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1. Introduction to Rings

Definition 1.1. A ring R is a set with two binary operations + and ·, containing
distinct elements 0 and 1 such that the following properties hold.

(1) (R,+, 0) is an abelian group.
(2) (R, ·, 1) is a monoid.
(3) For any a, b, c ∈ R the two distributive laws

a(b+ c) = ab+ ac

(b+ c)a = ba+ ca

hold.

Unless stated otherwise, we will assume that all our rings will be commutative
, i.e ab = ba for all a, b ∈ R.

Example 1.1. Z is one of the most common rings, which has a lot of special
properties. Z is also the most important ring to study in number theory.

Example1.2. Q,R andC are fields, i.e each non-zero element in these rings has
a multiplicative inverse.

Example 1.3. The ring Z[i] = {a + bi|a, b ∈ Z} is called the ring of Gaussian
Integers.

Example 1.4. The ring Z/nZ, the usual integers modulo n which is obtained by
quotienting Z by nZ. Moreover, Z/nZ is a field if and only if n is a prime number,
which is one of the basic facts in number theory.

Example1.5. The ringR[x], of polynomialswith real coefficients in one variable,
is also very important.

Example 1.6. A non-commutative ring which will be of interest to us will be the
ring of n× nmatrices with real entries.

1.1. Initial properties. Let us prove some basic properties of rings.
Proposition 1.1. Let R be an arbitrary ring. Let r, a, b, c be elements of R. Then,
the following hold.

(1) R has a unique multiplicative identity.
(2) 0 · r = 0 = r · 0.
(3) (−a)b = −(ab) = a(−b).
(4) a(b− c) = ab− ac.

Proof. These are naturally proved as follows.
(1) If 1 and 1′ are two multiplicative identities for R, then we have 1 = 1 · 1′ =

1′.
(2) We have the following chain of equalities.

0r = (0 + 0)r = 0r + 0r

and by adding the additive inverse of 0r to both sides, we get the result.
(3) We see that

0 = 0b = (a+ (−a))b = ab+ (−a)b

and the result follows. The other equality can be proven the same way.
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(4) We have
a(b− c) = a(b+ (−c)) = ab+ a(−c) = ab+ (−(ac)) = ab− ac

■
Exercise 1.1. Show that if we allow 0 = 1 in a ring, then the ring only has one
element.

Solution. This is easy to see by property (2) above, because for all r ∈ R

r = r · 1 = r · 0 = 0

Proposition 1.2. Let R be a commutative ring. Then, for any a, b ∈ R and n ∈ N,
we have

(a+ b)n =
n∑

k=0

(
n

k

)
akbn−k

where for any c ∈ Z and x ∈ R,
cx := x+ x+ ...+ x (n times)

Proof. This is immediate by expanding the left hand side and using induction.
■

1.2. More Definitions. We will now see some fundamental notions in ring the-
ory.

Definition 1.2. Let R be a ring. Any subset S ⊂ R that is a ring with the same
operations as those in R and and the identity is called a subring of R.

Example 1.7. Let R = Z/6Z and let S = {0, 2, 4}. Notice that S is clearly an
additive subgroup. Moreover, S is also closed under multiplication. However,
by our definition, S is not a subring of R, because it does not have the same
identity as that of R. It can be checked however that 4 acts as an identity for S.

Definition 1.3. Let R be a ring. An element a ∈ R is called a unit in R if there is
some b ∈ R such that ab = 1.

Example 1.8. In Z, the only units are ±1. In Q,R,C, every non-zero element is
a unit, since these rings are fields.

Definition1.4. Anon-zero element a ∈ R is called a zero-divisor if there is some
non-zero b ∈ R such that ab = 0. A ring R is an integral domain (or just domain)
if R has no zero divisors.

Exercise 1.2. Show that any field is a domain.

Solution. This is clear from the definition of a field, because every non-zero
element is a unit, and hence it cannot be a zero-divisor.

Exercise1.3. Show that the cancellation law holds in a domain, i.e for non-zero
a ∈ R,

ab = ac =⇒ b = c

Solution. If ab = ac, then we see that a(b − c) = 0, and since a is non-zero and
R is a domain, it follows that b = c. By the same reasoning, once can show that
the map x → ax is injective in a domain.
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Exercise 1.4. Show that any finite integral domain is a field.

Solution. Let F be any finite integral domain, and let a ∈ F such that a 6= 0.
Consider the map x → ax, which is injective. Since F is finite, this means that
there is some b ∈ X such that ab = 1. Hence, F is a field.

1.3. Homomorphisms. In this section, we will define and study some proper-
ties of homomorphisms.

Definition 1.5. Let R,S be rings. A map ϕ : R → S is called a ring homomor-
phism if the following conditions are satisifed for a, b ∈ R.

(1) ϕ(a+ b) = ϕ(a) + ϕ(b).
(2) ϕ(ab) = ϕ(a)ϕ(b).
(3) ϕ(1R) = ϕ(1S).

So a ring homomorphism is a group homomorphism of the underlying abelian
group that preserves multiplication and identity.

Remark 1.2.1. Since we will be mostly dealing with commutative rings in this
course, we impose condition (3). However, in general, ring homomorphisms
are definedwithout condition (3) above. Evenmore generally, rings are defined
to not necessarily have an identity. But we don’t deal with those here.

1.4. PolynomialRings. In this section, we shall formally define the ring of poly-
nomials over a commutative ring.

Definition 1.6. Let R be a (commutative) ring. Define the ring of polynomials
over R, which will be denoted by R[x], as

R[x] := {(a0, a1, a2, ...) | ai ∈ R for each i ≥ 0 and ai is eventually zero}

So we have defined polynomials to be infinite sequences in R. A typical se-
quence is interpretted as the formal sum

a0 + a1x+ ...+ anx
n

and hence we interpret x as the element (0, 1, 0, 0, ...) of the ring.

Exercise 1.5. Define +, · and verify ring axioms for the ring R[x]. Find 1. Find a
copy of R inside R[x].

Solution. Let {ai}i≥0 and {bi}i≥0 be two infinite sequences in R. We define addi-
tion as

{ai}i≥0 + {bi}i≥0 := {ai + bi}i≥0

and multiplication as

{ai}i≥0 · {bi}i≥0 :=

{
i∑

k=0

akbi−k

}
i∈N

and note that themultiplication looks like the convolution of two power series. It
is rather tedious to check that these definitionsmake sense, but it can easily be
seen by interpreting these sequences as polynomial addition andmultiplication
(infact, these definitions are made so that those operations remain valid). For
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instance, the associativity of multiplication is proven as follows (here we use
the power series interpretation):

∞∑
n=0

anx
n ·

(
∞∑
n=0

bnx
n ·

∞∑
n=0

cnx
n

)
=

∞∑
n=0

anx
n ·

∞∑
n=0

(
n∑

k=0

bkcn−k

)
xn

=
∞∑
n=0

(
n∑

j=0

aj

(
n−j∑
k=0

bkcn−j−k

))
xn

=
∞∑
n=0

(
n∑

j=0

n−j∑
k=0

ajbkcn−j−k

)
xn

and so in the above sum, the nth coefficient of the resultant power series is the
sum of all terms ajbkcm satisfying j + k+m = n, and this is clearly symmetric in
j, k andm, and hence associativity follows.
It is clear that

1R[x] = (1R, 0, 0, ...)

Moreover, if we consider the map ϕ : R → R[x] given by
ϕ(s) = (s, 0, 0, ...)

then it is clear that ϕ is an injective homomorphism.

Remark 1.2.2. Let p(x) ∈ R[x] be any polynomial. If
p(x) = a0 + a1x+ ...+ anx

n

then we immediately have

p(x) =
∞∑
i=0

(ai, 0, 0, ...) · (0, 0, ..., 1, 0, ...)

where the 1 appears at the ith slot on the RHS.

Exercise1.6. For whichR is deg(fg) = deg(f)+deg(g) for non-zero f, g ∈ R[x]?

Solution. The answer is whenR is an integral domain. Moreover, for the same
equation to make sense when one of f, g is zero, we define the degree of the
zero polynomial to be −∞.

Remark 1.2.3. It is easy to see that
R is an integral domain ⇐⇒ R[x] is an integral domain

1.4.1. Multiple Variables. Let us now see how to formalize the notion of a poly-
nomial in multiple variables.

Definition 1.7. Let R be a (commutative) ring. Define

R[x1, ..., xk] =

finite sums ∑
ij≥0

ai1,...,ikx
i1
1 ...x

ik
k


and the notation ∑

i

aix
i
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will be used, where i ∈ Zk
≥0. The monomial xi = xi1

1 ...x
ik
k is said to havemultide-

gree i = (i1, ..., ik) and total degree i1 + ... + ik. A homogeneous polynomial is
one in which all non-zero terms have the same total degree.

1.5. TheSubstitutionPrinciple. Herewewill see two important homomorphisms
related to polynomial rings.

Theorem 1.3 (Substitution Principle, Basic Version). Let R be a ring, and let
c ∈ R. Then, the map evc given by

R[x]
evc−−→ R∑

i

aix
i →

∑
i

aic
i

is a ring homomorphism. evc is called the evaluation at c.

Proof. It is clear that evc(1R[x]) = 1R. So, we only need to check that addition
and multiplication are preserved. Let p = (a0, a1, ...) and q = (b0, b1, ...) be two
polynomials in R[x]. Then, observe that

evc(p+ q) = evc((a0 + b0, a1 + b1, ...))

=
∑
i

(ai + bi)c
i

=
∑
i

aic
i +
∑
i

bic
i

= evc(p) + evc(q)
and also

evc(pq) =
∑
i

(
i∑

k=0

akbi−k

)
ci

=

(∑
i

aic
i

)(∑
i

bic
i

)
= evc(p)evc(q)

where the equality on the RHS follows from the distributive law in R. This com-
pletes the proof. ■
Theorem 1.4 (Substitution Principle, General Version). Given a ring homo-
morphism R

φ0−→ R′ and c ∈ R′, there exists a unique ring homomorphism
R[x]

φ−→ R′ extending ϕ0 such that ϕ(x) = c. The corresponding commutative
diagram is given below.

R R[x]

R′

φ0
φ

where R ↪→ R[x] is the inclusion map and ϕ(x) = c.

Proof. Define the map ϕ by ∑
i

aix
i φ−→

∑
i

ϕ0(ai)c
i(∗)
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By similar reasoning as in the proof of Theorem 1.3 and using the fact that ϕ0 is
a homomorphism, it is immediate that ϕ is a homomorphism aswell. Moreover,
any suchhomomorphismϕmust satisfy (∗), andhence theuniquenesspart also
follows. ■
Example 1.9. It is easily seen that evc as in Theorem 1.3 is a special case of
Theorem 1.4, where R′ = R and the base map ϕ0 is the identity mapping from
R to itself.

Example 1.10. LetR,S be rings, and letR φ0−→ S be a given homomorphism, and
we try to extend this to a homomorphism R[x]

φ−→ S[x]. Consider the following
commutative diagram.

R R[x]

S

S[x]

inclR

φ0

φ

inclS

We have a homomorphism inclS ◦ ϕ0 from R to S[x], and we can extend this to a
homomorphism R[x]

φ−→ S[x] such that ϕ(x) = x by Theorem 1.4. As a concrete
example, let p be a prime, and take R = Z and S = Z/pZ, with ϕ0 the usual pro-
jection map (or reduction modulo p). Then, under this construction, the image
of a polynomial with integer coefficients will be a polynomial with coefficients
reduced modulo p.

Theorem 1.5 (Substitution Principle,Multivariable Version). Given a ring ho-
momorphism R

φ0−→ R′ and c = (c1, ..., ck) ∈ R′k, there exists a unique ring homo-
morphism R[x1, ..., xk]

φ−→ R′ extending ϕ0 such that ϕ(xi) = ci for each 1 ≤ i ≤ k.
The corresponding commutative diagram is given below.

R R[x1, ..., xk]

R′

φ0

φ

where R ↪→ R[x1, ..., xk] is the inclusion map.

Proof. The proof is the same as in Theorem 1.4, where multi-index notation is
used. ■
Example 1.11. We can use Theorem 1.5 to prove the fact that R[x, y] ∼= R[x][y]
in a very elegant fashion. To be completed.

Remark 1.5.1. The substitution principle is also called the universal property
of polynomial rings because this property characterises polynomial rings up to
unique isomorphism.

Example 1.12. We consider another application of the substitution principle.
Let R be an arbitrary ring, and consider the set RR (i.e, the set of all functions
from R to R). This set has a natural ring structure, which follows from the ring
structure on R, i.e R-valued functions can be added and multiplied (Caution:
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multiplication here is not function composition) using the operations in R, and
there is a zero function and a function that maps everything to the identity inR.
Also, there is a natural inclusion map R ↪→ RR that sends any element in R to
the corresponding constant function. Now, we extend this map to a homomor-
phism R[x]

ev−→ RR such that ev(x) = idR (the identity function on R) by Theorem
1.5. This homomorphism has a simple interpretation: any polynomial in R[x]
determines a function in RR, and the homomorphism ev maps a polynomial to
its corresponding function.

1.6. Long division in Polynomial Rings. Here we shall encounter some usual
ideas.

Theorem 1.6 (Euclidean Division). Let g(x), d(x) ∈ R[x] be polynomials where
d(x) is monic. Then, there exists unique polynomials q(x), r(x) ∈ R[x] such that

g = dq + r

and either r = 0 or 0 ≤ deg r < deg d.

