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35. Artin Chapter 15: 3.8.

Solution. Let α, β ∈ C such that α+ β and αβ are algebraic numbers. We show
that α, β are also algebraic numbers.
First, we show that the set of algebraic numbers is closed under square

roots. So, suppose γ ∈ C is such that p(γ) = 0 for some p(x) ∈ Q[x]. Then,
we see that p(√γ2) = 0, i.e√

γ is a root of the polynomial p(x2) ∈ Q[x].
So now, observe that

α− β =
√
(α + β)2 − 4αβ

The number inside the square root is algebraic, and hence it follows that α− β
is also algebraic. So,

2α = α + β + α− β

is also algebraic, implying that α is algebraic. Similarly, it can be shown that β
is also algebraic, and this completes the proof. ■

36. Artin Chapter 15: 3.9.

Solution. Let f(x), g(x) ∈ Q[x] be irreducible polynomials, and let α, β be com-
plex roots of these polynomials. Let K = Q(α) and L = Q(β). We will show that
f(x) is irreducible in L[x] if and only if g(x) is irreducible in K[x]. Moreover, we
will only show one direction of the proof, as the other direction is completely
symmetric. First, we know that

K ∼=
Q[x]

(f(x))
, L ∼=

Q[x]

(g(x))

Now, suppose g(x) is irreducible in K[x]. So, this means that the following are
fields:

K[x]

(g(x))
∼=

Q[x]/(f(x))

(g(x))
∼=

Q[x])

(f(x), g(x))
∼=

Q[x]/(g(x))

(f(x))
∼=

L[x]

(f(x))

where above we have used the Third Isomorphism Theorem. So, this implies
that f(x) is irreducible in L[x]. As we said before, the converse is similar to
proof, and hence this completes the proof. ■
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37. Artin Chapter 15: 6.1.
Solution. Let F be a field of characteristic zero. Let f ′ be the derivative of f ,
and let g ∈ F [x] be an irreducible polynomial that is a divisor of both f and f ′.
We show that g2 divides f .
The key fact we will be using is this: since F is a field of characteristic 0, if

h(x) ∈ F [x] is any non-zero polynomial of degree atleast 1, then h′(x) 6= 0. The
proof of this is immediate.
Since g(x) ∈ F [x] is irreducible, we see that deg(g(x)) ≥ 1 and that g′(x) 6= 0.

If f = 0, then there is nothing to prove. So, suppose f 6= 0. Then, we can write
f(x) = q(x)g(x)

for some q(x) ∈ F [x], q 6= 0. This immediately implies that deg(f(x)) ≥ 1, and
hence f ′ 6= 0. Moreover, we have that

f ′(x) = q′(x)g(x) + q(x)g′(x)

Because we are given that g(x) | f ′(x), we immediately see that g(x) | q(x)g′(x)
from the above equation. Now, g(x) is an irreducible in the UFD F [x], and hence
it is prime. Also, g(x) ∤ g′(x), because the degree of g′(x) is strictly less than that
of g. So, the primality of g(x) implies that g(x) | q(x), and hence we conclude that
g2 | f in F [x]. This completes the proof. ■
Before solving the next problem, I will mention here a fact about finite fields
which we have proven in one of the exercises given in Lecture 8.

Theorem 0.1 (Subfields of Finite Fields). Let p be a prime, and let E be a finite
field with |E| = pn. Then,

E contains a unique subfieldM with |M | = pd ⇐⇒ d | n

38. Artin Chapter 15: 7.6. Only list howmany factors of each degree are there.
You need not write the actual factorization.

Solution. In this problem, we will describe the factorisations of the polynomial
x16 − x over the fields F4 and F8.

In F4. First, consider the following lattice of field extensions (the arrow F → K
will mean thatK/F is a field extension).

F16

F4

F2

and the existence of this lattice comes from Theorem 0.1. Now, we know that
the polynomial x16 − x completely splits into linear factors in F16, and that each
element of F16 is a root of x16 − x. So, it follows that there are exactly 4 roots
of x16 − x in F4, i.e there are exactly 4 linear factors in F4[x]. Now, suppose
h(x) ∈ F4[x] is a monic irreducible factor of x16 − x in F4[x] with deg(h(x)) ≥ 2.
Again, we see that h(x) has a root in F16, but clearly it doesn’t have a root in F4.
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Let α ∈ F16 be this root. So, if we consider the field extensions F4 ⊂ F4(α) ⊂ F16,
then byMultiplicativity of Degree in field extensions we see that

2 = [F16 : F4] = [F16 : F4(α)][F4(α) : F4]

i.e [F4(α) : F4 is a factor of 2, which implies that deg(h(x)) is a factor of 2, and
hence deg(h(x)) = 2. So, we have shown that any monic irreducible factor of
x16 − x is either linear or quadratic. So, it follows that there are exactly 4 linear
factors and exactly 6 quadratic irreducible factors of x16 − x in F4[x].

In F8. We begin by considering the following lattice of fields, whose existence
is guaranteed by Theorem 0.1.

