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29. Artin Chapter 12: 3.4.

Solution. Let x, y, z, w be four variables, and consider the polynomial xy − zw
is an irreducible element of C[x, y, z, w]. We know that C[x, y, z, w] ∼= C[y, z, w][x].
Any non-trivial factorisation of xy − zw in C[x, y, z, w] will give us a non-trivial
factorisation in C[y, z, w][x], and so it is enough to just work in C[y, z, w][x].
Aswe saw in Lecture 7, the ringC[y, z, w] is aUFD. Let Fr be the fraction field of

C[y, z, w]. Consider the polynomial xy−zw ∈ C[y, z, w][x], and consider the prime
z ∈ C[x, y, z, w]. Clearly, z doesnot divide y, z divides zw and z2 doesnot divide zw.
So, by Eisenstein’s Criterion, we see that the polynomial xy− zw is irreducible
over Fr[x]. However, the polynomial xy − zw ∈ C[y, z, w][x] is primitive, because
the gcd of y, zw is clearly 1. So, by Gauss’ Lemma, it follows that xy − zw is
irreducible over C[y, z, w][x], and hence it is irreducible over C[x, y, z, w]. This
completes the proof. ■

30. Artin Chapter 12: 4.5bc + 4.6 + 4.16.

Solution. 4.5 (b) 8x3 − 6x + 1. Since this is a cubic polynomial, it is enough to
check whether it has any roots inQ, and to do so we can use the Rational Root
Theorem. So, it p/q is any root of this polynomial (in lowest terms), then p|1 and
q|8. So, the choices for p are ±1 and the choices for q are ±1,±2,±4 and ±8. By
computation, it can be easily checked that none of these possibilities for p and
q gives a root of 8x3 − 6x+ 1. So, this polynomial is irreducible over Q[x].

4.5 (c) x3 + 6x2 + 1. Again, this is a cubic polynomial, and it is enough to check
whether this polynomial has any roots in Q, and we will again use the Rational
Root Theorem. So, if p/q is a root of this polynomial (in lowest terms), then p|1
and q|1, and hence the only choices for p, q are ±1. However, neither 1 or −1 is
a root of this polynomial, and hence this polynomial is irreducible over Q[x].

4.6Consider thepolynomialx5+5x+5. Wewill factor it into irreducible factors in
Q[x] and F2[x]. First, consider the ringQ[x]. We can apply Eisenstein’sCriterion
here with p = 5. Clearly, the leading coefficient is not divisible by 5, and every
other coefficient is divisible by 5. Moreover, the constant term is not divisible
by 25, and hence this polynomial is irreducible over Q[x]. So, this polynomial
cannot be factored non-trivially over Q[x].
Next, consider the ring F2[x], and the polynomial becomes x5+x+1. Suppose

this polynomial was reducible. It is easy to see that it does not have a root over
F2, and hence it must factor into a degree 2 irreducible factor and a degree 3
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irreducible factor overF2[x]. Now, the only irreducible factor of degree 2 inF2[x]
is x2 + x+ 1. By long division, we see that

x5 + x+ 1 = (x2 + x+ 1)(x3 + x2 + 1)

and clearly, x3 + x2 + 1 is irreducible in F2[x] because it does not have any root.
So this is the required factorisation.

4.16Consider thepolynomial p(x) = x14+8x13+3 inQ[x]. Using reductionmodulo
3 as a guide, we will show that this polynomial is irreducible. Note that this
polynomial is primitive over Z[x], and hence it is irreducible in Q[x] if and only if
it is irreducible in Z[x]. Now, suppose p(x) = g(x)h(x) for g, h ∈ Z[x], and without
loss of generality we assume that both g(x) and h(x) are monic. Reducing mod
3, we have

p(x) = x14 + 2x13 = x13(x+ 2) in F3[x]