Proof. This can easily be done by induction on the degree of g. If deg g < deg d
or g = 0, we can simply let q = 0 and r = g. Else, suppose k = deg g, l = deg r
with k ≥ l. We can write

g(x) = axk + lower terms
and

d(x) = xl + lower terms
and hence g(x)− axk−ld(x) has deg < k. By induction, we can write

g − axk−ld = dq + r

where r = 0 or deg r < deg d. Hence, we have
g = d(axk−l + q) + r

and we are done.
Now, we move on to proving the uniqueness of q and r. Suppose

g = dq1 + r1 = dq2 + r2

where q1, r1 and q2, r2 satisfy the conditions in the statement of the theorem. So,
we see that

r1 − r2 = d(q2 − q1)

It is clear that deg(r1−r2) < deg d. Now, if q2 6= q1, the last equationwill imply that
deg LHS < degRHS, a contradiction. Hence, we see that q1 = q2 and r1 = r2. ■
Remark 1.6.1. This proof can be extended to the case when the leading coeffi-
cient of d is a unit. In particular, if R = F is a field, then the statement holds for
all d 6= 0 ∈ F [x].

Theorem1.7 (Remainder/FactorTheorem). When g(x) ∈ R[x] is divided by (x−
a), the remainder is g(a).

Proof. Observe that (x − a) is monic, and hence by Euclidean Division 1.6, we
can write

g(x) = q(x)(x− a) + r(x)
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where either r = 0 or deg r < deg(x − a) = 1. Hence, if r 6= 0, we see that r is a
constant polynomial, so we can write

g(x) = q(x)(x− a) + r

for some r ∈ R. Now, applying the map eva to both sides (which we know is a
homomorphism by Theorem 1.3), then we have

g(a) = q(a)(a− a) + r = r

and this completes the proof of the theorem. ■
Exercise 1.7. For which rings R is it true that

# of distinct roots of any non-zero g(x) ≤ deg(g)

Solution. The answer is exactly whenR is an integral domain. First, supposeR
is not an integral domain, and let a, b 6= 0 be zero divisors with ab = 0. Consider
the polynomial ax. Clearly, it has two roots, contradicting the hypothesis.
Conversely, supposeR is an integral domain. We can induct on the degree of

g to prove the claim. For the base case deg g = 0, and there is nothing to prove.
So suppose deg g = n > 0. If a is a root of g, then we have

g(x) = (x− a)q(x)

for some q(x) ∈ R[x] with deg q = n− 1. Now, any other root b of q(x)must be a
root of q(x), because

g(b) = (b− a)q(b)

and hence b − a 6= 0, implying that q(b) = 0 since R is a domain. By inductive
hypothesis, q has atmost n− 1 distinct roots, and hence g has atmost n distinct
roots.

1.7. MoreonHomomorphisms. In this section, we will look at some important
properties of kernels of homomorphisms.

Definition 1.8. For a ring homomorphism R
φ−→ S, we define the kernel as

ker(ϕ) := {r ∈ R|ϕ(r) = 0}

Exercise 1.8. Find the kernels of the following homomorphisms.
(1) R[x]

evc−−→ R for c ∈ R.
(2) R[x]

ev−→ RR, atleast when R is a domain.

Solution. For (1), the kernel is simply all polynomials which have c as one of
their roots. By the Factor Theorem 1.7, we know that this is the case if and
only if the polynomial is a multiple of (x − c). So, the kernel will be all multiples
of (x− c) (we will soon see how to frame this using ideals).
For (2), suppose first thatR is an infinite integral domain. Then, any non-zero

polynomial must have finitely many roots, as we saw in Exercise 1.7. So, the
kernel of this map must be zero, and hence this map is injective.
Next, suppose R is a finite integral domain, i.e

R = {a1, ..., ak}
Consider the polynomial

π(x) = (x− a1)...(x− ak)
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It is clear that π(x) belongs to the kernel. Conversely, if a polynomial f(x) is in
the kernel, then all the elements a1, ..., an are roots of f(x), and hence π(x)|f(x)
(since R is an integral domain). So it follows that the kernel is precisely all the
multiples of π(x).

Remark 1.7.1. We know that R is an infinite integral domain. So as we saw
above, each polynomial in R[x] determines a unique function in RR.

Remark 1.7.2. It can be easily shown that any finite integral domain is a field,
but that is not important for this exercise.

1.8. IdealsandMoreHomomorphisms. Let usbeginwith thenotionof an ideal
in a ring.

Definition 1.9. LetR be any ring (not necessarily commutative). A subset I ofR
is called a (2-sided) ideal ofR if I is an additive subgroup ofR, and for any a ∈ I
and r ∈ R, it is true that ar ∈ I and ra ∈ I .

Remark 1.7.3. In many sources, ideals are defined to be subrings which ab-
sorb multiplication. However, within our system of definitions, ideals need not
be subrings as they need not contain the identity element.

Definition 1.10. Let R be a commutative ring, and let a ∈ R. The set

{ra | r ∈ R}

is called the principal ideal generated by a.

Example 1.13. Let F be a field. We show that the only ideals in F are the trivial
ones, i.e 0 and F , and infact this property characterises fields. If F is a field,
suppose I is any non-zero ideal. Then, a ∈ I for some a 6= 0. Since I is an ideal,
it must be true that 1 = aa−1 ∈ I , and this means that I = F . So, the only ideals
of F are 0 and F . Conversely, if the only ideals of a (commutative) ring F are the
trivial ones, thenwe can show that every non-zero element is a unit. Infact, this
is simple because we can just consider the principal ideal generated by a non-
zero element, which will be the whole ring F , showing that the element must be
a unit, i.e F must be a field.

Example1.14. It can be shown that every ideal of Z and F [x] is principal, where
F is a field. This is true because both rings have a Euclidean Algorithm (we will
see more of these rings further), and any ideal will be generated by an element
contained in it with the least size, which in the case of Z is the absolute value,
and in the case of F [x], is the degree.

Example 1.15. In this and subsequent examples, we will be finding all homo-
morphisms from a given ring to another ring R. Here, we have to find all possi-
ble homomorphisms Z φ−→ R. Since 1

φ−→ 1R, we see that

ϕ(k) =

{
1R + 1R + ...+ 1R (k times) , k > 0

−ϕ(−k) , k < 0

and hence if a homomorphism exists, it is unique. Moreover, we can define the
map ϕ as above, and it is easily checked that this is a homomorphism. So there
is precisely one homomorphism from Z to R.
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Definition 1.11. The unique homomorphism Z φ−→ R in Example 1.15 above is
called the characteristic map ofR, and is denoted Z char−−→ R. If the kernel of this
map is nZ for some unique n ≥ 0, then n is called the characteristic of R, and
this number is denoted by char(R).

Remark1.7.4. The characteristic of a ringR can equivalently be defined as the
smallest natural number n (if it exists) such that n · 1R = 0R. If no such number
exists, the characteristic of R is then defined to be 0.

Exercise 1.9. If R is an integral domain, then what are the possible values of
char(R)?

Solution. Suppose char(R) 6= 0. Then, it must be that char(R) = p for some
prime p. To prove this, suppose p = ab for some a, b ∈ Z. Then,

0 = p · 1R = (a · 1R)(b · 1R)

Since R is an integral domain, one of a · 1R or b · 1R must be zero, i.e one of a or
b is ±p (because p is the least such integer), and hence pmust be a prime.

Exercise 1.10. Find the kernel of the unique homomorphism Z[x] φ−→ C where
x → a for some fixed a ∈ C (the homomorphism is unique by the Substitution
Principle 1.4.) Find the kernel explicitly for a =

√
2, i, 1/3, n

√
2 etc.

Solution. We will show that no matter what a is, the kernel will always be a
principal ideal generated by some element of Z[x]. First, suppose there is no
polynomial in Z[x] for which p(a) = 0. Then, the kernel is simply the zero ideal,
which we know is principal. So, suppose that the kernel is non-empty, i.e

Ker ϕ = {p(x) ∈ Z[x] | p(a) = 0} 6= φ

Let d(x) be any element of least degree in Ker ϕ, and we also make the choice
that the gcd of the coefficients of d(x) is 1 (if it is not 1, then we can factor out
the gcd from all the coefficients). We claim that

Ker ϕ = (d(x))

To prove this, suppose p(x) ∈ Ker ϕ. We know that p(x) and d(x) are both poly-
nomials in the ring Q[x]. Since Q is a field, Euclidean Division 1.6 holds, and
there are polynomials q(x), r(x) ∈ Q[x] such that

p(x) = q(x)d(x) + r(x)

where either deg r < deg d or r(x) = 0. Let l1 be the LCM of the denominators
of the coefficients of q(x), and similarly let l2 be the LCM of the denominators of
the coefficients of r(x) (so that l1, l2 ∈ Z[x]). Then, we can write

q(x) =
q′(x)

l1
and r(x) =

r′(x)

l2

where q′(x), r′(x) ∈ Z[x]. So we get

l1l2p(x) = l2q
′(x)d(x) + l1r

′(x)

and this is an equation in Z[x]. Clearly, we see that

l1r
′(a) = 0
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and hence r′(a) = 0. Since deg r′(x) = deg r(x) < deg d(x), by the definition of
d(x) it must be true that r′(x) = 0. Hence, we get

l1l2p(x) = l2q
′(x)d(x) =⇒ l1p(x) = q′(x)d(x)

Suppose s is the gcd of the coefficients of p(x). Then, the gcd of the coefficients
of l1p(x) = l1s, and hence the gcd of the coefficients of q′(x)d(x) is l1s. By our
assumption, the gcd of the coefficients of d(x) was 1, and hence it must be true
that the gcd of the coefficients of q′(x) is l1s. All this fuss was to show that

q′(x)

l1
∈ Z[x]

so that p′(x) is divisible by d(x). This shows that
Ker ϕ = (d(x))

completing the proof.
Some specific examples are given below.

a = 2 Ker ϕ = (x2 − 2)

a = i Ker ϕ = (x2 + 1)

a = 1/3 Ker ϕ = (3x− 1)

a =
n
√
2 Ker ϕ = (xn − 2)

Definition 1.12. For a subset A = {a1, ..., an} of a ring R, the set{
n∑

i=1

riai | ri ∈ R

}
is called the ideal of R generated by A. This is also denoted by (a1, ..., an) and is
the smallest ideal of R containing A.
Example 1.16. Consider the ring F [x, y] for some field F , and let

I1 := {f(x, y) | constant term of f = 0}
We claim that

I1 = (x, y)

so that I1 is not a principal ideal. Suppose I1 is a principal ideal, say I1 = (g).
Since x, y ∈ I1, we see that g|x and g|y. But clearly, this is not possible, because
the only choice for g is either a unit a or ax for some unit a, and either case is
not possible.
Remark 1.7.5. In the ring F [x, y], the polynomials x, y behave like prime num-
bers, and infact F [x, y] has unique factorization. But unlike Z, F [x, y] does not
have diophantine equations at our disposal.
Example 1.17. Here we consider another example of non-principal ideals. Let
F be a field. Put

In := (xn, xn−1y, ..., yn) ⊂ F [x, y]

Analogously, for a prime p ∈ Z, put
Jn := (pn, pn−1y, ..., yn) ⊂ Z[y]

We show that In, Jn are non-principal ideals, and infact In, Jn cannot be gener-
ated by fewer than n+ 1 elements. To be completed
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Example 1.18. Consider the homomorphism R[x, y] → R[t] that is identity on
the real numbers and that maps x 7→ t2 and y 7→ t3. Observe that the polynomial
y2 − x3 is in the kernel of this homomorphism. We will show that the kernel is
infact (y2−x3). It is clear that any polynomial in (y2−x3)will belong to the kernel.
Conversely, suppose g(x, y) belongs to the kernel. Now, identifyR[x, y] ∼= R[x][y].
Observe that y2 − x3 is a polynomial monic polynomial in y. So, by Euclidean
Division 1.6, there are polynomials q(x, y), r(x, y) ∈ R[x][y] such that

g(x, y) = (y2 − x3)q(x, y) + r(x, y)

where either r(x, y) = 0 or the degree of y in r(x, y) is less than the degree of y
in y2 − x3, which is 2. We will show that r(x, y) = 0. We can write

r(x, y) = r1(x)y + r2(x)

where r1(x), r2(x) ∈ R[x]. Moreover, it is also clear that r(x, y) belongs to the
kernel of the homomorphism. In particular, this means that

r1(t
2)t3 + r2(t

2) = 0

Observe that r1(t2)t3 has odd degree, while r2(t
2) has even degree. So, the only

possibility is that r1 = r2 = 0, i.e r(x, y) = 0, implying that g(x, y) ∈ (y2 − x3). This
completes the proof.

1.9. OperationsonIdealsandQuotients. Wewill now look at some operations
on ideals.

Definition 1.13. LetR be an arbitrary ring, and let I1, ..., Ik be ideals inR. Define

I1 · · · Ik :=

{
n∑

i=1

ai1ai2...aik | aij ∈ Ij, n ≥ 0

}
and it can be easily checked that I1 · · · Ik is an ideal of R.

Definition1.14. A ringR is said to be a principal ideal domain (PID) if every ideal
or R is principal.

Exercise1.11. LetR be a PID, and let a, b ∈ R. What can be said about the ideals
aR · bR, aR ∩ bR and aR + bR?

Solution. It is easy to see that aRbR = (ab), i.e the ideal generated by ab. Now,
because R is a PID, we have

aR ∩ bR = lR

for some l ∈ R, and we call l the least common multiple of a, b, denoted by
lcm(a, b). Finally,

aR + bR = dR

where the element d ∈ R is said to be the greatest common divisor of a, b, de-
noted by gcd(a, b) (we will soon define these terms).

