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35. Artin Chapter 15: 3.8.

Solution. Let o, 8 € C such that o + § and af are algebraic numbers. We show
that «, § are also algebraic numbers.

First, we show that the set of algebraic numbers is closed under square
roots. So, suppose v € C is such that p(y) = 0 for some p(z) € Q[z]. Then,
we see that p(,/7°) = 0, i.e ,/7 is a root of the polynomial p(z?) € Q[x].

So now, observe that

a—B=(a+p)?—4dap

The number inside the square root is algebraic, and hence it follows that o« — 3
is also algebraic. So,

20=a+pf+a—-p

is also algebraic, implying that « is algebraic. Similarly, it can be shown that
is also algebraic, and this completes the proof. |

36. Artin Chapter 15: 3.9.

Solution. Let f(x),g(z) € Q[z] be irreducible polynomials, and let a, § be com-
plex roots of these polynomials. Let K = Q(«) and L = Q(8). We will show that
f(z) isirreducible in L[z] if and only if g(x) is irreducible in K|[z]. Moreover, we
will only show one direction of the proof, as the other direction is completely
symmetric. First, we know that

e QL

(f(=) (9())

Now, suppose g(z) is irreducible in K[z]. So, this means that the following are
fields:

K]  Ql/(f(=) o Q)  Qlel/(9(x)) o Llz]

(9()) (g(x))  (fx),9(x)) (f(x)) (f(z))

where above we have used the Third Isomorphism Theorem. So, this implies
that f(z) is irreducible in L[x]. As we said before, the converse is similar to
proof, and hence this completes the proof. |
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37. Artin Chapter 15: 6.1.

Solution. Let F' be a field of characteristic zero. Let f’ be the derivative of f,
and let g € F[z]| be an irreducible polynomial that is a divisor of both f and f'.
We show that g2 divides f.

The key fact we will be using is this: since F' is a field of characteristic 0, if
h(z) € Flz] is any non-zero polynomial of degree atleast 1, then h/(z) # 0. The
proof of this is immediate.

Since g(x) € Flz|is irreducible, we see that deg(g(z)) > 1 and that ¢'(z) # 0.
If f =0, then there is nothing to prove. So, suppose f # 0. Then, we can write

f(z) = q(z)g(x)
for some ¢(z) € Flz], ¢ # 0. This immediately implies that deg(f(z)) > 1, and
hence f’ # 0. Moreover, we have that

f'(@) = ' (x)g(x) + q(x)g (z)
Because we are given that g(z) | f'(z), we immediately see that g(z) | q(z)¢'(x)
from the above equation. Now, g(x) is an irreducible in the UFD F[z], and hence
itis prime. Also, g(x) { ¢'(x), because the degree of ¢'(z) is strictly less than that
of g. So, the primality of g(z) implies that ¢(z) | ¢(z), and hence we conclude that
g*| fin F[z]. This completes the proof. |

Before solving the next problem, I will mention here a fact about finite fields
which we have proven in one of the exercises given in Lecture 8.

Theorem 0.1 (Subfields of Finite Fields). Let p be a prime, and let E be a finite
field with |E| = p". Then,

E contains a unique subfield M with |M| =p® < d|n

38. Artin Chapter 15: 7.6. Only list how many factors of each degree are there.
You need not write the actual factorization.

Solution. In this problem, we will describe the factorisations of the polynomial
2% — 2 over the fields F, and Fs.

InF,. First, consider the following lattice of field extensions (the arrow ' — K
will mean that K /F is a field extension).

Fig

I

Fy

|

IFy

and the existence of this lattice comes from Theorem 0.1. Now, we know that
the polynomial ' — z completely splits into linear factors in F;4, and that each
element of Fy; is a root of 2! — . So, it follows that there are exactly 4 roots
of 2! — z in Fy, i.e there are exactly 4 linear factors in F,[z]. Now, suppose
h(x) € Fylz] is a monic irreducible factor of z'® — z in F,[z] with deg(h(z)) > 2.
Again, we see that i(z) has a root in Fy4, but clearly it doesn’t have a root in F.
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Let a € Fy4 be this root. So, if we consider the field extensions F, C Fy(«) C Fyg,
then by Multiplicativity of Degree in field extensions we see that

2 = [Fi : Fu] = [F16 : Fa(a)][Fa(a) : Fy]

i.e [Fy(«) : Fy is a factor of 2, which implies that deg(h(z)) is a factor of 2, and
hence deg(h(x)) = 2. So, we have shown that any monic irreducible factor of
z'% — z is either linear or quadratic. So, it follows that there are exactly 4 linear
factors and exactly 6 quadratic irreducible factors of z'6 — x in F,[x].

In Fs. We begin by considering the following lattice of fields, whose existence
is guaranteed by Theorem 0.1.

FQU = IF‘4096
\ . /
Now, we know that the polynomial 2'® — x completely splits into linear factors
in Fi6, and hence it will complete split into linear factors in F,y9. Now, this poly-
nomial has atmost 16 roots, and hence it follows that all the roots belong to the
subfield F;s. From the above lattice, it follows that 2! — 2 has exactly two roots
in Fg, i.e ' — x has exactly two linear factors in Fg[z].