and so it follows that g(x)h(x) = x13(x+2) in F3[x]. Because F3[x] is a UFD, factors
are unique upto units, and hence we can assume that g(x) = xk and h(x) =
x13−k(x + 2), for some 0 ≤ k ≤ 13. Also, observe that either the constant term
of g or the constant term of h is not divisible by 3 (because the constant term of
p(x) is 3), and hence either g(x) or h(x) has a non-zero constant term, i.e either
k = 0 or k = 13.
Now if k = 13, then we see that g(x) = x13 and h(x) = x + 2 in F3[x]. Now,

because deg(g) + deg(h) = 14 and deg(h) = 1, we see that deg(h) = 1. This
implies that p(x) has a linear factor in Z[x], i.e p(x) has a root inQ. But using the
Rational Root Theorem, we see that the only possible rational roots of p(x) are
±3, and clearly neither of these are roots of p(x). So, this is a contradiction, and
hence k = 13 is not possible.
So, it must be true that k = 0, and hence h(x) = x13(x + 2) in F3[x]. Again, we

know that deg(g) + deg(h) = 14 and because degh = 14, we see that deg(g) = 0,
i.e g(x) = 1. So, it follows that the polynomial p(x) is irreducible in Z[x], and
therefore in Q[x]. This completes the proof. ■

31. Artin Chapter 15: 2.1.

Solution. Letα bea complex root of the polynomial x3−3x+4. Wefindan inverse
of α2 + α + 1 in Q(α), i.e in the form a+ bα + cα2 with a, b, c ∈ Q. Suppose

(a+ bα + cα2)(1 + α + α2) = 1

Expanding, we get

cα4 + (b+ c)α3 + (a+ b+ c)α2 + (a+ b)α + a = 1

Now, we use the relations α3 = 3α− 4 and α4 = 3α2 − 4α to get

3cα2 − 4cα + (b+ c)(3α− 4) + (a+ b+ c)α2 + (a+ b)α + 1 = 1

which implies

(a+ b+ 4c)α2 + (a+ 4b− c)α + a− 4b− 4c = 1
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Now, we know that the elements 1, α, α2 form a Q-basis of Q(α), i.e these ele-
ments are linearly independent. So, we get that

a+ b+ 4c = 0

a+ 4b− c = 0

a− 4b− 4c− 1 = 0

We can solve these equations to get that

(a, b, c) =
1

49
(17,−5,−3)

and this gives us the required element. ■
32. Artin Chapter 15: 2.3 (Hint: proposition 15.2.8).
Solution. We will use the hint here. Let β = ω 3

√
2 where ω = e2πi/3 and let K =

Q(β). Observe that both β and 3
√
2 are roots of the polynomial x3 − 2 (as ω is a

cube root of unity), which is irreducible overQ[x] by Eisenstein’sCriterionwith
p = 2. So, it follows that this polynomial is the minimal polynomial of both β and
3
√
2 , i.e β and 3

√
2 both have the same minimal polynomial over the field Q. So by

the Proposition in the given hint, we have
Q(β) ∼= Q(

3
√
2)

via an isomorphism that sends β to 3
√
2 and that restricts to the identity on Q.

Now, if the equation
x2
1 + ...+ x2

k = −1

has a solution in Q(β) then the same equation also has a solution in Q( 3
√
2), be-

cause any solution inQ(β) is mapped to a solution inQ( 3
√
2) via an isomorphism.