Definition 1.15. Let R be a ring, and let I be a proper (2-sided) ideal of R. Con-
sider the quotient group R/I , where R, I are seen as abelian groups. On this
quotient group, define multiplication as

(a+ I)(b+ I) = ab+ I

Then this definition makes R/I into a ring, and this ring is called the quotient
ring.
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Remark 1.7.6. In the above definition, we require the ideal to be proper be-
cause of our very definition of rings. In our definition, every ring must contain
a multiplicative identity distinct from 0. Another reason why we require I to be
proper is because of our definition of ring homomorphisms (in particular, the
identity must be mapped to the identity), as we see in the next proposition.

Proposition 1.8. Let R be a ring and let I be a proper ideal. Then the natural
projection R

π−→ R/I is a ring homomorphism with Ker π = I .

Proof. This is immediate from the definition of quotient rings. ■
Corollary 1.8.1. Let R be a ring. A proper subset I of R is an ideal if and only if
it is the kernel of some (ring) homomorphism.

Proof. One direction is clear by Proposition 1.8. The other direction, that any
kernel of some homormorphism is a proper ideal is clear by the definition of a
homomorphism. This completes the proof. ■
Definition 1.16. Let R be a ring. A proper ideal P of R is called a prime ideal if
given ab ∈ P atleast one of a or b is in P , where a, b ∈ R.

Proposition 1.9. Let R be a ring and let P be a proper ideal. Then, P is a prime
ideal if and only if R/P is an integral domain. So, this can equivalently be taken
as a definition of prime ideals.

Proof. First suppose P is a proper ideal. To show that R/P is an integral do-
main, it is enough to show that there are no zero divisors. Let a denote the
coset of an element a ∈ R in R/P . Suppose

a · b = ab = 0

This implies that ab ∈ P , and hence one of a or b is in P , implying that one of a or
b is 0. The converse is proven similarly. ■
Definition 1.17. Let R be a ring, and let M be a proper ideal of R. Then M is
said to be a maximal ideal if the only ideals in R containing M are R and M .
Equivalently,M ismaximal if for any a /∈ M , aR +M = R.

Proposition 1.10. Let R be a ring and let M be a proper ideal. Then, M is a
maximal ideal if and only if R/M is a field.

Proof. This follows immediately by the Correspondence Theorem 1.13 and the
fact that a ring is a field if and only if its only ideals are the trivial ones. ■
Remark 1.10.1. The above theorem implies that any maximal ideal is a prime
ideal, because every field is also an integral domain.

Example1.19. Let us seeprimeandmaximal ideals inF [x], whereF ∈ {C,R,Q,Fp}.To
be completed.

1.10. First IsomorphismTheorem. First I will begin by introduce the abstract
notion of quotienting by equivalence relations. It may be a familiar idea, and it
is ubiquitious in different parts of mathematics.

Definition 1.18. Let S be any set, and let∼ be an equivalence relation on S. The
quotient set of S by the relation ∼ is the set of all equivalence classes of the
relation ∼, and this set is denoted by S/ ∼.
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Definition 1.19. Let S, T be two sets, and let f : S → T be a (set) map. Define
a relation ∼ on S by: x ∼ y if and only if f(x) = f(y). Then, ∼ is an equivalence
relation on S, and ∼ is said to be induced by f . For any t ∈ T , the equivalence
class f−1(t) is called a fiber of f .

Here is an abstract fact about quotienting.

Theorem 1.11 (Isomorphism Theorem for Sets). Let f : S → T be a set map,
and suppose ∼ is an equivalence relation on S with the quotient map π : S →
S/ ∼. Then, there exists a function f : (S/ ∼) → T such that f = f ◦ π if and
only if every equivalence class of S under ∼ is contained in some fiber of f .
Moreover, f has the following properties.

(1) If f exists, it is unique. Also, f is surjective if and only if f is surjective.
(2) f is injective if and only if each equivalence class of S under ∼ is equal

to some fiber of f .

Remark1.11.1. If such an f exists, then f is said to factor through the quotient
S/ ∼.

Proof. Most of the theorem is just abstract non-sense; there is nothing hard to
be proven. I will not write the proof right now. ■
We now state and prove the First IsomorphismTheorem 1.12 for groups, vec-
tor spacesand rings. Agrouphomomorphism/linearmap/ringhomomorphism
will be simply called amorphism.

Theorem1.12 (First IsomorphismTheorem). LetS, T begroups/vector spaces/rings,
and let f : S → T be a given morphism. Also, suppose S

π−→ S/I is a given quo-
tient morphism, where I is a normal subgroup/subspace/ideal of S. Then the
following hold.

(1) ∃ S/I
f−→ T with f = f ◦ π if and only if I ⊆ Ker f . Moreover, such an f is

unique and Im(f) = Im(f).
(2) f is injective if and only if I = Ker f . In that case, S/I f−→ Im(f) is an

isomorphism.

Proof. For (1), it is clear that if such a map exists, then I ⊆ Ker f and that f is
unique. So, we only need to prove the existence in the case when I ⊆ Ker f . For
any coset x+ I ∈ S/I for any x ∈ S, we define f : S/I → T

f(x+ I) = f(x)

and because I ⊆ Ker f , thismap is awell-defined homomorphismwith f = f ◦π.
(2) is easy to see. ■
1.11. Correspondence Theorem. This is also a very important isomorphism
theorem in algebra. Let us begin by proving this theorem for groups.

Theorem 1.13. Let G be any group, and let N ⊴ G (i.e normal subgroup). Let
the quotient map be G

π−→ G/N . Then, there is an inclusion preserving bijection
between subgroups/normal subgroups ofG/N and subgroups ofG containing
N .

Proof. Suppose f : S → T is any surjective group homomorphism, where S, T
are any groups. We will use the following two facts, which are elementary.
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(1) For any subgroup/normal subgroupK of S, f(K) is a subgroup/normal
subgroup of T .

(2) Forany subgroup/normal subgroupK ofT , f−1(K) is a subgroup/normal
subgroup of S containing Ker f .

Note that surjectivity of f is required to prove the first statement above when
K is a normal subgroup. This gives us the required bijection: for any sub-
group/normal subgroupK of G containing N , mapK to π(K). Similarly, ifK is
any subgroup/normal subgroup of G/N , its inverse image will be π−1(K). This
gives us the required bijection (There are a lot of details to be filled in, however
they are not difficult and make a good exercise). ■

Remark1.13.1. Let us bea littlemoreprecise. SupposeH isany subgroupofG,
i.eH need not containN . Still, π(H) is a subgroup ofG/N , and hence under the
above correspondence, π(H) has a partner subgroup in G that contains N . It
is easy to see that HN is a subgroup of G containing N , and hence the partner
subgroup of π(H) in G under the above correspondence is HN . Note that if
N ⊆ H , then HN = H . Also, note that π(H) = {hN | h ∈ H} = HN/N . So, we
have thatH π|H−−→ HN/N is a surjectivemap, and the kernel of this map is clearly
H ∩ N . So by the First Isomorphism Theorem 1.12, we see that H/(H ∩ N) ∼=
HN/N . This is usually called the Second Isomorphism Theorem. For vector
spaces, this isomorphism theorem reads (U + V )/V ∼= U/(U ∩ V ), where U, V
are subspaces of a vector spaceW . For rings, this isomorphism theorem reads
(S + I)/I ∼= S/(S ∩ I), where S is any subring of a ring R, and I is any ideal of R.

Example 1.20. Consider the evaluation map evc : R[x] → R given by x 7→ c. The
kernel of this map is (x− c), and hence by the First IsomorphismTheorem 1.12
we get

R[x]/(x− c) ∼= R

Example 1.21. Consider the map f : Z[x] → C given by x 7→ i. We see that
Im f = Z[i], and as in Exercise 1.10 we see that Ker f = (x2 + 1). By the First
Isomorphism Theorem 1.12, we get

Z[x]/(x2 + 1) ∼= Z[i]

Example 1.22. Let Z → Fp be the reduction homomorphism, where p is any
prime. Then consider the reduction homomorphism Z[x] → Fp[x] such that x 7→
x and this map is clearly surjective. It is easy to see that Ker = pZ[x], and hence
we get

Z[x]/pZ[x] ∼= Fp[x]

Example 1.23. Let us show that R[x, y]/(y − x3) ∼= R[t]. Consider the unique
map R[x, y]

φ−→ R[t] that restricts to the standard inclusion R ↪→ R[t] on R and
maps x 7→ t, y 7→ t3. Just like in Example 1.18, it can be shown using Euclidean
Division 1.6 that the kernel of this map is (y− x3). It is also easy to see that this
map is surjective. Hence, by the First Isomorphism Theorem 1.12, it follows
that R[x, y]/(y − x3) ∼= R[t].

Example1.24. Using themapgiven inExample1.18,wecanshow thatR[x, y]/(y2−
x3) is isomorphic to the subring ofR[t] of all polynomials having no termof linear
degree. Try to make this more precise.
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Example 1.25. We try to figure out how the quotient Z[i]/(3 + i, 7) looks like. To
be completed. This is the 0 ring.

Example 1.26. We try to figure out how the quotient Z[i]/(3 + i, 8) lookslike. To
be completed.

Exercise 1.12. What can you say about the following rings: Z[i]/(2), Z[i]/(10+ i)
and Z[i]/(3)?

Solution. To be completed.
1.12. Combining the Isomorphism Theorems. Here, we will see that the com-
bination of the isomorphism theorems is a very strong tool.
Suppose R,S are rings, and suppose R

f−→ S is a surjective map. Then, by
the Correspondence Theorem 1.13, there is an inclusion preserving bijection
between ideals of S and ideals of R containing Kerf . Note that this is not a di-
rect application of the Correspondence Theorem 1.13 we proved, but since
R/Ker f ∼= S, we might as well just work with S instead of the quotient R/Ker f .
Now, let K be an ideal of S, and consider the maps R

f−→ S
π−→ S/K . Clearly,

the kernel of this composition is f−1(K) (note that f(f−1(K)) = K , since f is
surjective). Put J = f−1(K). So, by the First Isomorphism Theorem 1.12, we
see that

R/J = R/f−1(K) ∼= S/K = S/f(J)

If we consider the special case when f is itself a quotient map, we can recover
the so called Third Isomorphism Theorem.
As an application, let R be any ring and let a, b ∈ R. Let J = aR + bR and

let I = aR, so that I ⊂ J . Consider the surjective map R
π−→ R/aR. Now ob-

serve that π(J) = J/I = aR + bR/aR. So by the above discussion (or the Third
Isomorphism Theorem) we see that

R

aR + bR
∼=

R/aR

(aR + bR)/aR

Now it can be easily seen that b, the image of b under in the quotient aR+bR/aR,
generates this quotient. Hence, the above isomorphism can be written as

R

aR + bR
∼=

R/aR

(b)

and hence
R/(a)

(b)
∼=

R

(a, b)

and note that b is the image of b in the quotient (aR + bR)/aR. We can reverse
the roles of a, b above, and we get

R/(a)

(b)
∼=

R

(a, b)
∼=

R/(b)

(a)

This isomorphism is interpretted as follows. We want to introduce new rela-
tions by collapsing a, b to zero. This can be first done by collapsing a, followed
by collapsing b, or the other way around. This isomorphism says that nomatter
which order we choose, the resultant will be the same.
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Example 1.27. Let R = Z[x] and a = x2 + 1. Let b = p for some prime p. The
above isomorphism spells out

Z[i]
(p)

∼=
Z[x]

(x2 + 1, p)
∼=

Z[x]/(p)
(x2 + 1)

∼=
Fp[x]

(x2 + 1)

where we used the fact that Z[x]/(x2 + 1) ∼= Z[i]. Now Fp is a field, and the ring
Fp[x]/(x

2 + 1) is a field if and only if x2 + 1 does not have any roots in Fp. To be
completed.

1.13. ProductRingsandIdempotents. Wecandefineproductsof an arbitrary
collection of ringswithoutmuchwork, but for simpler notationwewill justwork
with two rings first.

Definition 1.20. Let R1, R2 be any two rings. Define the product R1 × R2 to be
the cartesian product of these sets, which ring operations are done compo-
nentwise.

One can prove the universal property of the product easily.

Proposition1.14. Let S,R1, R2 be rings and suppose S
f1−→ R1, S

f2−→ R2 be homo-
morphisms. Then, there is a unique homomorphism S

f−→ R1 ×R2 that matches
f1 and f2 in the corresponding components.

This gives us an external view of the product ring. Let us now have an internal
view of the same.

Definition 1.21. An element e ∈ R is said to be an idempotent if e2 = e.

Theorem1.15. Let S be any ring. Then, S ∼= R1×R2 for some ringsR1, R2 if and
only if S contains non-trivial idempotents.