Now, we know the factorisation of 2! — z in Fy[z]: 2! — z is the product of all
monic irreducible polynomials in [Fy[x] of degrees 1,2 and 4. There are 2 linear
polynomials, 1 monic quadratic irreducible polynomial (which is 2% + x + 1) and
three monicirreducible factors of degree 4. Now, the linear polynomials remain
irreducible in Fg[z]. Since Fs contains exactly 2 roots of z'¢ — z, it follows that
r? + z + 1 remains irreducible in Fg[x]. Now, we will show that the three monic
irreducibles of degree 4 also remain irreducible in Fg[z], and that will complete
our proof.

So let g(x) be any one of irreducibles factors of degree 4 of z'® —x in Fy[z]. For
the sake of contradiction, suppose g(z) factors into two quadratic factors in
Fg[z] (there can be no linear factors as Fg contains exactly two roots of z'¢ — x).
First, let 5 € Fs be such that Fo(8) = Fg (we can let 5 to be the generator of
the cyclic group Fy). Since g(z) | #'° — z, F14 contains a root a of g(z). So, we
see that Fy(a) = Fi4. Again, a ¢ Fg, but because « satisfies g(z), it satisfies

a quadratic irreducible polynomial in Fg[z|, and hence [Fs(«) : Fg] = 2. But,
because s = F5(3), by Multiplicativity of Degree this implies that

[Fo(av, ) : Fo] = [Fa(a, B) : Fs][Fs : Fo] = [Fs(a) : Fs][Fg : Fo] =6

F24 == IF16 IFQS - Fg

so that Fo(a, 8) = Fy = Fgy. But, it is easy to see that gy does not contain
Fis = Fy(5) by Theorem 0.1. So, this contradicts the fact that ¢g(z) splits into
two quadratic factors in Fg[z|, and hence g(x) remains irreducible in Fg[z]. So it
follows that the factorisation of ' — = over Fy is the same as that overF,. R

Proposition 0.2. Let F' be a finite field with |F'| = p". Then, the Frobenius map
x +— 2P is an automorphism of F.
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Proof. Since F' has characteristic p, we already know that the Frobenius map is
a homomorphism. So, we only need to show that this map is bijective. We know
that '* is cyclic; so let o be a generator. So, any non-zero element of F' is of
the form o* for some k € Z, and hence this is mapped to o”* # 0, showing that
the kernel of the map is zero, and hence the map is injective. Since I is a finite
set, any injective map from F to itself must be surjective. This completes the
proof. |

39. Artin Chapter 15: 7.10 (Hint: prove it is a pt" power).

Solution. Let F' be any finite field, and let f(z) be a non-constant polynomial
whose derivative is the zero polynomial. Then we show that f cannot be irre-
ducible over F.

Suppose |F| = p". Because f(z) is a non-constant polynomial, it has a term of
degree atleast 1. So, let a,z* be a term of f(z), where a;, # 0 and k > 1. Because
' =0, we see that ka;, = 0, and this implies that k = 0in F,, i.e k = pj for some
J € Z. So, this implies that f(z) is of the form

fl) = aa”
=0
for a, € . By Proposition 0.2, we know that z — 2? is an automorphism of F.
So, for each 0 < i < m, there is some b; € F' such that a; = b7, and hence
fla) =" (bia')
=0
Now, the ring F[z| has characteristic p, and hence the Frobenius map on this
ring is a homomorphism. So, we see that

fz) = g(x)?

m
= E Z)Z‘ZL’Z
=0

Because f is a non-constant polynomial, it follows that g is also a non-constant
polynomial, and hence it follows that f is not irreducible over F. |

40. Artin Chapter 15: M.3.

where

Solution. Let f(z) € F[z] be anirreducible polynomial of degree 6 for some field
F,and let K/F be a quadratic extension of F. Let K be an extension of F' with
F Cc K C K, such that K; contains all roots of f.

Now, let g € K, be a root of f. So, we see that [F/(5) : F] = 6. Now, consider
the following lattice of fields.

/\
\/
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So, we see that [K(3) : F] < 6-2 = 12. The above diagram also implies that
[F(5) : F]divides [K(p) : F],and hence 6 | [K(f) : F], implying that [K(5) : F] €
{6,12}. Now, because

[K(B) : F] = [K(p) : K][K : F] = 2[K(p) : K]
we see that [K(f) : K| € {3,6}. So, if [K(5) : K] = 6, then f(x) does not splitinto
any factors in K|[z], i.e it stays irreducible in K{[z].

If [K(B) : K] = 3, then f(z) has an irreducible factor of degree 3 in K|[z|.
So, suppose f(z) = g(z)h(x) in K[z], where g(z) is the irreducible factor of f(z).
Clearly, h(z) € K|x] has degree 3. We claim that i(x) must be irreducible as well.
For the sake of contradiction, suppose h(x) is notirreducible over K|[z]; so, it has
arootin K (because it has degree 3). Clearly, v ¢ F', because f is irreducible
in F'z]. So, it follows thaty € K —F. Because [K : F] =2 < oo, yis algebraic over
F. Forthe tower of fields I’ C F(v) C K,weseethat2 = [K : F(v)][F(y) : F],and
hence [F(v) : F] = 2 since vy ¢ F. So, this implies that the minimal polynomial
of v over F has degree 2, and it divides f. But, this contradicts the fact that f is
irreducible over F. So, it follows that i(z) € K|[x] must be irreducible.

So, the only possible degrees of the irreducible factors of f in K[z] are 3 and
6. |



	35
	36
	37
	38
	39
	40

