HOMEWORK-5

SIDDHANT CHAUDHARY
BMC201953
35. Artin Chapter 15: 3.8.

Solution. Let $\alpha, \beta \in \mathbb{C}$ such that $\alpha+\beta$ and $\alpha \beta$ are algebraic numbers. We show that α, β are also algebraic numbers.

First, we show that the set of algebraic numbers is closed under square roots. So, suppose $\gamma \in \mathbb{C}$ is such that $p(\gamma)=0$ for some $p(x) \in \mathbb{Q}[x]$. Then, we see that $p\left(\sqrt{\gamma}^{2}\right)=0$, i.e $\sqrt{\gamma}$ is a root of the polynomial $p\left(x^{2}\right) \in \mathbb{Q}[x]$.

So now, observe that

$$
\alpha-\beta=\sqrt{(\alpha+\beta)^{2}-4 \alpha \beta}
$$

The number inside the square root is algebraic, and hence it follows that $\alpha-\beta$ is also algebraic. So,

$$
2 \alpha=\alpha+\beta+\alpha-\beta
$$

is also algebraic, implying that α is algebraic. Similarly, it can be shown that β is also algebraic, and this completes the proof.
36. Artin Chapter 15: 3.9.

Solution. Let $f(x), g(x) \in \mathbb{Q}[x]$ be irreducible polynomials, and let α, β be complex roots of these polynomials. Let $K=\mathbb{Q}(\alpha)$ and $L=\mathbb{Q}(\beta)$. We will show that $f(x)$ is irreducible in $L[x]$ if and only if $g(x)$ is irreducible in $K[x]$. Moreover, we will only show one direction of the proof, as the other direction is completely symmetric. First, we know that

$$
K \cong \frac{\mathbb{Q}[x]}{(f(x))} \quad, \quad L \cong \frac{\mathbb{Q}[x]}{(g(x))}
$$

Now, suppose $g(x)$ is irreducible in $K[x]$. So, this means that the following are fields:

$$
\frac{K[x]}{(g(x))} \cong \frac{\mathbb{Q}[x] /(f(x))}{(\overline{g(x)})} \cong \frac{\mathbb{Q}[x])}{(f(x), g(x))} \cong \frac{\mathbb{Q}[x] /(g(x))}{(\overline{f(x)})} \cong \frac{L[x]}{(f(x))}
$$

where above we have used the Third Isomorphism Theorem. So, this implies that $f(x)$ is irreducible in $L[x]$. As we said before, the converse is similar to proof, and hence this completes the proof.
37. Artin Chapter 15: 6.1.

Solution. Let F be a field of characteristic zero. Let f^{\prime} be the derivative of f, and let $g \in F[x]$ be an irreducible polynomial that is a divisor of both f and f^{\prime}. We show that g^{2} divides f.

The key fact we will be using is this: since F is a field of characteristic 0 , if $h(x) \in F[x]$ is any non-zero polynomial of degree atleast 1 , then $h^{\prime}(x) \neq 0$. The proof of this is immediate.

Since $g(x) \in F[x]$ is irreducible, we see that $\operatorname{deg}(g(x)) \geq 1$ and that $g^{\prime}(x) \neq 0$. If $f=0$, then there is nothing to prove. So, suppose $f \neq 0$. Then, we can write

$$
f(x)=q(x) g(x)
$$

for some $q(x) \in F[x], q \neq 0$. This immediately implies that $\operatorname{deg}(f(x)) \geq 1$, and hence $f^{\prime} \neq 0$. Moreover, we have that

$$
f^{\prime}(x)=q^{\prime}(x) g(x)+q(x) g^{\prime}(x)
$$

Because we are given that $g(x) \mid f^{\prime}(x)$, we immediately see that $g(x) \mid q(x) g^{\prime}(x)$ from the above equation. Now, $g(x)$ is an irreducible in the UFD $F[x]$, and hence it is prime. Also, $g(x) \nmid g^{\prime}(x)$, because the degree of $g^{\prime}(x)$ is strictly less than that of g. So, the primality of $g(x)$ implies that $g(x) \mid q(x)$, and hence we conclude that $g^{2} \mid f$ in $F[x]$. This completes the proof.
Before solving the next problem, I will mention here a fact about finite fields which we have proven in one of the exercises given in Lecture 8.

Theorem 0.1 (Subfields of Finite Fields). Let p be a prime, and let E be a finite field with $|E|=p^{n}$. Then,
E contains a unique subfield M with $|M|=p^{d} \Longleftrightarrow d \mid n$
38. Artin Chapter 15: 7.6. Only list how many factors of each degree are there. You need not write the actual factorization.

Solution. In this problem, we will describe the factorisations of the polynomial $x^{16}-x$ over the fields \mathbb{F}_{4} and \mathbb{F}_{8}.