Proof. First, suppose S ∼= R1 × R2 for some rings R1, R2. Then, it is easy to see
that the elements (1, 0) and (0, 1) are non-trivial idempotents in this ring.
Conversely, suppose S contains a non-trivial idempotent e, i.e e2 = e and e 6=

0, 1. We claim that
S ∼= eS × (1− e)S

where it can be easily seen that (1− e) is also an idempotent. First, it is easy to
see that eS is infact a ring, where the multiplicative identity is e (because e is an
idempotent). However, eS is not a subring, because e 6= 1. Similarly, (1 − e)S is
also a ring with identity (1− e).
Now, consider the map S

φ−→ eS × (1 − e)S given by s → (es, (1 − e)s). It is
easy to check that this map is a ring homomorphism. We show that this is an
isomorphism. First, suppose s ∈ Ker ϕ. This means that es = (1 − e)s = 0.
Multiply both sides by e to get

es = e(1− e)s

but since e is an idempotent, the RHS is zero, implying that es = 0. But this
implies that (1− e)s = 0, i.e s = 0. So ϕ is an injective map. To prove surjectivity,
suppose (ea, (1 − e)b) ∈ eS × (1 − e)S. Put s = ea + (1 − e)b. Then it can be
checked that (es, (1 − e)s) = (ea, (1 − e)b), and this shows that ϕ is surjective.
This completes the proof. ■
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Example 1.28. Let us see an interesting case of combining the isomorphism
theorems with products. Let R be a PID, and let a, b ∈ R such that gcd(a, b) = 1.
In this case, we see that (a, b) = R or equivalently aR + bR = R. Consider the
quotientmapsR π1−→ R/aR andR π2−→ R/bR. Then, wehave amapR π1×π2−−−→ R/aR×
R/bR.
It is clear that the kernel of this map is aR ∩ bR = aR · bR = (ab)R, and this is

because the given ideals are coprime (proof required! However this is a special
case of the CRT, which I have proven in HW-3). Using coprimality, we can also
show that the map π1 × π2 is surjective too. Hence, we have an isomorphism

R/(aR ∩ bR) = R/(abR) ∼= R/aR×R/bR

Theorem1.16 (ChineseRemainderTheorem). LetR beany ring, and let I1, ..., Ik
be ideals ofR such that Ii+Ij = R for each i 6= j, i.e the given ideals are pairwise
coprime. Then,

I1 ∩ ... ∩ Ik = I1 · ... · Ik
and the map

R/(I1 · ... · Ik) = R/(I1 ∩ ... ∩ Ik) → R/I1 × ...×R/Ik

given by
s 7→ (s+ I1, ..., s+ Ik)

is an isomorphism.
Proof. Proved in HW-3. ■
Example 1.29. Let us analyze the ring F [x]/(x2 + 4) where F ∈ {C,R,F2}. If
F = C, then we have the factorisation (x2 + 4) = (x + 2i)(x − 2i). Moreover,
observe that (x + 2i) − (x − 2i) = 4i, and hence the ideals (x + 2i), (x + 2i) are
coprime in C[x]. Applying the CRT 1.16, we have

C[x]/(x2 + 4) ∼= C[x]/(x+ 2i)× C[x]/(x− 2i)

Now it is easy to see that both factors on the RHS are copies of C. Hence, we
see that C[x]/(x2 + 4) ∼= C2.
If F = R, then x2+4 is an irreducible, and hence R[x]/(x2+4) is a field. More-

over, it is not hard to see that R[x]/(x2 + 4) ∼= C.
Finally, if F = F2, then x2 + 4 = x2, so that F2/(x

2) has a nilpotent element,
namely x. This is not possible in a field or product of fields.
Example 1.30. Here we analyze the ring R[t]/(t2 − t) for any ring R. Note that
t2− t = t(t− 1), and both the ideals (t) and (t− 1) are coprime. So, it follows that

R[t]/(t2 − t) ∼= R[t]/(t)×R[t]/(t− 1) ∼= R2

Exercise 1.13. Find a ring with exactly 21 ideals. Can you find one with charac-
teristic 3 as well?
Solution. To be completed. Hint is Z/p20Z
Exercise 1.14. Let R1, R2 be any rings. Show that ideals of R1 × R2 are of the
form I1 × I2, where I1 is an ideal of R1 and I2 is an ideal of R2.
Solution. To be completed.
Exercise 1.15. Find an infinite ring R and a non-zero f(x) ∈ R[x] such that
ev(f) = 0 function in RR. Use product rings.
Solution. To be completed.
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1.14. Fraction Fields. In this section, we will see a generalisation of the con-
struction of Q from the integral domain Z.

Definition1.22. LetD be any integral domain. Consider the setD×D/{0}, i.e all
elements of the form (a, b) with b 6= 0. Define a relation ∼ on this set as follows:

(a, b) ∼ (c, d) ⇐⇒ ad = bc

Proposition 1.17. The relation ∼ as above is an equivalence relation on D ×
D/{0}.

Proof. Reflexivity and symmetry of ∼ are easy to see. Only transivity remains
to be proven. So suppose

(a, b) ∼ (c, d) ∼ (e, f)

and so we have
ad = bc , cf = de

which implies that
afd = bcf = bde

and hence by cancelling d, we get af = be, which means (a, b) ∼ (e, f). This
completes the proof. ■

Definition 1.23. LetD be an integral domain with∼ as defined above. Consider
the quotient set (D ×D/{0})/ ∼, and denote any equivalence class (a, b) by the
fraction a

b
. On this quotient set, define

a

b
+

c

d
=

ad+ bc

cd
,

a

b
· c
d
=

ab

cd

Then, it can be checked (check it!) that these operations are well-defined and
make the quotient set into a field with

0 =
0

1
, 1 =

1

1

This field is called the fraction field of D and is denoted by Fr(D).

Theorem1.18 (UniversalPropertyofFr(D)). LetD beany integral domain, and
let Fr(D) be the field of fractions of D. Then the following properties hold.

(1) The map D
i
↪−→ Fr(D) given by a 7→ a/1 is an injective homomorphism.

(2) For any u 6= 0 in D, i(u) is a unit in Fr(D).
(3) If for some ring R there is a ring homomorphism D

φ−→ R such that ϕ(u)
is a unit in R for any u 6= 0, then ϕ factors uniquely through Fr(D) via i,
i.e there is a unique homomorphism Ψ such that the following diagram
commutes.

D R

Fr(D)

i

φ

Ψ

Remark 1.18.1. Thus we can regard an integral domain D as a subring of its
fraction field Fr(D).
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Proof. Let us prove (1) and (2) together. To prove that i is injective, it is enough
to show that Ker i = 0. So suppose a ∈ Ker i, implying that

a

1
=

0

1

and clearly this implies that a = 0. This proves (1). To prove (2), suppose a 6= 0 ∈
D. Then, the inverse of a

1
is simply 1

a
, so that i(a) is a unit. This proves (2).

Now, let us prove the given universal property in (3). SupposeR is a ring such
that D φ−→ R is a homomorphism with the given property. First, let us prove the
uniqueness of the homomorphismΨ, given that it exists. Let a/u ∈ Fr(D). Then,
we see that

ϕ(u)Ψ(a/u) = Ψ(u)Ψ(a/u) = Ψ(a/1) = ϕ(a)

where above we used the fact that Ψ restricts to ϕ on D. The above equation
implies that

Ψ(a/u) = ϕ(a)ϕ(u)−1

and hence uniqueness of Ψ follows. To prove existence, just define Ψ on Fr(D)
by the above formula. This completes the proof. ■
Example 1.31. Let F be a field, and consider F [x]. The fraction field Fr(F [x]) is
called the field of rational functions over F . It contains fractions of the form
p(x)/q(x) where q(x) is a non-zero polynomial in F [x].

Example1.32. LetF be any field, and consider the characteristicmapZ char−−→ F .
If this map is injective, then any non-zero element of Z maps to a unit in F and
hence F contains Q as a subfield, by the Universal Property 1.18. If it is not,
then the kernel is of the form pZ for some prime p, and in that caseF will contain
Z/pZ as a subfield.

1.15. Adjoining Elements. Wewill see two situations where we want to attach
new elements to a ring. The first is a concrete case and the second will be
attaching a new element abstractly.

Definition 1.24. Let R ⊂ S be rings such that R is a subring of S. Let α ∈ S.
Define

R[α] :=

{
n∑

i=0

riα
i | ri ∈ R

}
Then, R[α] is the smallest subring of S that contains R and α. We can similarly
defineR[A], whereA is any subset of S, to be the smallest subring of S contain-
ing R and each element of A.

Let us try to relate R[α] to the polynomial ring R[x], where R, α are as above.
Consider the unique homomorphism R[x]

φ−→ R[α] that restricts to the inclusion
on R and that maps x → α. Suppose the kernel of this map is a principal ideal
generated by a monic polynomial, i.e Ker ϕ = (g(x)) where g(x) is a monic poly-
nomial in R[x]. Then by the first isomorphism theorem, we see that

R[α] ∼=
R[x]

(g(x))

Moreover, notice thatR[x]/(g(x)) is anR-modulewithbasis elements 1, x, x2, ..., xn−1

where n = deg(g(x)) (amodule is just a vector space over a ring). So, this gives
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R[α] anR-module structure with basis elements 1, α, ..., αn−1. Note that this dis-
cussion is always true when R = F is a field. In that case, we have some defi-
nitions.

Definition 1.25. Let F,E be fields such that F is a subfield of E. Let α ∈ E,
and let F [x]

φ−→ F [α] be the homomorphism as above. If Ker ϕ = 0, then α is
said to be trancendental over F . If Ker ϕ 6= 0, then α is said to be algebraic
over F . In simple words, algebraic elements are those which are roots of non-
zero polynomials in F [x], while trancendental elements are those which do not
satisfy any non-zero polynomial in F [x]. If α is algebraic over F , the unique
monic polynomial of minimal degree that generates Ker ϕ is called the minimal
polynomial of α over F . If g is the minimal polynomial of α over F , then

dimF F [α] = deg(g(x)) = degree of α over F

Theorem 1.19. Let E,F be fields with F a subfield of E, and let α ∈ E. Then

α is trancendental over F ⇐⇒ F [α] ∼= F [x] ⇐⇒ dimF F [α] = ∞

Proof. Thefirst equivalence is clear by the definition of trancendental numbers.
The first and last equivalence are also clear by the definition of trancendental
numbers (very lazy proof but its not difficult anyway). ■

Theorem 1.20. Let E,F be fields with F a subfield of E, and let α ∈ E. Then

α is algebraic over F ⇐⇒ F [α] is a field ⇐⇒ dimF F [α] < ∞

Moreover, if α is algebraic over F , then its minimal polynomial is irreducible in
F [x].

Proof. Let us prove the equivalence of the first and last statements. If α is al-
gebraic, then the map F [x]

φ−→ F [α] given by x → α has kernel Ker ϕ = (g(x)),
where g(x) is the minimal polynomial of α over F . In that case, we see that

F [α] ∼=
F [x]

(g(x))

so that dimF F [α] < ∞. Conversely, if dimF F [α] < ∞, then the map ϕ cannot be
injective, as F [x] is an infinite dimensional vector space. So, ϕ is not injective,
and hence α is algebraic over F .
Let us now prove the equivalence of the first two statements. If α is algebraic

over F , then again we see that F [α] ∼= F [x]/(g(x)). Since F [α] ⊂ E, F [α] is an
integral domain, andhenceF [x]/(g(x)) is an integral domain, implying that (g(x))
is a prime ideal. But this also implies that g(x) is irreducible in F [x], and hence
this means that F [x]/(g(x)) is actually a field, so that F [α] is a field. Conversely,
if F [α] is a field, then the map ϕ cannot be injective, because we know that F [x]
is not a field. So, it follows that α is algebraic over F . ■

Example 1.33. Consider the fields Q ⊂ C, and let 3
√
2 ∈ C. Then, it can be

checked that x3 − 2 is the minimal polynomial of 3
√
2 over Q, and hence

Q[
3
√
2] ∼=

Q[x]

(x3 − 2)
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Definition 1.26. Let R be any ring, and let A be a set of polynomials over R, i.e
let A be any arbitrary subset of R[x]. Attaching or adjoining an element α to R
satisfying polynomial conditions given in Ameans taking the quotient

R[x]

(A)

where (A) is the ideal generated by the set A. Intuitively, we are adding a new
element α to our ring R such that α is a root of each polynomial in the set A.

Remark 1.20.1. As opposed to what one might think, attaching/adjoining new
elements to rings abstractly as above need not mean adding in the colloquial
sense. This is because the inclusionmapR ↪→ R[x]/(A) need not be injective. As
anexample, supposewewant to adjoin an elementα toZ/4Z such that 2α = 1, i.e
wewant to attach an inverse of 2 toZ/4Z. The ringwewill obtain isZ/4Z[x]/(2x−
1), and observe that

Z/4Z[x]
(2x− 1)

∼=
Z[x]

(4, 2x− 1)
∼=

F2[x]

(−1)
= 0

i.e this gives us the trivial ring.

Example 1.34. Suppose we attach an element α to R such that α3 = 1. This is
the same as the quotient

R[x]
(x3 − 1)

=
R[x]

(x− 1)(x2 + x+ 1)

Now (x− 1) and (x2 + x+ 1) are coprime ideals. So by the CRT we have
R[x]

(x3 − 1)
∼=

R[x]
(x− 1)

× R[x]
(x2 + x+ 1)

∼= R× C

LetF beafield, and let g(x) ∈ F [x]bean irreducible polynomial. Then,F [x]/(g(x))
is a field; not only this, this is a field containing F , so it is a field extension. We
denote

F [t]

(g(t))
:= F [t]

where t is the attached root of g(x) to F . Observe that by construction, the
minimal polynomial of t over F is g(t).

Exercise1.16. Let F,E be fieldswith F a subfield ofE. Let α, β ∈ E be algebraic
elements over F . Then, show that a ring homomorphism F [α]

φ−→ F [β] such that
ϕ(α) = β and ϕ|F = id exists if and only if the minimal polynomials of α and β
over F are equal.

Solution. To be completed.

