximal (because $\mathbb{F}_{p}[x]$ is a PID) and hence it is prime, because maximal ideals are prime as well. For the converse, suppose $x^{2}+3$ is a prime element. For the sake of contradiction, suppose $x^{2}+3$ was reducible, i.e it factors into linear factors in $\mathbb{F}_{p}[x]$. But, this is a contradiction to the fact that $x^{2}+3$ is prime, because $x^{2}+3$ being a quadratic polynomial cannot divide either of its linear divisors. Hence, $x^{2}+3$ must be irreducible. This completes the proof.