In \mathbb{F}_{4}. First, consider the following lattice of field extensions (the arrow $F \rightarrow K$ will mean that K / F is a field extension).

and the existence of this lattice comes from Theorem 0.1. Now, we know that the polynomial $x^{16}-x$ completely splits into linear factors in \mathbb{F}_{16}, and that each element of \mathbb{F}_{16} is a root of $x^{16}-x$. So, it follows that there are exactly 4 roots of $x^{16}-x$ in \mathbb{F}_{4}, i.e there are exactly 4 linear factors in $\mathbb{F}_{4}[x]$. Now, suppose $h(x) \in \mathbb{F}_{4}[x]$ is a monic irreducible factor of $x^{16}-x$ in $\mathbb{F}_{4}[x]$ with $\operatorname{deg}(h(x)) \geq 2$. Again, we see that $h(x)$ has a root in \mathbb{F}_{16}, but clearly it doesn't have a root in \mathbb{F}_{4}.

Let $\alpha \in \mathbb{F}_{16}$ be this root. So, if we consider the field extensions $\mathbb{F}_{4} \subset \mathbb{F}_{4}(\alpha) \subset \mathbb{F}_{16}$, then by Multiplicativity of Degree in field extensions we see that

$$
2=\left[\mathbb{F}_{16}: \mathbb{F}_{4}\right]=\left[\mathbb{F}_{16}: \mathbb{F}_{4}(\alpha)\right]\left[\mathbb{F}_{4}(\alpha): \mathbb{F}_{4}\right]
$$

i.e $\left[\mathbb{F}_{4}(\alpha): \mathbb{F}_{4}\right.$ is a factor of 2 , which implies that $\operatorname{deg}(h(x))$ is a factor of 2 , and hence $\operatorname{deg}(h(x))=2$. So, we have shown that any monic irreducible factor of $x^{16}-x$ is either linear or quadratic. So, it follows that there are exactly 4 linear factors and exactly 6 quadratic irreducible factors of $x^{16}-x$ in $\mathbb{F}_{4}[x]$.

In \mathbb{F}_{8}. We begin by considering the following lattice of fields, whose existence is guaranteed by Theorem 0.1.

Now, we know that the polynomial $x^{16}-x$ completely splits into linear factors in \mathbb{F}_{16}, and hence it will complete split into linear factors in \mathbb{F}_{4096}. Now, this polynomial has atmost 16 roots, and hence it follows that all the roots belong to the subfield \mathbb{F}_{16}. From the above lattice, it follows that $x^{16}-x$ has exactly two roots in \mathbb{F}_{8}, i.e $x^{16}-x$ has exactly two linear factors in $\mathbb{F}_{8}[x]$.

Now, we know the factorisation of $x^{16}-x$ in $\mathbb{F}_{2}[x]$: $x^{16}-x$ is the product of all monic irreducible polynomials in $\mathbb{F}_{2}[x]$ of degrees 1,2 and 4 . There are 2 linear polynomials, 1 monic quadratic irreducible polynomial (which is $x^{2}+x+1$) and three monic irreducible factors of degree 4. Now, the linear polynomials remain irreducible in $\mathbb{F}_{8}[x]$. Since \mathbb{F}_{8} contains exactly 2 roots of $x^{16}-x$, it follows that $x^{2}+x+1$ remains irreducible in $\mathbb{F}_{8}[x]$. Now, we will show that the three monic irreducibles of degree 4 also remain irreducible in $\mathbb{F}_{8}[x]$, and that will complete our proof.

So let $g(x)$ be any one of irreducibles factors of degree 4 of $x^{16}-x$ in $\mathbb{F}_{2}[x]$. For the sake of contradiction, suppose $g(x)$ factors into two quadratic factors in $\mathbb{F}_{8}[x]$ (there can be no linear factors as \mathbb{F}_{8} contains exactly two roots of $x^{16}-x$). First, let $\beta \in \mathbb{F}_{8}$ be such that $\mathbb{F}_{2}(\beta)=\mathbb{F}_{8}$ (we can let β to be the generator of the cyclic group \mathbb{F}_{8}^{\times}). Since $g(x) \mid x^{16}-x, \mathbb{F}_{16}$ contains a root α of $g(x)$. So, we see that $\mathbb{F}_{2}(\alpha)=\mathbb{F}_{16}$. Again, $\alpha \notin \mathbb{F}_{8}$, but because α satisfies $g(x)$, it satisfies a quadratic irreducible polynomial in $\mathbb{F}_{8}[x]$, and hence $\left[\mathbb{F}_{8}(\alpha): \mathbb{F}_{8}\right]=2$. But, because $\mathbb{F}_{8}=\mathbb{F}_{2}(\beta)$, by Multiplicativity of Degree this implies that

$$
\left[\mathbb{F}_{2}(\alpha, \beta): \mathbb{F}_{2}\right]=\left[\mathbb{F}_{2}(\alpha, \beta): \mathbb{F}_{8}\right]\left[\mathbb{F}_{8}: \mathbb{F}_{2}\right]=\left[\mathbb{F}_{8}(\alpha): \mathbb{F}_{8}\right]\left[\mathbb{F}_{8}: \mathbb{F}_{2}\right]=6
$$

so that $\mathbb{F}_{2}(\alpha, \beta) \cong \mathbb{F}_{2^{6}}=\mathbb{F}_{64}$. But, it is easy to see that \mathbb{F}_{64} does not contain $\mathbb{F}_{16}=\mathbb{F}_{2}(\beta)$ by Theorem 0.1. So, this contradicts the fact that $g(x)$ splits into two quadratic factors in $\mathbb{F}_{8}[x]$, and hence $g(x)$ remains irreducible in $\mathbb{F}_{8}[x]$. So it follows that the factorisation of $x^{16}-x$ over \mathbb{F}_{8} is the same as that over \mathbb{F}_{2}.

