HOMEWORK-4

SIDDHANT CHAUDHARY
BMC201953

29. Artin Chapter 12: 3.4.

Solution. Let x, y, z, w be four variables, and consider the polynomial $x y-z w$ is an irreducible element of $\mathbb{C}[x, y, z, w]$. We know that $\mathbb{C}[x, y, z, w] \cong \mathbb{C}[y, z, w][x]$. Any non-trivial factorisation of $x y-z w$ in $\mathbb{C}[x, y, z, w]$ will give us a non-trivial factorisation in $\mathbb{C}[y, z, w][x]$, and so it is enough to just work in $\mathbb{C}[y, z, w][x]$.

As we saw in Lecture 7 , the ring $\mathbb{C}[y, z, w]$ is a UFD. Let Fr be the fraction field of $\mathbb{C}[y, z, w]$. Consider the polynomial $x y-z w \in \mathbb{C}[y, z, w][x]$, and consider the prime $z \in \mathbb{C}[x, y, z, w]$. Clearly, z does not divide y, z divides $z w$ and z^{2} does not divide $z w$. So, by Eisenstein's Criterion, we see that the polynomial $x y-z w$ is irreducible over $\operatorname{Fr}[x]$. However, the polynomial $x y-z w \in \mathbb{C}[y, z, w][x]$ is primitive, because the god of $y, z w$ is clearly 1 . So, by Gauss' Lemma, it follows that $x y-z w$ is irreducible over $\mathbb{C}[y, z, w][x]$, and hence it is irreducible over $\mathbb{C}[x, y, z, w]$. This completes the proof.
30. Artin Chapter 12: $4.5 \mathrm{bc}+4.6+4.16$.

Solution. 4.5 (b) $8 x^{3}-6 x+1$. Since this is a cubic polynomial, it is enough to check whether it has any roots in \mathbb{Q}, and to do so we can use the Rational Root Theorem. So, it p / q is any root of this polynomial (in lowest terms), then $p \mid 1$ and $q \mid 8$. So, the choices for p are ± 1 and the choices for q are $\pm 1, \pm 2, \pm 4$ and ± 8. By computation, it can be easily checked that none of these possibilities for p and q gives a root of $8 x^{3}-6 x+1$. So, this polynomial is irreducible over $\mathbb{Q}[x]$.
4.5 (c) $x^{3}+6 x^{2}+1$. Again, this is a cubic polynomial, and it is enough to check whether this polynomial has any roots in \mathbb{Q}, and we will again use the Rational Root Theorem. So, if p / q is a root of this polynomial (in lowest terms), then $p \mid 1$ and $q \mid 1$, and hence the only choices for p, q are ± 1. However, neither 1 or -1 is a root of this polynomial, and hence this polynomial is irreducible over $\mathbb{Q}[x]$.
4.6 Consider the polynomial $x^{5}+5 x+5$. We will factor it into irreducible factors in $\mathbb{Q}[x]$ and $\mathbb{F}_{2}[x]$. First, consider the ring $\mathbb{Q}[x]$. We can apply Eisenstein's Criterion here with $p=5$. Clearly, the leading coefficient is not divisible by 5 , and every other coefficient is divisible by 5 . Moreover, the constant term is not divisible by 25 , and hence this polynomial is irreducible over $\mathbb{Q}[x]$. So, this polynomial cannot be factored non-trivially over $\mathbb{Q}[x]$.