2. Factorisation

2.1. Unique Factorisation Domains. We begin with some basic definitions.
Definition 2.1. Let R be a ring. Elements a, b ∈ R are said to be associates if
a = ub for some unit u ∈ R. If c = ka, then we say a divides c and that a is
a factor of c. An element p ∈ R is said to be irreducible if every factor of p is
either a unit or an associate of p. We don’t regard units as irreducibles.
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Definition2.2. An integral domainR is said to be a unique factorisation domain
(UFD) if every non-zero non-unit element ofR has a factorisation into a product
of irreducibles in R, and the factorisation is unique upto the ordering of the
irreducible factors and upto multiplying every irreducible factor by a unit.

So if R is a PID and if x is any non-zero non-unit in R, then we can write

x = p1p2...pk

where each pi is an irreducible in R, and that this factorisation is unique upto
ordering of the factors andmultiplying each factor by a unit. We will now prove
a characteristaion of UFDs.

Theorem 2.1. A domain D is a UFD if and only if:
(1) every irreducible is prime.
(2) Each infinite chain (b1) ⊊ (b2) ⊊ (b3) ⊊ ... is eventually constant.

Proof. Let’s prove the forward direction first. So let D be a UFD, and let p be
an irreducible. Let a, b ∈ D such that ab ∈ (p), implying that ab = pk, for some
k ∈ D. Now, consider the unique prime factorisation of ab, which is clearly the
product of the factorisations of a and b. The factorisation of pk contains p as an
irreducible. Since ab = pk, this means that the factorisation of abmust contain
an associate of p, which is true by unique factorisation. So, atleast one of a or b
contains an associate of p in their factorisation, proving that one of a, b is in (p),
and hence p is a prime. Next, suppose

(b1) ⊊ (b2) ⊊ (b3) ⊊ ...

is an infinite chain, implying that bi+1 is a proper factor of bi for each i. In par-
ticular, bi for i ≥ 2 is a proper factor of b1. Suppose the factorisation of b1 is

b1 = p1p2...pk

So upto associates, b1 has atmost 2k distinct factors. This means that the chain
must be eventually constant. This proves the forward direction.
The backward direction is also similarly proven. So suppose D is a domain

in which properties (1) and (2) are satisfied. Let us first show that if factorisa-
tion into irreducibles exists, then it is indeed unique. This is a consequence of
property (1). So let a be a non-zero non-unit such that

a = p1p2...pk = q1q2...ql

where each p1, ..., pk, q1, ..., ql is an irreducible. Then, we see that

p1|q1...ql
and since p1 is an irreducible, it is a prime as well (which is property (1)). So,
without loss of generality suppose p1|q1 after rearranging the q′is if necessary.
Because qi is an irreducible, this implies that pi and qi are associates. So, we
cancel them from either side of the equation, and continue this process. This
proves uniqueness of factorisation. We will now show existence of factorisa-
tion as a result of property (2). So let b1 be any non-zero non-unit in D. If b1 is
an irreducible, then we are done. If not, we claim that b1 has an irreducible fac-
tor. To see this, observe that we can factor b1 as b1 = p1q1, where p1 and q1 are
not units, which means that (b) ⊊ (p1). If p1 is an irreducible, then our claim is
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proven. Otherwise, again write p1 = p2q2 as a product of non-unit factors. This
way, we will get a chain

(b1) ⊊ (p1) ⊊ (p2) ⊊ ...

and by property (2), this chain is eventually constant. The corresponding gen-
erator will be an irreducible, and hence b1 has an irreducible factor, say t1. So
we can write

b1 = t1b2
where b2 is not a unit. Again, if b2 is an irreducible, then this is the required
factorisation. Otherwise, (b1) ⊊ (b2). Continuing the same way, we see that b2
has an irreducible factor, say t2 so that b2 = t2b3, and hence

b1 = t1b2 = t1t2b3

Continuing this way, we will get a chain
(b1) ⊊ (b2) ⊊ (b3) ⊊ ...

and by another application of property (2), we see b1 indeed factors into ir-
reducibles. This proves the existence part of the theorem, and hence we are
done. ■
Remark 2.1.1. Rings in which condition (2) holds are examples of the so called
Noetherian Rings. So any non-zero non-unit element of a ring satisfying condi-
tion (2) can be factored into irreducibles, but uniqueness of this factorisation
need not hold.
Here is a more general fact about the relationship between irreducibles and
primes.
Proposition 2.2. Let D be any domain. Any prime in D is also an irreducible.
Hence, by Theorem2.1, irreducibles andprimesare the sameentity in anyUFD.
Proof. Let p be any prime inD. Suppose p = ab. Then, either p|a or p|b, i.e either
a or b is a unit. This proves the primes are irreducibles in domains. The rest of
the statement is immediate. ■
Proposition 2.3. Let D be any UFD, and let a, b ∈ D. Then gcd(a, b) exists, but
need not be a linear combination of a and b.
Remark 2.3.1. Note that in a PID, gcds can be written as linear combinations.
Proof. Let a, b be two elements. Suppose

a =
k∏

i=1

pαi
i

b =
k∏

i=1

pβi

i

where each pi is an irreducible and αi, βi ≥ 0. Then it is easy to see that

gcd(a, b) =
k∏

i=1

p
min{αi,βi}
i

and hence gcds exist in D. Now, consider Z[x]. We will show that Z[x] is a UFD.
Moreover, we have

(2, x) = 1
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but 1 cannot be written as a linear combination of 2 and x. ■
Proposition2.4. LetD be adomain. If gcd(a, b) exists for every a, b ∈ D, then ev-
ery irreducible is prime inD. So, condition (1) of Theorem 2.1 can be replaced
by the existence of gcds.

Proof. Let p be any irreducible in D, and suppose ab ∈ (p). So, we see that
gcd(ab, p) = p. To be completed. ■
Example 2.1. We will see an example of a ring where irreducibles need not be
primes. Consider the ring Z[

√
−5]. For any element a+ b

√
−5, we have its norm

N(a+ b
√
−5) = a2 + 5b2

So, it is easy to see that condition (2) of Theorem 2.1 holds for this ring. How-
ever, observe that

6 = 2 · 3 = (1 +
√
−5)(1−

√
−5)

and it is easy to see that 2, 3, 1+
√
−5and 1−

√
−5are all irreducibles inZ[

√
−5]by

using the multiplicativity of the norm. Moreover, none of these are associates
to each other. Hence, uniqueness of factorisation doesn’t hold in this ring.

Example 2.2. Next, we will look at an example of a ring which violates condition
(2) of Theorem 2.1. Consider the ring Z + xQ[x], i.e all polynomials in Q[x] with
integer constant terms. We have(x

2

)
⊊
(x
4

)
⊆
(x
8

)
⊊ ...

Theorem 2.5. Every PID is a UFD.
Proof. We will apply Theorem 2.1 here. First, suppose p is an irreducible and
suppose ab ∈ (p). If a ∈ (p), then we are done. Otherwise, let (a, p) = (d), so that
d is gcd(a, p). Since p is an irreducible, we see that d is a unit, i.e (a, p) = R, so
that

ax+ py = 1

for some x, y ∈ R. Multiplying both sides by b, we see that b ∈ (p). So, every
irreducible element is prime.
Next, suppose there is a chain

(b1) ⊊ (b2) ⊊ ...

Take the union of all these ideals, i.e consider

I =
∪
i∈N

(bi)

Clearly, I is an ideal, and it is a principal ideal, so that I = (b) for some element
b ∈ R. Clearly, b = bn for some n, and hence this chain is eventually constant.
This completes our proof. ■

2.2. Euclidean Domains. This is another important class of integral domains.
Definition 2.3. An integral domain D is called a Euclidean Domain if there is a
function σ : D \ {0} → Z≥0 such that for each b and non-zero d in D, there are q
and r in D such that b = dq + r with r = 0 or σ(r) < σ(d).

Proposition 2.6. Every Euclidean Domain is a PID.



ALGEBRA - 3 27

Proof. The proof is really simply. Consider any ideal of the domain. If it is the
zero ideal, then we are done. Otherwise, consider the element of having the
least value of σ, and claim that this element generates the ideal (this is really
like proving the Division Algorithm in Number Theory). ■
Example 2.3. It is not true that every PID is a Euclidean Domain. A counterex-
ample is the ring

Z
[
1 +

√
−19

2

]
but proving so is not very easy.
Theorem2.7. Z[i] is a EuclideanDomainwhere the norm function σ is σ(a+ib) =
(a+ ib)(a− ib) = a2 + b2.
Proof. Check HW-2 for a proof. ■
2.3. Gaussian Primes. We have seen that Z[i] is a Euclidean Domain. In par-
ticular, it is a PID as well as a UFD. In this section, we will try to characterise
primes in the ring Z[i], called Gaussian Primes. Note that because Z[i] is a PID,
it is a UFD and hence we can interchangeably use the words prime and irre-
ducible by the courtesy of Proposition 2.2. Here are some basic facts about
Z[i].
Proposition 2.8. The following facts hold in the ring Z[i].

(1) Let n, k, l ∈ Z and n 6= 0. Then n|k + li in Z[i] if and only if n|k and n|l in Z.
(2) m + ni|k + li =⇒ m − ni|k − li. This is because conjugation is a ring

automorphism of Z[i].
(3) The only units in Z[i] are ±1,±i.

Proof. (1) and (2) are immediate. (3) can be seen using themultiplicativity of the
norm in Z[i]. ■
Proposition 2.9. Let p be any prime in Z. Then, exactly one of the two possibili-
ties below holds.

(1) p is a prime in Z[i]. In this case, p cannot be written as a sum of two
squares in Z, i.e p 6= k2 + l2 for k, l ∈ Z.

(2) p = ππ for a Gauss prime π = k + il, where k, l are non-zero integers in
Z. Hence, p = k2 + l2 in Z.

Proof. Suppose p is a prime in Z[i]. Then, we claim that p cannot be written as
a sum of two squares in Z. This is because if p = k2 + l2 for some k, l ∈ Z, then
clearly k, l 6= 0, and hence

p = (k + il)(k − il)

and neither of the terms on the RHS are units, implying that p is not a prime. So,
we see that p cannot be written as a sum of two squares.
Next, suppose p is a prime in Z[i]. Let π be an irreducible factor of p, i.e π|p. So

we can write p = π · z, for some z ∈ Z[i]. Observe that
N(p) = p2 = N(π)N(z)

and hence this means that N(π) = N(z) = p, i.e ππ = p. Now,
z = p/π = pπ/ππ = pπ/p = π

So, we see that p = ππ, and also p is a sum of two squares. This completes the
proof. ■
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Theorem 2.10. Let π be any Gaussian prime. Then, either π is an associate of
an integer prime or N(π) is a prime in Z.

Proof. Let π beanyGaussian prime. If π is an associate of an integer prime, then
there is nothing to prove. So suppose π is not an associate of any integer prime.
It is easy to see that π is a Gaussian prime (in particular, use (2) of Proposition
2.8). We claim that N(π) = ππ is a prime in Z. For the sake of contradiction,
supposeN(π) is not a prime in Z. Then, p1p2|N(π) for some primes p1, p2 ∈ Z. By
Proposition 2.9, three cases are possible.

(1) p1 and p2 are Gauss primes. In this case, observe that in the prime fac-
torisation of N(π), both p1 and p2 occur. However, ππ is already the fac-
torisation of N(π) in Z[i]. This means that after reordering if necessary,
π ∼ p1 and π ∼ p2, a contradiction to the fact that π is not associate to
any integer prime.

(2) In the second case, exactly one of p1 or p2 is not a Gauss prime. Wlog
suppose p1 is a Gauss prime. Then p2 = π0π0 for some Gauss prime π0.
But this contradicts the uniqueness of factorisation of N(π) in Z[i], be-
cause there are two prime factors π, π in the factorisation, but p1, π0 and
π0 all occur in the factorisation of N(π).

(3) In the last case, both p1 and p2 are not Gauss primes. So p1 = π1π1 and
p2 = π2π2 for Gauss primes π1 and π2. Again, this contradicts the number
of prime factors in the factorisation of N(π) in Z[i].

So in all cases, there is a contradiction. Hence, N(π) must be a prime. This
completes the proof. ■

2.4. Sum of Squares. In this section, we will use the tools that we have devel-
oped to answer the question of when a positive integer is a sum of two squares.

Proposition 2.11. An integer prime p > 0 is a sum of two squares if and only
if p is not a Gauss prime, which is true if and only if Z[i]/(p) is not a field. So, a

prime p is a sum of two squares if and only if Fp[x]

(x2 + 1)
is a not field, i.e if and only

if x2 + 1 has a root in Fp.

Proof. First, suppose an prime p can be written as a sum of two squares, i.e
p = k2 + l2, where k, l 6= 0. Then we see that p = (k + il)(k − il), and both of
these are irreducibles in Z[i]. So, p is not a Gauss prime. Conversely, if p is not a
Gauss prime then by Proposition 2.9 we see that p = ππ for some Gauss prime
π. So, p = N(π) and hence p can be written as a sum of two squares.
Because Z[i] is a PID, p is not a Gauss prime if and only if (p) is not a maximal

ideal, which is true if and only if Z[i]/(p) is not a field. The rest of the statement
is clear because we know that

Z[i]
(p)

∼=
Fp[x]

(x2 + 1)

■
Theorem2.12. x2 + 1 has a root in Fp if and only if p = 2 or p = 1(mod 4), where
p is a positive prime integer.