Now, we see that
Q(

3
√
2) ⊂ R

and hence the equation cannot have any solution in Q( 3
√
2), because the sums

of squares of arbitrary numbers in R cannot be negative. So, it follows that the
equation has no solution in Q(β). ■
33. Artin Chapter 15: 3.2.
Solution. We show that the polynomial f(x) = x4+3x+3 is irreducible over the
field Q( 3

√
2). First, observe that this polynomial is irreducible over Q by Eisen-

stein’s Criterion with p = 3.
Let K = Q( 3

√
2). Since the minimal polynomial of 3

√
2 over Q is x3 − 2, we see

that [K : Q] = 3. Letα ∈ C be any root of f , and consider the fieldQ(α). Since f is
irreducible inQ[x] and has α as a root, it follows that f is theminimal polynomial
of α over Q and hence [Q(a) : Q] = 4. Now observe that Q ⊂ K ⊂ K(α), and
hence

[K(α) : Q] = [K(α) : K][K : Q] = 3[K(α) : K]

Also, we see that Q ⊂ Q(α) ⊂ K(α), and hence
[K(α) : Q] = [K(α) : Q(α)][Q(α) : Q] = 4[K(α) : Q(α)]

The above implies that 4|[K(α) : Q], and this implies that 4|[K(α) : K]. Because
f(x) is a polynomial in K[x] and contains α as one of its roots, it follows that α
is algebraic over K . Suppose g is the minimal polynomial of α over K . So, we
see that deg(g) = [K(α) : K] = 4. But since f already has degree 4, it follows
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that f is the minimal polynomial of α over K , i.e f(x) is irreducible in K[x]. This
completes the proof. ■
34. Artin Chapter 15: 7.4 (Count for general p and then substitute p = 3, 5.
Gauss discovered a very nice formula for the number of irreducible polyno-
mials of a given degree over a finite field. We will soon see all the ingredients
necessary to prove this formula. This is standard, but here is a short friendly
exposition:)

https://arxiv.org/pdf/1001.0409v6.pdf

Solution. First, we will count the number of irreducibles of degree 3 over Fp[x]
for a prime p. To do this, we will first count the number of reducibles. Let f(x) ∈
Fp[x] be a reducible polynomial, i.e f(x) factors non-trivially in Fp[x]. So, f(x)
must have a linear factor, i.e f(x) has a root in Fp. Now, there are two cases.

(1) The quadratic factor of f(x) is irreducible. So, in this case, we can write
f(x) = a(x − α)(x2 + bx + c) for some a ̸= 0, α ∈ Fp and x2 + bx + c an
irreducible monic quadratic polynomial in Fp[x]. Now, there are (p − 1)
choices for a, p choices for α. Next, we count the number of irreducible
monic quadratic polynomials in Fp[x]. The total number of monic qua-
dratic polynomials is p2. Any reducible quadratic polynomial is of the
form (x−a1)(x−a2) for a1, a2 ∈ Fp. If a1, a2 are distinct, then there are

(
p
2

)
such polynomials; if a1 = a2, then there are p such polynomials. So, the
total number of irreducible monic quadratic polynomials are

p2 −
(
p

2

)
− p =

(
p

2

)
So, there are

(p− 1)p

(
p

2

)
=

p2(p− 1)2

2

polynomials that belong to the first case.
(2) In the second case, the quadratic factor of f(x) is reducible. So, in this

case, f(x) has three roots, i.e
f(x) = a(x− a1)(x− a2)(x− a3)

for some a ̸= 0, a1, a2, a3 ∈ Fp. Again, there are (p − 1) choices for a. If
all of a1, a2, a3 are distinct, then there are

(
p
3

)
choices. If exactly two of

a1, a2, a3 are equal, then there are 2
(
p
2

)
choices. If a1 = a2 = a3, then there

are p choices. So, the total number of such polynomials are

(p− 1)

(
p+ 2

(
p

2

)
+

(
p

3

))
Because there are (p− 1)p3 total degree three polynomials over Fp[x], it follows
that the total number of irreducible degree three polynomials in Fp[x] is

(p− 1)p3 − (p− 1)p

(
p

2

)
− (p− 1)

(
p+ 2

(
p

2

)
+

(
p

3

))
Putting p = 3 in the above formula, we get that there are 16 irreducible de-
gree three polynomials in F3[x], and putting p = 5 we see that there are 160
irreducible degree three polynomials in F5[x]. ■
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