Next, consider the ring $\mathbb{F}_{2}[x]$, and the polynomial becomes $x^{5}+x+1$. Suppose this polynomial was reducible. It is easy to see that it does not have a root over \mathbb{F}_{2}, and hence it must factor into a degree 2 irreducible factor and a degree 3
irreducible factor over $\mathbb{F}_{2}[x]$. Now, the only irreducible factor of degree 2 in $\mathbb{F}_{2}[x]$ is $x^{2}+x+1$. By long division, we see that

$$
x^{5}+x+1=\left(x^{2}+x+1\right)\left(x^{3}+x^{2}+1\right)
$$

and clearly, $x^{3}+x^{2}+1$ is irreducible in $\mathbb{F}_{2}[x]$ because it does not have any root. So this is the required factorisation.
4.16 Consider the polynomial $p(x)=x^{14}+8 x^{13}+3$ in $\mathbb{Q}[x]$. Using reduction modulo 3 as a guide, we will show that this polynomial is irreducible. Note that this polynomial is primitive over $\mathbb{Z}[x]$, and hence it is irreducible in $\mathbb{Q}[x]$ if and only if it is irreducible in $\mathbb{Z}[x]$. Now, suppose $p(x)=g(x) h(x)$ for $g, h \in \mathbb{Z}[x]$, and without loss of generality we assume that both $g(x)$ and $h(x)$ are monic. Reducing mod 3 , we have

$$
\bar{p}(x)=x^{14}+2 x^{13}=x^{13}(x+2) \quad \text { in } \mathbb{F}_{3}[x]
$$

and so it follows that $\bar{g}(x) \bar{h}(x)=x^{13}(x+2)$ in $\mathbb{F}_{3}[x]$. Because $\mathbb{F}_{3}[x]$ is a UFD, factors are unique upto units, and hence we can assume that $\bar{g}(x)=x^{k}$ and $\bar{h}(x)=$ $x^{13-k}(x+2)$, for some $0 \leq k \leq 13$. Also, observe that either the constant term of g or the constant term of h is not divisible by 3 (because the constant term of $p(x)$ is 3), and hence either $\bar{g}(x)$ or $\bar{h}(x)$ has a non-zero constant term, i.e either $k=0$ or $k=13$.

Now if $k=13$, then we see that $\bar{g}(x)=x^{13}$ and $\bar{h}(x)=x+2$ in $\mathbb{F}_{3}[x]$. Now, because $\operatorname{deg}(g)+\operatorname{deg}(h)=14$ and $\operatorname{deg}(\bar{h})=1$, we see that $\operatorname{deg}(h)=1$. This implies that $p(x)$ has a linear factor in $\mathbb{Z}[x]$, i.e $p(x)$ has a root in \mathbb{Q}. But using the Rational Root Theorem, we see that the only possible rational roots of $p(x)$ are ± 3, and clearly neither of these are roots of $p(x)$. So, this is a contradiction, and hence $k=13$ is not possible.

So, it must be true that $k=0$, and hence $\bar{h}(x)=x^{13}(x+2)$ in $\mathbb{F}_{3}[x]$. Again, we know that $\operatorname{deg}(g)+\operatorname{deg}(h)=14$ and because $\operatorname{deg} \bar{h}=14$, we see that $\operatorname{deg}(g)=0$, i.e $g(x)=1$. So, it follows that the polynomial $p(x)$ is irreducible in $\mathbb{Z}[x]$, and therefore in $\mathbb{Q}[x]$. This completes the proof.

31. Artin Chapter 15: 2.1.

Solution. Let α be a complex root of the polynomial $x^{3}-3 x+4$. We find an inverse of $\alpha^{2}+\alpha+1$ in $\mathbb{Q}(\alpha)$, i.e in the form $a+b \alpha+c \alpha^{2}$ with $a, b, c \in \mathbb{Q}$. Suppose

$$
\left(a+b \alpha+c \alpha^{2}\right)\left(1+\alpha+\alpha^{2}\right)=1
$$

Expanding, we get

$$
c \alpha^{4}+(b+c) \alpha^{3}+(a+b+c) \alpha^{2}+(a+b) \alpha+a=1
$$

Now, we use the relations $\alpha^{3}=3 \alpha-4$ and $\alpha^{4}=3 \alpha^{2}-4 \alpha$ to get

$$
3 c \alpha^{2}-4 c \alpha+(b+c)(3 \alpha-4)+(a+b+c) \alpha^{2}+(a+b) \alpha+1=1
$$

which implies

$$
(a+b+4 c) \alpha^{2}+(a+4 b-c) \alpha+a-4 b-4 c=1
$$

Now, we know that the elements $1, \alpha, \alpha^{2}$ form a \mathbb{Q}-basis of $\mathbb{Q}(\alpha)$, i.e these elements are linearly independent. So, we get that

$$
\begin{aligned}
a+b+4 c & =0 \\
a+4 b-c & =0 \\
a-4 b-4 c-1 & =0
\end{aligned}
$$