Proof 1. Let us show the easy implication first. Suppose x2 + 1 has a root in Fp,
where p is an odd prime. If α is a root, then we see that α2 + 1 = 0, i.e α2 = −1.
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This implies that α has order 4 in the group F×
p of units. Since |F×

p | = p − 1, this
implies that 4|p− 1, and hence p = 1(mod 4).
Now we prove the converse, which is harder. If p = 2, it is clear that x2 + 1

has a root in F2. So, we can assume that p is an odd prime and p = 1(mod 4). We
need to show that x2 + 1 has a root in Fp, i.e −1 is a square in Fp. Observe that
−1 is the unique element of order 2 in F×

p ; this is because−1, 1 are both roots of
x2−1, and since this is a polynomial of degree 2, these are the only roots. So, we
have to show that this unique element of order 2 is a square in F×

p . Consider the
homomorphism ϕ : F×

p → F×
p given by x → x2 (since F×

p is an abelian group, this
is indeed a group homomorphism). The image of ϕ is the group of all squares
in F×

p . Moreover, by what we have seen above,

Ker ϕ = {1,−1}

So we see that

Group of all squares ∼=
F×
p

{1,−1}

Now the order of the group
F×
p

{1,−1}
is even, because p− 1

2
is divisible by 2. So

by Cauchy’s Theorem, the group of all squares in F×
p has an element of order 2,

i.e −1 is contained in the group of all squares, and hence the polynomial x2 + 1
has a root in Fp. This completes the proof. ■

Proof 2. For a second proof, we will use the result of Theorem 3.15. So, we
know that F×

p is a cyclic group. So, we see that F×
p contains an element of order

4 if and only if 4||F×
p |, i.e if and only if p = 1(mod 4). If this element is α, then just

as in the first proof, we have α2 = −1. ■

Theorem 2.13. Let n be any positive integer. Then, n can be written as a sum
of two squares if and only if every prime factor in the prime factorisation of n
that is 3mod 4 has even power.

Proof. Suppose n ∈ Z can bewritten as a sum of two squares. We claim that all
prime factors which are 3mod 4 occur with an even power in the factorisation
of n. Suppose n = k2 + l2 = (k + il)(k − il). Also, suppose

n = pt11 ...p
tk
k

be the prime factorisation of n. Let pi be a prime that is 3 mod 4. So, observe
that in Z[i], pi is still a prime and hence it occurs in prime factorisation of n in
Z[i]. Now, we know that pi|(k+ il)(k− il) in Z[i]. Since pi is a Gauss prime, we see
that either pi|(k + il) or pi|(k − il). But, this implies that pi divides both of them,
and hence p2i divides n. This shows that pi occurs with an even power, i.e ti is
even.
Conversely, suppose n has a prime factorisation in Z in which all primes that

are 3mod 4 occur with an even power. We write this factorisation as

n = 2rpt11 ...p
tk
k q

s1
1 ...qsll

where each pi is 1mod 4 and each qi is 3mod 4. Observe that each qi remains a
Gauss prime, but each pi can be factored as

pi = πiπi
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where πi is a Gauss prime. Also, we have that
2r = (1 + i)r(1− i)r

Now, we want to find A+ iB ∈ Z[i] such that
n = (A+ iB)(A− iB)

We now appeal to property (2) of Proposition 2.8 to find all the possible factori-
sations of A + iB. Note that if qx is an irreducible factor of A + iB, then qx will
be an irreducible factor of A− iB. Keeping this is mind, we see that we can put

A+ iB = u(1 + i)r(πc1
1 π1

d1)...(πck
k πk

dk)q
s1/2
1 ...q

sl/2
l

where u is some unit, and ci + di = ti. In this case, the factorisation of A − iB
will be

A− iB = u(1− i)r(πd1
1 π1

c1)...(πdk
1 π1

ck)q
s1/2
1 ...q

sl/2
l

and hence n = (A + iB)(A − iB), i.e n can be written as a sum of two squares.
Infact, we have also found the number of ways of writing n as a sum of two
squares; there are four choices for the unit u, and since ci + di = ti, there are
(ti+1) choices for the pair (ci, di). This gives us a total of 4(t1+1)...(tk+1) choices
for A+ iB, i.e the number of ways of writing n as a sum of two squares. ■

2.5. Gauss Lemma. Consider the rings Z[x] ⊂ Q[x]. The question which we ask
is this: given a polynomial in Z[x], is there any way in which we can use Q[x] to
decide whether the polynomial is irreducible in Z[x]? What we would like to say
is something like this:

A polynomial is irreducible in Z[x] iff. it is irreducible in Q[x](∗)

However, the above is not true. As a basic example, consider 2x ∈ Z[x].
Clearly, 2x reduces in Z[x] to non-trivial factors 2 and x. However, 2x ∈ Q[x]
is indeed irreducible. So to say that a polynomial is irreducible in Z[x] if and
only if it is irreducible inQ[x] is not quite right. The problem here is that the co-
efficient 2 is irreducible in Z. We will see that this is infact the only problem that
arises, i.e if we factor out the gcd of the coefficients of the given polynomial, the
statement in (∗) is infact true.

Definition 2.4. f ∈ Z[x] is said to be a primitive polynomial if the gcd of the
coefficients of f is 1. So, all monic polynomials are primitive.

Proposition 2.14 (Gauss’ Lemma on Primitive Polynomials). Suppose f, g ∈
Z[x] are primitive polynomials. Then, fg is also a primitive polynomial.

Proof. Clearly, the gcd of the coefficients of f(x)g(x) is not zero, since Z[x] is an
integral domain. For the sake of contradiction, suppose the gcd of the coeffi-
cients of f(x)g(x) is not 1. Then, there is some prime p ∈ Z such that p|f(x)g(x).
Consider the reduction homomorphism ϕ : Z[x] → Fp[x]. Clearly, we see that

0 = ϕ(f(x)g(x)) = ϕ(f(x))ϕ(g(x))

Since Fp[x] is an integral domain, this implies that one of ϕ(f(x)) or ϕ(g(x)) is
0, which contradicts the fact that f(x) and g(x) are primitive polynomials. This
completes the proof. ■
Remark 2.14.1. This proof is valid over D[x], where D is any UFD.
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Theorem 2.15 (Gauss’ Lemma on Irreducibility). Let f be a primitive polyno-
mial in Z[x]. Then, f is irreducible in Z[x] if and only if it is irreducible in Q[x].
Proof. Wewill prove both of these statements by proving the contrapositive, i.e
if f is any primitive polynomial inZ[x], then f factors inZ[x] if and only if it factors
in Q[x].
One direction is clear; if f factors in Z[x], then it clearly factors inQ[x] aswell.

So, we only need to show the harder direction.
So let f ∈ Z[x] be a primitive polynomial. Suppose f factors in Q[x], i.e

f(x) = g(x)h(x)

for some g(x), h(x) ∈ Q[x] such that neither g(x) nor h(x) are units in Q[x], or
equivalently they have degree atleast 1. Now, we write

g(x) =
g′(x)

u
where u is the lcm of the denominators of the coefficients of g, which implies
that g′(x) ∈ Z[x]. Next, let a be the gcd of the coefficients of g′(x) ∈ Z[x], and
hence

g′(x) = ag0(x)

where g0(x) ∈ Z[x] is a primitive polynomial. So,

g(x) =
a

u
g0(x)

Similarly, write
h(x) =

b

v
h0(x)

for where h0(x) ∈ Z[x] is a primitive polynomial. So, we have the equation

f(x) =
ab

uv
g0(x)h0(x)

and hence
uvf(x) = abg0(x)h0(x)

and this is clearly an equation inZ[x]. Because g0, h0 are primitive, we know that
g0(x)h0(x) ∈ Z[x] is also primitive byGauss’ Lemma 2.14. So, this clearly implies
that uv = ab, and hence f(x) factors in Z[x]. This completes the proof. ■
So we can compile all results we have shown in the following statement.
Theorem2.16 (Irreducibles inZ[x]). Irreducibles in Z[x] are of two types: inte-
ger primes p, and primitive polynomials f ∈ Z[x] that are irreducible in Q[x].
Proposition 2.17. Let f0, g0 ∈ Z[x] such that f0|g0 in Q[x] and f0 is primitive in
Z[x]. Then, f0|g0 in Z[x].
Proof. We can write g0(x) = f0(x)h(x), for some h(x) ∈ Q[x]. As before, we write

h(x) =
a

u
h0(x)

where h0(x) ∈ Z[x] is a primitive polynomial. So,
ug0(x) = ah0(x)f0(x)

Again, h0(x)f0(x) is primitive over Z[x] by Gauss’ Lemma 2.14. So this implies
that u|a, and hence h(x) ∈ Z[x]. Hence, f0|g0 over Z[x], and this completes the
proof. ■
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Corollary 2.17.1. Let α ∈ C, and consider the map evα : Z[x] → C given by
x → α. Then, the kernel of this map is a principal ideal in Z[x].

Proof. (Recall that we proved this in Exercise 1.10). As in the referenced ex-
ercise, our claim is this: given that the kernel is non-zero, the generator is the
primitive element of least degree in Z[x] that has α as one of its roots. The rest
of the claim easily follows from Proposition 2.17. ■
Theorem 2.18. The ring Z[x] is a UFD.

Proof. Wewill use Theorem 2.1 to prove this claim. First, let us show that every
irreducible in Z[x] is prime. By Theorem 2.16, we know the irreducibles in Z[x].
If the given irreducible is irreducible in Z, then it is a prime p ∈ Z. In that case,
we see that

Z[x]
(p)

∼= Fp[x]

which is an integral domain, and hence (p) is a prime in Z[x]. So, suppose the
given irreducible is f0 ∈ Z[x], where f0 is primitive over Z[x] and irreducible
over Q[x]. We show that f0 must be a prime over Z[x]. So, suppose f0|g0h0 for
some g0, h0 ∈ Z[x]. So, we see that f0|g0h0 ∈ Q[x]. Since f0 is irreducible in Q[x],
it is prime as well and hence without loss of generality suppose f0|g0 in Q[x].
Proposition 2.17 then immediately tells us that f0|g0 ∈ Z[x], and hence f0 is a
prime in Z[x]. So, every irreducible in Z[x] is prime.
The chain condition on principal ideals is easy to see. If we have an ascending

chain of proper ideals inZ[x], i.e ifwehaveachain of properdivisors, theneither
the degree of the divisors keep getting smaller, or the gcd of the coefficients in
Z get smaller. The degree cannot get smaller indefinitely, and the gcd of the
coefficients also cannot get small indefinitely as Z is a UFD. Hence, the chain
condition on principal ideals holds on Z[x] as well. So, Z[x] is a UFD. ■

2.6. Generalisation to UFDs. Observe that most of the proofs in the previous
section don’t use anything special about Z. We can infact generalise most of
those steps to UFDs. So, let D be a UFD, and let Fr(D) be the fraction field of
D. Observe that we can take gcds over D, and hence we can define primitive
polynomials in D[x]. Then, Gauss’ Lemma on Primitive Polynomials 2.14 still
works, and also Gauss’ Lemma on Irreducibility 2.15 works. Hence, we can
again characterise irreducibles in D[x] as in Theorem 2.16, and Proposition
2.17 still holds. Finally, just as in Theorem 2.18, we can show that D[x] is also
a UFD.

Example 2.4. A particularly interesting example is this. Let F be a field, so that
F [t] is a PID, and hence a UFD. So, F [t, x] is a UFD, and hence F [x1, ..., xn] is a UFD
for any n ∈ N.

2.7. Reductions mod p to prove irreducibility. In this section, we will see a
useful technique to factor out by prime ideals for proving irreducibility of cer-
tain polynomials. We begin with an example.

Example 2.5. Consider the polynomial g(x) = 15x4 − 9x3 + 11, and we consider
the reduction homomorphism ϕ : Z[x] → F2[x] that reduces coefficients mod 2.
Then, we see that

ϕ(g(x)) = x4 + x3 + 1
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Suppose g is reducible in Z[x], i.e g(x) = h1(x)h2(x) for some non-units h1, h2 ∈
Z[x]. Then,

ϕ(g(x)) = ϕ(h1)ϕ(h2)

Observe that the sumof the degrees of h1(x) and h2(x) is 4, and henceϕ(g(x)) is a
degree 4polynomial aswell, it follows thatϕ(h1), ϕ(h2)have the samedegreesas
those of h1 and h2 respectively. So, this implies that x4+x3+1 is reducible inF2[x].
Clearly, this polynomial does not have any roots inF2, and hence it does not have
any linear factors. The only possibility then is that x4 + x3 + 1 factors into two
irreducible quadratic factors over F2[x]. Now, the only irreducible quadratic
polynomial in F2[x] is x2 + x+ 1. So, it must be true that

x4 + x3 + 1 = (x2 + x+ 1)2 = x4 + x2 + 1

which is a contradiction. So, it follows that 15x4 − 9x3 + 1 is irreducible in Z[x].
The above method shows a very useful technique, namely quotienting by prime
ideals to determine irreducibility of polynomials. Let us try to state this tech-
nique in some generality. Let p be a prime in Z, and consider the reduction
homomorphism Z[x] → Fp[x] sending g(x) → g(x) by reducing coefficients mod
p. Let g(x) be a primitive polynomial in Z[x] with leading coefficient c such that
p does not divide c (this ensures that the degree of g(x) is equal to that of g(x)).
If g = h1h2 non-trivially in Z[x], then g = h1h2 non-trivially in Fp[x] (as deg(g) =

deg(g) = deg(h1) + deg(h2) and hence deg(hi) = deg(hi)). So, if g is irreducible
in Fp[x], then g is irreducible in Z[x] (and hence in Q[x]).
Example 2.6. Here is an example where this test fails. We have

3x4 + 2x2 − 1 = (3x2 − 1)(x2 + 1)

but mod 3, it is −(x2 + 1) which is irreducible in F3[x].
Example 2.7. The polynomial x4 − 10x2 + 1 is irreducible in Z[x], but for every
prime p this polyomial factors in Fp[x]. To be completed.
2.8. EisensteinCriterion. This is another important irreducibility criterion that
uses the theme of quotienting by prime ideals.
Theorem2.19 (Eisenstein’s Criterion). Let f(x) = anx

n + ...+ a1x+ a0 ∈ Z[x] be
any polynomial, and let p ∈ Z be a prime such that

(1) p does not divide an.
(2) p divides ai for every 0 ≤ i ≤ n− 1.
(3) p2 does not divide a0.