F212 = F4096

F24 = F16 F23 = F8

F2

Now, we know that the polynomial x16 − x completely splits into linear factors
in F16, and hence it will complete split into linear factors in F4096. Now, this poly-
nomial has atmost 16 roots, and hence it follows that all the roots belong to the
subfield F16. From the above lattice, it follows that x16 − x has exactly two roots
in F8, i.e x16 − x has exactly two linear factors in F8[x].
Now, we know the factorisation of x16 − x in F2[x]: x16 − x is the product of all

monic irreducible polynomials in F2[x] of degrees 1, 2 and 4. There are 2 linear
polynomials, 1monic quadratic irreducible polynomial (which is x2 + x+ 1) and
threemonic irreducible factors of degree 4. Now, the linear polynomials remain
irreducible in F8[x]. Since F8 contains exactly 2 roots of x16 − x, it follows that
x2 + x + 1 remains irreducible in F8[x]. Now, we will show that the three monic
irreducibles of degree 4 also remain irreducible in F8[x], and that will complete
our proof.
So let g(x) be any one of irreducibles factors of degree 4 of x16−x in F2[x]. For

the sake of contradiction, suppose g(x) factors into two quadratic factors in
F8[x] (there can be no linear factors as F8 contains exactly two roots of x16 − x).
First, let β ∈ F8 be such that F2(β) = F8 (we can let β to be the generator of
the cyclic group F×

8 ). Since g(x) | x16 − x, F16 contains a root α of g(x). So, we
see that F2(α) = F16. Again, α /∈ F8, but because α satisfies g(x), it satisfies
a quadratic irreducible polynomial in F8[x], and hence [F8(α) : F8] = 2. But,
because F8 = F2(β), byMultiplicativity of Degree this implies that

[F2(α, β) : F2] = [F2(α, β) : F8][F8 : F2] = [F8(α) : F8][F8 : F2] = 6

so that F2(α, β) ∼= F26 = F64. But, it is easy to see that F64 does not contain
F16 = F2(β) by Theorem 0.1. So, this contradicts the fact that g(x) splits into
two quadratic factors in F8[x], and hence g(x) remains irreducible in F8[x]. So it
follows that the factorisation of x16 − x over F8 is the same as that over F2. ■

Proposition 0.2. Let F be a finite field with |F | = pn. Then, the Frobenius map
x 7→ xp is an automorphism of F .
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Proof. Since F has characteristic p, we already know that the Frobeniusmap is
a homomorphism. So, we only need to show that this map is bijective. We know
that F× is cyclic; so let α be a generator. So, any non-zero element of F is of
the form αk for some k ∈ Z, and hence this is mapped to αpk 6= 0, showing that
the kernel of the map is zero, and hence the map is injective. Since F is a finite
set, any injective map from F to itself must be surjective. This completes the
proof. ■

39. Artin Chapter 15: 7.10 (Hint: prove it is a pth power).

Solution. Let F be any finite field, and let f(x) be a non-constant polynomial
whose derivative is the zero polynomial. Then we show that f cannot be irre-
ducible over F .
Suppose |F | = pn. Because f(x) is a non-constant polynomial, it has a term of

degree atleast 1. So, let akxk be a term of f(x), where ak 6= 0 and k ≥ 1. Because
f ′ = 0, we see that kak = 0, and this implies that k = 0 in Fp, i.e k = pj for some
j ∈ Z. So, this implies that f(x) is of the form

f(x) =
m∑
i=0

aix
pi

for ai ∈ F . By Proposition 0.2, we know that x 7→ xp is an automorphism of F .
So, for each 0 ≤ i ≤ m, there is some bi ∈ F such that ai = bpi , and hence

f(x) =
m∑
i=0

(bix
i)p

Now, the ring F [x] has characteristic p, and hence the Frobenius map on this
ring is a homomorphism. So, we see that

f(x) = g(x)p

where

g(x) =
m∑
i=0

bix
i

Because f is a non-constant polynomial, it follows that g is also a non-constant
polynomial, and hence it follows that f is not irreducible over F . ■

40. Artin Chapter 15: M.3.
Solution. Let f(x) ∈ F [x] be an irreducible polynomial of degree 6 for some field
F , and let K/F be a quadratic extension of F . Let K1 be an extension of F with
F ⊂ K ⊂ K1 such thatK1 contains all roots of f .
Now, let β ∈ K1 be a root of f . So, we see that [F (β) : F ] = 6. Now, consider

the following lattice of fields.

K(β)

F (β) K

F
6

2
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So, we see that [K(β) : F ] ≤ 6 · 2 = 12. The above diagram also implies that
[F (β) : F ] divides [K(β) : F ], and hence 6 | [K(β) : F ], implying that [K(β) : F ] ∈
{6, 12}. Now, because

[K(β) : F ] = [K(β) : K][K : F ] = 2[K(β) : K]

we see that [K(β) : K] ∈ {3, 6}. So, if [K(β) : K] = 6, then f(x) does not split into
any factors inK[x], i.e it stays irreducible inK[x].
If [K(β) : K] = 3, then f(x) has an irreducible factor of degree 3 in K[x].

So, suppose f(x) = g(x)h(x) inK[x], where g(x) is the irreducible factor of f(x).
Clearly, h(x) ∈ K[x]has degree 3. We claim that h(x)must be irreducible aswell.
For the sakeof contradiction, supposeh(x) is not irreducible overK[x]; so, it has
a root γ inK (because it has degree 3). Clearly, γ /∈ F , because f is irreducible
inF [x]. So, it follows that γ ∈ K−F . Because [K : F ] = 2 < ∞, γ is algebraic over
F . For the tower of fieldsF ⊂ F (γ) ⊂ K , we see that 2 = [K : F (γ)][F (γ) : F ], and
hence [F (γ) : F ] = 2 since γ /∈ F . So, this implies that the minimal polynomial
of γ over F has degree 2, and it divides f . But, this contradicts the fact that f is
irreducible over F . So, it follows that h(x) ∈ K[x]must be irreducible.
So, the only possible degrees of the irreducible factors of f inK[x] are 3 and

6. ■
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