We can solve these equations to get that

$$
(a, b, c)=\frac{1}{49}(17,-5,-3)
$$

and this gives us the required element.
32. Artin Chapter 15: 2.3 (Hint: proposition 15.2.8).

Solution. We will use the hint here. Let $\beta=\omega \sqrt[3]{2}$ where $\omega=e^{2 \pi i / 3}$ and let $K=$ $\mathbb{Q}(\beta)$. Observe that both β and $\sqrt[3]{2}$ are roots of the polynomial $x^{3}-2$ (as ω is a cube root of unity), which is irreducible over $\mathbb{Q}[x]$ by Eisenstein's Criterion with $p=2$. So, it follows that this polynomial is the minimal polynomial of both β and $\sqrt[3]{2}$, i.e β and $\sqrt[3]{2}$ both have the same minimal polynomial over the field \mathbb{Q}. So by the Proposition in the given hint, we have

$$
\mathbb{Q}(\beta) \cong \mathbb{Q}(\sqrt[3]{2})
$$

via an isomorphism that sends β to $\sqrt[3]{2}$ and that restricts to the identity on \mathbb{Q}. Now, if the equation

$$
x_{1}^{2}+\ldots+x_{k}^{2}=-1
$$

has a solution in $\mathbb{Q}(\beta)$ then the same equation also has a solution in $\mathbb{Q}(\sqrt[3]{2})$, because any solution in $\mathbb{Q}(\beta)$ is mapped to a solution in $\mathbb{Q}(\sqrt[3]{2})$ via an isomorphism. Now, we see that

$$
\mathbb{Q}(\sqrt[3]{2}) \subset \mathbb{R}
$$

and hence the equation cannot have any solution in $\mathbb{Q}(\sqrt[3]{2})$, because the sums of squares of arbitrary numbers in \mathbb{R} cannot be negative. So, it follows that the equation has no solution in $\mathbb{Q}(\beta)$.

33. Artin Chapter 15: 3.2.

Solution. We show that the polynomial $f(x)=x^{4}+3 x+3$ is irreducible over the field $\mathbb{Q}(\sqrt[3]{2})$. First, observe that this polynomial is irreducible over \mathbb{Q} by Eisenstein's Criterion with $p=3$.
Let $K=\mathbb{Q}(\sqrt[3]{2})$. Since the minimal polynomial of $\sqrt[3]{2}$ over \mathbb{Q} is $x^{3}-2$, we see that $[K: \mathbb{Q}]=3$. Let $\alpha \in \mathbb{C}$ be any root of f, and consider the field $\mathbb{Q}(\alpha)$. Since f is irreducible in $\mathbb{Q}[x]$ and has α as a root, it follows that f is the minimal polynomial of α over \mathbb{Q} and hence $[\mathbb{Q}(a): \mathbb{Q}]=4$. Now observe that $\mathbb{Q} \subset K \subset K(\alpha)$, and hence

$$
[K(\alpha): \mathbb{Q}]=[K(\alpha): K][K: Q]=3[K(\alpha): K]
$$

Also, we see that $\mathbb{Q} \subset \mathbb{Q}(\alpha) \subset K(\alpha)$, and hence

$$
[K(\alpha): \mathbb{Q}]=[K(\alpha): \mathbb{Q}(\alpha)][\mathbb{Q}(\alpha): \mathbb{Q}]=4[K(\alpha): \mathbb{Q}(\alpha)]
$$