Then, f(x) is irreducible inQ[x]. So, if d = gcd(an, an−1, ..., a0), then
1

d
f(x) is irre-

ducible in Z[x].
Proof. Let f(x) ∈ Z[x] be a polynomial satisfying the given conditions. Suppose
f(x) factors non-trivially in Q[x], i.e f(x) = g(x)h(x) in Q[x], where g, h are non-
zero non-unit elements of Q[x]. Using Gauss’ Lemma 2.14, we can deduce that
f(x) can be factored non-trivially in Z[x] (this is easy to prove!). So, without loss
of generality we assume that g(x), h(x) ∈ Z[x]. Now, consider the reduction
homomorphism mod p. Let

g(x) = brx
r + ...+ b0

h(x) = csx
s + ...+ c0
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for some r, s with r + s = n and br, cs 6= 0. Observe that
f(x) = anx

n in Fp[x]

and hence
g(x)h(x) = anx

n in Fp[x]

Theabove implies that g(x)and h(x)must bemonomials inFp[x]; otherwise, their
product won’t be a monomial. So, the only choice is g(x) = brx

r and h(x) =
csx

s. So, this means that p|b0 and p|c0, which in turn implies that p2|b0c0 = a0, a
contradiction. So, f(x)must be an irreducible inQ[x]. The rest of the statement
is clear. ■
Remark 2.19.1. As usual, this criterion can easily be extended to D[x], where
D is a UFD, and we replace Q by the fraction field Fr of D. More generally,
suppose D is any integral domain, and let f(x) = anx

n + ... + a0 ∈ D[x] be a
primitive polynomial (in this setting, a primitive polynomial will be one in which
the coefficients don’t have any non-unit common divisors) such that ai ∈ P for
each 0 ≤ i ≤ n− 1, an /∈ P and a0 /∈ P 2, where P is some prime ideal of D. Then
by the exact same reasoning as above, we can conclude that f(x) is irreducible
over D[x]. Ofcourse, here we cannot pass to the ring Fr[x] as we might not be
able to take gcds.
Example 2.8. Consider the polynomial xn − 2 ∈ Q[x]. By Eisenstein’s Criterion
2.19with p = 2, we see that this problem is irreducible overQ[x]. This is a fancy
way of saying that the nth root of 2 is irrational.
Example 2.9. Let D = F [t], where F is some field. Consider the polynomial
xn − t ∈ F [t, x] ∼= F [t][x]. By taking our prime to be t ∈ F [t], we can deduce that
xn − t is an irreducible element in F [t, x].
Example 2.10. In this example, we will see a general techique called shifting.
Consider the polynomial

f(x) =
x5 − 1

x− 1
= 1 + x+ x2 + x3 + x4

in Q[x]. We show that this polynomial is irreducible. Note that there is no ob-
vious way of applying Eisenstein’s Criterion 2.19. However, if we consider
f(x+ 1), then we get

f(x+ 1) =
(x+ 1)5 − 1

x
==

5∑
i=1

(
5

i

)
xi−1

and now we can easily apply the criterion with p = 5 to deduce irreducibility.
The last example can be generalised to showcase an interesting phenomenon.
SupposeF is anfield, and consider theuniquemapF [x] → F [x]givenby sending
x → x + c for any c ∈ F . This is easily seen to be an automorphism of F [x]; so,
a polynomial is irreducible in F [x] if and only if its image under this map is an
irreducible. This is exactly what we did above, and these kind of polynomials
have a name.
Definition 2.5. Let p be any prime. The cyclotomic polynomial φp(x) is defined
as

φp(x) :=
∏
ζ

(x− ζ) =
xp − 1

x− 1
= 1 + x+ ...+ xp−1
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where the above product is taken over all primitive pth roots of unity.
Proposition 2.20. φp(x) is irreducible in Q[x] for any prime p ∈ Z.
Proof. As mentioned in the remark above, consider the shifting automorphism
Q[x] → Q[x] given by x → x+ 1. Now,

φp(x+ 1) =

p∑
i=1

(
p

i

)
xi−1

and the claim is proven by applying Eisenstein’s Criterion 2.19 with prime p.
■

2.9. Rational Root Test. Now we will present a fairly useful test to check for
existence of roots for some polynomials.
Theorem 2.21 (Rational Root Test). Let gcd(a, b) = 1 in Z, b 6= 0. Let g(x) =
cnx

n + ...+ c0 ∈ Z[x]. Then,
a

b
is a root of g ⇐⇒ (bx− a)|g ∈ Z[x]

Moreover, if a/b is a root of b, then b|cn and a|c0.
Proof. This is a straightforward application of Gauss’ Lemma 2.14. The other
assertion about divisibility is also immediate. ■

3. Field Theory

We will begin this section by understanding quotients of F [x]where F is a field.
We know that F [x] is a PID. So, every ideal I of F [x] is of the form (g(x)), where
g(x) ∈ F [x]. Moreover, to make the generator g unique, we can impose the
condition that g must be monic.
Exercise 3.1. What can be said about the size of the quotient F [x]/(g(x))? Try
relating to vector spaces.
Solution. If p(x) ∈ F [x], then by Euclidean Division 1.6, there are q(x), r(x) ∈
F [x] such that p(x) = q(x)g(x) + r(x) and deg(r(x)) < deg(g(x)). So, it follows
that if n = deg(g(x)), the elements 1, x, ..., xn−1 span the quotient F [x]/(g(x)), and
clearly these elements are linearly independent. So it follows that F [x]/(g(x)) is
an F -vector space over dimension n, so that

F [x]/(g(x)) ∼= F n

as F -vector spaces.
Exercise 3.2. When is F [x]/(g(x)) a field? An integral domain?
Solution. F [x]/(g(x)) is a field preciselywhen g(x) is irreducible, because in that
case the only ideals of F [x]/(g(x)) will be the trivial ones. Moreover, because
F [x] is a PID, it can be seen that a polynomial is irreducible if and only if it is
prime. One direction is clear; if a polynomial is irreducible, then it is clearly
prime. If a polynomial is prime, then it cannot be reducible; if it was reducible,
it would factor into factors of lesser degree. But that would contradict the pri-
mality of the polynomial, as it cannot divide any of its factors of lesser degree.
So, F [x]/(g(x)) is a field if and only if it is an integral domain.

Exercise 3.3. Show that E1 = Q[t]/(t2 − 5) is a field. Find t3
−1 in E1.
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Solution. Clearly, t2 − 5 is irreducible in Q[t]. So, Q[t]/(t2 − 5) is a field. Now,

observe that t3 = 5t. Moreover, t−1
=

−t

5
. So, it follows that t3−1

=
−t

25
. In

general, if we are given some h(x) 6= 0, inverses can be found using diophantine
equations: because t2−5 is irreducible, its gcdwith any such h(x) is 1, andhence
there are a(x), b(x) ∈ F [x] such that

a(x)(t2 − 5) + b(x)h(x) = 1

So, h(x)−1
= b(x).

Exercise 3.4. Construct fields of size 4 and 8.

Solution. We consider the field F2. To construct a field of size 2n, our stratey
will be to find an irreducible polynomial in g(x) F2[x] of degree n. It will then
immediately follow that F2[x]/(g(x)) is a field of order 2n.
If n = 2, g(x)must be a quadratic polynomial. Now, there are four quadratic

polynomials in F2[x]: x2 , x2 + 1, x2 + x and x2 + x + 1. Out of these, only the
polynomial x2 + x+1 is irreducible. So, it follows that F2[x]/(x

2 + x+1) is a field
of order 22 = 4.
If n = 3, g(x) is a cubic polynomial. There are 8 cubic polynomials: x3 , x3 + 1

, x3 + x, x3 + x + 1, x3 + x2 , x3 + x2 + 1, x3 + x2 + x, x3 + x2 + x + 1. Out of these,
only the polynomials x3 + x+1 and x3 + x2 +1 are irreducible. So, it follows that
F2[x]/(x

3+x+1) and F2[x]/(x
3+x2+1) are both finite fields of order 8. However,

we show that
F2[x]

x3 + x+ 1
∼=

F2[x]

x3 + x2 + 1
so essentially, a unique field is created by this process. Showing this is easy:
just consider the map F2[x] → F2[x] that sends x → x+ 1.

Remark 3.0.1. We can actually repeat the above process for any prime p and
any positive integer n to obtain a unique field of order pn. We will prove this
later.

Exercise 3.5. Prove that there are unique fields of size 4 and size 8.
Solution. To be completed.
Exercise 3.6. Classify all rings of order 4.
Solution. To be completed.
3.1. Field Extensions. In this section, we will introduce the notion of field ex-
tensions and their degrees.

Definition 3.1. Let F,E be fields such that F ⊂ E. Then, E is said to be an
extension of F , and this is denoted by E/F (Note: this is not a quotient). The
dimension of E as a vector space over F is called the degree of the extension
E/F , and this is denoted by [E : F ]. If [E : F ] is finite, then E/F is said to be a
finite extension.

Proposition 3.1 (Multiplicativity of Degree). Let F ⊂ E ⊂ K be field exten-
sions. Then,

[K : F ] = [K : E][E : F ]

So, both [K : E] and [E : F ] divide [K : F ].
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Proof. The idea is easy. Let {vα}α∈I be an E-basis of K , and let {wβ}β∈J be an
F -basis of E. Then, we claim that

{wβvα}β∈J,α∈I
is an F -basis of K . It is easy to see that any element of K can be written as an
F -linear combination of these elements. So, it is enough to show linear inde-
pendence. Suppose ∑

α∈I,β∈J

cβ,αwβvα = 0

for cβ,α ∈ F . So, this means that∑
α∈I

(∑
β∈J

cβ,αwβ

)
vα = 0

Because {vα} is an E-basis ofK , it follows that∑
β∈J

cβ,αwβ = 0

for each α ∈ I . Again, since {wβ} is an F -basis of E, it follows that

cβ,α = 0

for each α ∈ I, β ∈ J . This completes the proof. ■

Exercise 3.7. Let K be a finite field with |K| = pn. Let E ⊂ K be a subfield with
|E| = pd. Then d|n.

Solution. Clearly, the characteristic of K is p, and let F = Z/pZ be the prime
subfield ofK . Then,

F ⊂ E ⊂ K

By Proposition 3.1, we see that
[K : F ] = [K : E][E : F ]

Now, [K : F ] = n and [E : F ] = d, and this implies that d|n.

3.2. ReviewingAlgebraic Elements andMinimal Polynomials. In this section,
we will review some of the ideas we saw in the section on Adjoining Elements..
We will also see a new definition.

Definition 3.2. Let F ⊂ E be fields, and let α ∈ E be an arbitrary element. As
before, F [α] is the smallest subring of E containing both F and E. We define

F (α) := smallest subfield of E containing F and α

Similarly, we can define F [α1, ..., αn] and F (α1, ..., αn). It is easy to see that F (α)
is the fraction field of F [α].

Consider the evaluation map F [x]
evα−−→ F [α] given by x → α. We know that if

Ker evα = 0, then α is trancendental over F , and in this case we see that F [x] ∼=
F [α], i.e F [α] is not a field, so that F [α] ⊊ F (α). Also, in this case, we see that
dimF F [α] = ∞, and hence it follows that [F (α) : F ] = ∞. On the other hand,
if Ker evα 6= 0, then it is generated by a monic irreducible polynomial, which is
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nothing but the minimal polynomial of α over F , and in this case we say that α
is algebraic over F . If f(x) is the minimal polynomial of α over F , then we have

F [x]

(f(x))
∼= F [α]

i.e F [α] is a field, and hence F [α] = F (α). Also, in this case we see that [F (α) :
F ] = [F [α] : F ] = deg f . The above discussion implies that

α is algebraic over F ⇐⇒ [F (α) : F ] < ∞

3.3. Attaching a Single Element. Let us begin this section with an exercise.

Exercise 3.8. Let α = 7
√
2 ∈ R and β =

1

2019
+ 2020α2 + 2021α5. Show that

Q(β) = Q(α) (Hint: UseMultiplicativity of Degree 3.1).
Solution. First, observe that α is a root of the polynomial x7 − 2 ∈ Q[x], which is
irreducible inQ[x] by Eisenstein’sCriterion 2.19. So, we see that [Q(α) : Q] = 7.
Now, observe that

Q ⊂ Q(β) ⊂ Q(α)

and so byMultiplicativity of Degree 3.1, we see that
7 = [Q(α) : Q] = [Q(α) : Q(β)][Q(β) : Q]

and since 7 is a prime, one of [Q(α) : Q(β)] or [Q(β) : Q] is 7. Now, we claim that
β /∈ Q. For the sake of contradiction, suppose β ∈ Q. But that would imply that
α is a root of the polynomial

2021x5 + 2020x2 +
1

2019
− β ∈ Q[x]

which is a contradiction. So, it follows that [Q(β) : Q] > 1, and hence [Q(β) : Q] =
7. So, it follows that [Q(α) : Q(β)] = 1, and hence Q(α) = Q(β). This prevented
us from explicitly calculating the minimal polynomial of β over Q, which would
have been very cumbersome.