Proposition 0.2. Let F be a finite field with $|F|=p^{n}$. Then, the Frobenius map $x \mapsto x^{p}$ is an automorphism of F.

Proof. Since F has characteristic p, we already know that the Frobenius map is a homomorphism. So, we only need to show that this map is bijective. We know that F^{\times}is cyclic; so let α be a generator. So, any non-zero element of F is of the form α^{k} for some $k \in \mathbb{Z}$, and hence this is mapped to $\alpha^{p k} \neq 0$, showing that the kernel of the map is zero, and hence the map is injective. Since F is a finite set, any injective map from F to itself must be surjective. This completes the proof.
39. Artin Chapter 15: 7.10 (Hint: prove it is a $p^{\text {th }}$ power).

Solution. Let F be any finite field, and let $f(x)$ be a non-constant polynomial whose derivative is the zero polynomial. Then we show that f cannot be irreducible over F.

Suppose $|F|=p^{n}$. Because $f(x)$ is a non-constant polynomial, it has a term of degree atleast 1 . So, let $a_{k} x^{k}$ be a term of $f(x)$, where $a_{k} \neq 0$ and $k \geq 1$. Because $f^{\prime}=0$, we see that $k a_{k}=0$, and this implies that $k=0$ in \mathbb{F}_{p}, i.e $k=p j$ for some $j \in \mathbb{Z}$. So, this implies that $f(x)$ is of the form

$$
f(x)=\sum_{i=0}^{m} a_{i} x^{p i}
$$

for $a_{i} \in F$. By Proposition 0.2, we know that $x \mapsto x^{p}$ is an automorphism of F. So, for each $0 \leq i \leq m$, there is some $b_{i} \in F$ such that $a_{i}=b_{i}^{p}$, and hence

$$
f(x)=\sum_{i=0}^{m}\left(b_{i} x^{i}\right)^{p}
$$

Now, the ring $F[x]$ has characteristic p, and hence the Frobenius map on this ring is a homomorphism. So, we see that

$$
f(x)=g(x)^{p}
$$

where

$$
g(x)=\sum_{i=0}^{m} b_{i} x^{i}
$$

Because f is a non-constant polynomial, it follows that g is also a non-constant polynomial, and hence it follows that f is not irreducible over F.
40. Artin Chapter 15: M.3.

Solution. Let $f(x) \in F[x]$ be an irreducible polynomial of degree 6 for some field F, and let K / F be a quadratic extension of F. Let K_{1} be an extension of F with $F \subset K \subset K_{1}$ such that K_{1} contains all roots of f.

Now, let $\beta \in K_{1}$ be a root of f. So, we see that $[F(\beta): F]=6$. Now, consider the following lattice of fields.

So, we see that $[K(\beta): F] \leq 6 \cdot 2=12$. The above diagram also implies that $[F(\beta): F]$ divides $[K(\beta): F]$, and hence $6 \mid[K(\beta): F]$, implying that $[K(\beta): F] \in$ $\{6,12\}$. Now, because

$$
[K(\beta): F]=[K(\beta): K][K: F]=2[K(\beta): K]
$$

we see that $[K(\beta): K] \in\{3,6\}$. So, if $[K(\beta): K]=6$, then $f(x)$ does not split into any factors in $K[x]$, i.e it stays irreducible in $K[x]$.

If $[K(\beta): K]=3$, then $f(x)$ has an irreducible factor of degree 3 in $K[x]$. So, suppose $f(x)=g(x) h(x)$ in $K[x]$, where $g(x)$ is the irreducible factor of $f(x)$. Clearly, $h(x) \in K[x]$ has degree 3 . We claim that $h(x)$ must be irreducible as well. For the sake of contradiction, suppose $h(x)$ is not irreducible over $K[x]$; so, it has a root γ in K (because it has degree 3). Clearly, $\gamma \notin F$, because f is irreducible in $F[x]$. So, it follows that $\gamma \in K-F$. Because $[K: F]=2<\infty, \gamma$ is algebraic over F. For the tower of fields $F \subset F(\gamma) \subset K$, we see that $2=[K: F(\gamma)][F(\gamma): F]$, and hence $[F(\gamma): F]=2$ since $\gamma \notin F$. So, this implies that the minimal polynomial of γ over F has degree 2 , and it divides f. But, this contradicts the fact that f is irreducible over F. So, it follows that $h(x) \in K[x]$ must be irreducible.

So, the only possible degrees of the irreducible factors of f in $K[x]$ are 3 and 6.