The above implies that $4 \mid[K(\alpha): \mathbb{Q}]$, and this implies that $4 \mid[K(\alpha): K]$. Because $f(x)$ is a polynomial in $K[x]$ and contains α as one of its roots, it follows that α is algebraic over K. Suppose g is the minimal polynomial of α over K. So, we see that $\operatorname{deg}(g)=[K(\alpha): K]=4$. But since f already has degree 4 , it follows
that f is the minimal polynomial of α over K, i.e $f(x)$ is irreducible in $K[x]$. This completes the proof.
34. Artin Chapter 15: 7.4 (Count for general p and then substitute $p=3,5$. Gauss discovered a very nice formula for the number of irreducible polynomials of a given degree over a finite field. We will soon see all the ingredients necessary to prove this formula. This is standard, but here is a short friendly exposition:)

https://arxiv.org/pdf/1001.0409v6.pdf

Solution. First, we will count the number of irreducibles of degree 3 over $\mathbb{F}_{p}[x]$ for a prime p. To do this, we will first count the number of reducibles. Let $f(x) \in$ $\mathbb{F}_{p}[x]$ be a reducible polynomial, i.e $f(x)$ factors non-trivially in $\mathbb{F}_{p}[x]$. So, $f(x)$ must have a linear factor, i.e $f(x)$ has a root in \mathbb{F}_{p}. Now, there are two cases.
(1) The quadratic factor of $f(x)$ is irreducible. So, in this case, we can write $f(x)=a(x-\alpha)\left(x^{2}+b x+c\right)$ for some $a \neq 0, \alpha \in \mathbb{F}_{p}$ and $x^{2}+b x+c$ an irreducible monic quadratic polynomial in $\mathbb{F}_{p}[x]$. Now, there are $(p-1)$ choices for a, p choices for α. Next, we count the number of irreducible monic quadratic polynomials in $\mathbb{F}_{p}[x]$. The total number of monic quadratic polynomials is p^{2}. Any reducible quadratic polynomial is of the form $\left(x-a_{1}\right)\left(x-a_{2}\right)$ for $a_{1}, a_{2} \in \mathbb{F}_{p}$. If a_{1}, a_{2} are distinct, then there are $\binom{p}{2}$ such polynomials; if $a_{1}=a_{2}$, then there are p such polynomials. So, the total number of irreducible monic quadratic polynomials are

$$
p^{2}-\binom{p}{2}-p=\binom{p}{2}
$$

So, there are

$$
(p-1) p\binom{p}{2}=\frac{p^{2}(p-1)^{2}}{2}
$$

polynomials that belong to the first case.
(2) In the second case, the quadratic factor of $f(x)$ is reducible. So, in this case, $f(x)$ has three roots, i.e

$$
f(x)=a\left(x-a_{1}\right)\left(x-a_{2}\right)\left(x-a_{3}\right)
$$

for some $a \neq 0, a_{1}, a_{2}, a_{3} \in \mathbb{F}_{p}$. Again, there are $(p-1)$ choices for a. If all of a_{1}, a_{2}, a_{3} are distinct, then there are $\binom{p}{3}$ choices. If exactly two of a_{1}, a_{2}, a_{3} are equal, then there are $2\binom{p}{2}$ choices. If $a_{1}=a_{2}=a_{3}$, then there are p choices. So, the total number of such polynomials are

$$
(p-1)\left(p+2\binom{p}{2}+\binom{p}{3}\right)
$$

Because there are $(p-1) p^{3}$ total degree three polynomials over $\mathbb{F}_{p}[x]$, it follows that the total number of irreducible degree three polynomials in $\mathbb{F}_{p}[x]$ is

$$
(p-1) p^{3}-(p-1) p\binom{p}{2}-(p-1)\left(p+2\binom{p}{2}+\binom{p}{3}\right)
$$

Putting $p=3$ in the above formula, we get that there are 16 irreducible degree three polynomials in $\mathbb{F}_{3}[x]$, and putting $p=5$ we see that there are 160 irreducible degree three polynomials in $\mathbb{F}_{5}[x]$.