Proposition 3.2. Let F ⊂ E be fields with [E : F ] = n and let α ∈ E. Then, α is
algebraic over F and deg(minFα) | n.

Proof. This is easy to see: the elements 1, α, α2, ..., αn must be linearly depen-
dent over F , and hence α satisfies some polynomial in F [x], i.e α is algebraic
over F . Now, observe that [F (α) : F ] = deg(minFα), and since F ⊂ F (α) ⊂ E,
Multiplicativity of Degree 3.1 implies that deg(minFα) | n. ■
Definition 3.3. Let E/F be a field extension. Then, this extension is said to be
algebraic if every α ∈ E is algebraic over F . So, Proposition 3.2 shows that all
finite extensions are algebraic.

Trying tomake a converse for Proposition 3.2 leads to interesting questions as
given in the following examples.

Example 3.1. Proposition 3.2 shows that all elements in a finite extension E/F
are algebraic over F . We ask whether the converse is true, i.e if all elements
in an extension E/F are algebraic over F , is the extension finite. The answer is
no. For a counterexample, let

S = { n
√
3 | n ∈ N}
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and consider the extension Q ⊊ Q(S). This extension contains elements of ar-
bitrarily large degree over Q, because xn − 3 is irreducible over Q[x] for each
n ∈ N by Eisenstein’s Criterion 2.19. So, by the divisibility part of Proposition
3.2, it follows that this extension is not finite. However, as we shall see shortly,
this is indeed an algebraic extension.

Example 3.2. Proposition 3.2 shows that if E/F is an extension of degree d
and if α ∈ E, then the degree of α over F is a divisor of n. We ask the opposite
question: given any divisor d of n, is there an element in E of degree d over F?
The answer is again a no. To be completed.

Proposition 3.3. Let F ⊂ M ⊂ E be fields, and suppose α ∈ E such that α is
algebraic over F . Then

deg(minMα) ≤ deg(minFα)

This can be represented as the following diamond diagram.

M [α]

F [α] M

F

e≤d

d

where d = deg(minFα) and e = deg(minMα).

Proof. It is clearly seen that α is algebraic over M as well. Also, observe that
minMα | minFα and hence the claim follows. Pictorially, this proposition states
that moving up the diagram can only decrease the degree. ■

3.4. Attaching Multiple Elements and Diamond Diagrams. Now consider the
following situation. LetF ⊂ E befields, and supposeα, β ∈ E are algebraic over
F . So, it follows that F [α] = F (α) and F [β] = F (β) are both fields. We can even
attach α and β simultaneously to get F [α, β]; this is the same as attaching the el-
ementα to the fieldF [β], and henceF [α, β] = F (α, β) becauseα is algebraic over
F [β]. This explanation can also be extended by induction to the situation of at-
taching arbitrary algebraic elements α1, ..., αn to get F [α1, ..., αn] = F (α1, ..., αn).
This situation can be explained by the following diamond diagram.

F [α, β]

F [α] F [β]

F

e2≤d2

e1≤d1

d1 d2

n

In the above diagram, the numbers next to the arrows are the degrees of the
extensions, and note that we are using Proposition 3.3. Now, byMultiplicativ-
ity of Degree 3.1, we see that

n = d1e2 = d2e1 ≤ d1d2(†)
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Proposition 3.4. Let F ⊂ E be fields. Then
K := {α ∈ E | α is algebraic over F}

is a subfield of E.

Proof. Clearly, 0 ∈ K and K is closed under additive inverses. Next, suppose
α, β are algebraic over f , i.e there are p(x), q(x) ∈ F [x] with p(α) = q(β) = 0.
Then we show that α + β is also algebraic. To show this, it is enough to show
that

[F (α + β) : F ] < ∞
Because both α, β are algebraic, it follows that F [α, β] = F (α, β) is a field, and
hence

[F (α, β) : F ] < ∞
Because F (α + β) ⊂ F (α, β), it follows that

[F (α + β) : F ] < ∞
implying that α + β is algebraic over F . So, K is an additive subgroup of F .
Clearly, 1 ∈ K , andK is closed under inverses. A similar proof as above shows
thatK is closed under multiplication. So,K is a subfield of E. ■
Remark 3.4.1. However, K/F need not be a finite extension. This was exactly
the point of Example 3.1.
Proposition 3.5. Let F ⊂ E be fields, and suppose α, β ∈ E are algebraic over
F . Suppose [F (α) : F ] = d1 and [F (β) : F ] = d2, where d1, d2 are coprime. Then,
[F (α, β) : F ] = d1d2.

Proof. From (†) above, we see that d1 | n and d2 | n, which implies that d1d2 | n
since d1, d2 are coprime. However, (†) also implies that n ≤ d1d2, and hence it
follows that n = d1d2. This completes the proof. ■
Exercise 3.9. Let g(x) = x3 − 2 in Q[x]. Let E be the splitting field of g(x) in C, i.e

E := Q(all roots of g in C)

So, E is the smallest subfield of C such that in E[x], g(x) factors as a product of
linear factors. Find [E : Q].

Solution. Letω = e
2πi
3 , and letα = 3

√
2. Then, the roots of g(x) inCare {α, ωα, ω2α}.

Observe that the field Q(α, ω) = Q(α, ωα, ω2α), which is immediate. So, we just
need to find [Q(α, ω) : Q]. But we can do this using Proposition 3.5; observe
that theminimal polynomial of α overQ has degree 3, and that of ω is 2 (because
ω2 + ω + 1 = 0). So, it follows that

[Q(α, ω) : Q] = 2 · 3 = 6

Note that herewe had the liberty of just attaching pre-existing roots inC until
the polynomial completely splits. However, wewant to generalise this idea, and
we do this by attaching abstract roots. So, consider the polynomial x3−2 ∈ Q[x],
and put E0 = Q. This polynomial is irreducible; so, we attach an abstract root
of this polynomial by constructing

E1 =
Q[t1]

(t31 − 2)
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Now, the polynomial x3 − 2 ∈ E1[x] has a root in E1, namely t1. So, we can write
x3 − 2 = (x− t1)q(x) = (x− t1)(x

2 + t1x+ t1
2
)

where q(x) ∈ E1[x] is some degree 2 polynomial. I claim that q(x) is irreducible
in E1[x]; observe that E1

∼= Q(α), and Q(α) does not contain the complex roots
ωα, ω2α of x3 − 2. So, it implies that E1 contains exactly one root of x3 − 2, and
hence q(x) ∈ E1[x]must be irreducible. So, we again attach an abstract root of
q(x) to E1 by defining

E2 =
E1[t2]

(q(t2))

At this point, note that x3−2 completely factors into linear factors inE2. Now, we
will show thatE2 is indeed the splitting fieldQ(α, ωα, ω2α), i.eE2

∼= Q(α, ωα, ω2α).
First, note that Q(α, ωα, ω2α) = Q(α, ωα). Now, Q(α, ωα) = Q(α)[ωα]. Moreover,
observe that

Q(α) ∼=
Q[t1]

(t21 − 2)
= E1

Moreover, the minimal polynomial of ωα over the field Q(α) is
t22 + αt2 + α2

which is easy to see. So, it follows that

Q(α)[ωα] ∼=
Q(α)[t2]

(t22 + αt2 + α2)
∼=

E1[t2]

(q(t2))
= E2

So, it follows that the abstract construction gives us the splitting field. We shall
see a generalisation of this technique in the upcoming sections.

3.5. Some Results in Finite Fields. In this section, we will prove some results
about finite fields. We will assume in some results the existence of a finite field
of size pn for any n ∈ Z and any prime p ∈ Z. We will prove this existence in the
section 3.6 Splitting Fields and Construction of Finite Fields.
The first question that we ask is this: how to factor xpn −x in Fp[x]? Suppose a

field E is given to us, with |E| = pn. Then by problem 9. (iii) of HW-1, each α ∈ E
is a root of the polynomial

xpn − x = x(xpn−1 − 1)

Now, suppose g(x) ∈ Fp[x] is a monic irreducible polynomial of degree n (we
don’t know if there is such a polynomial yet). Then, consider the field

E =
Fp[t]

(g(t))

and hence |E| = pn. By construction, the minimal polynomial of the element
t ∈ E over Fp is g(x). Because t ∈ E is a root of xpn − x ∈ Fp[x] ⊂ E[x], it follows
that

g(x) | xpn − x in Fp[x]

Now, we know that Fp[x] is a UFD. So, any two distinct monic irreducible poly-
nomials over Fp[x] are coprime, and hence it follows that ∏

g monic irreducible of degree n in Fp[x]

g(x)

 | xpn − x in Fp[x]

Infact, we can do more than this. We start by proving a simple proposition.
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Proposition 3.6. If R is any ring with x ∈ R and r | s, then xr − 1 | xs − 1. In
particular, if d | n and if p is a prime, then xpd − x | xpn − x in R[x].

Proof. The proof of this is an immediate calculation. If s = rk for some k ∈ Z,
then

xs − 1 = xrk − 1 = (xr)k − 1

and clearly the extreme right hand side is divisible by xr − 1. Now, if d | n, then
pd − 1 | pn − 1 in Z. So, we see that

xpd−1 − 1 | xpn−1 − 1

in R[x], and hence
xpd − x | xpn − 1

in R[x], completing the proof. ■
Theorem 3.7. Consider the polynomial xpn − x ∈ Fp[x]. Then ∏

hmonic irreducible of degree d in Fp[x],d|n

h(x)

 | xpn − x in Fp[x]

where in the above product d is ranging over all divisors of n.

Proof. To prove this, suppose h is a monic irreducible polynomial of degree d in
Fp[x], where d | n is a fixed divisor of n. By the exact same reasoning as in the
beginning of this section, i.e by constructing a field of size pd, we can conclude
that

h(x) | xpd − x ∈ Fp[x]

and hence it follows that ∏
hmonic irreducible of degree d in Fp[x]

h(x)

 | xpd − x in Fp[x]

Because d is a divisor of n, an application of Proposition 3.6 shows that xpd −x |
xpn − x in Fp[x]. So, it follows that ∏

hmonic irreducible of degree d in Fp[x]

h(x)

 | xpn − x in Fp[x]

Ranging d over all divisors of n and using the fact that any distinct irreducibles
over Fp[x] are coprime, the claim follows. ■
Wewill nowshow that the factors of xpn−x inFp[x] given in Theorem3.7 actually
give the factorisation of xpn − x in Fp[x].

Theorem 3.8. Consider the polynomial xpn − x ∈ Fp[x]. Then,

xpn − x =

 ∏
hmonic irreducible of degree d in Fp[x],d|n

h(x)


Remark 3.8.1. In the proof, we will assume that for any n ∈ N, there is a finite
field E such that |E| = pn.

Proof. By Theorem 3.7, it is enough to show the following.
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(1) If h(x) ∈ Fp[x] is an irreducible such that h(x) | xpn −x, then deg(h(x)) | n.
(2) No square of an irreducible in Fp[x] divides xpn − x.

Let E be a field of cardinality pn, and clearly Fp is contained in E (this is the only
place where we assume the existence of finite fields).
First, let us show (1). So, let h(x) ∈ Fp[x] be an irreducible such that h(x) |

xpn − x in Fp[x]. By problem 9. (iii) of HW-1, we know that every element of E is
a root of the polynomial xpn − x. In particular, this means that h(x) has a root
in E. Let α ∈ E be this root. Then, the subfield Fp(α) ⊂ E is a field of degree d
over Fp, because α has degree d = deg(h(x)) over Fp. So byMultiplicativity of
Degree 3.1 we have

n = [E : Fp] = [E : Fp(α)][Fp(α) : Fp] = d[E : Fp(α)]

which implies that d | n. This proves (1).
Consider the factorisation of xpn − x over the UFD Fp[x]. We know the factori-

sation of xpn − x over the UFD E[x]; it is simply a product of pn linear factors.
This immediately implies that the factorisation of xpn − x in Fp[x] cannot contain
any squares of irreducibles. This completes the proof of the theorem. ■

Theorem 3.9 (Uniqueness of Finite Fields). Suppose E1 and E2 are two finite
fields with |E1| = |E2| = pn for some prime p ∈ Z and n ∈ N. Then, E1

∼= E2.
Moreover, |Aut(Ei)| = nandAut(Ei) is cyclic, and is generated by the Frobenius
map x 7→ xp.

Proof. Suppose E1, E2 are two fields of cardinality pn. From Theorem 3.15, we
know that bothE×

1 andE×
2 are cyclic groups. So, take a generatorα of the group

E×
1 . Because E1 is a finite extension over Fp, we know that α is algebraic over

Fp. So, consider the minimal polynomial minFpα. Because E×
1 is generated by α,

we see that E1 = Fp(α), and hence

E1 = Fp(α) ∼=
Fp[x]

(minFpα)

so thatminFpα has degree n. Now, by Theorem 3.7, we see thatminFp(α) | xpn−x
in Fp[x]. But, we also know that xpn − x splits into linear factors over the field
E2 (by problem 9. (iii) of HW-1). So, the polynomial minFpα has a root in E2. Let
this root be β ∈ E2. So, clearly we see that minFpβ = minFpα because minFpα is
irreducible over Fp, and hence we see that

E1
∼=

Fp[x]

(minFpα)
=

Fp[x]

(minFpβ)
= Fp(β) ⊂ E2

So, E2 contains a copy of the field E1. By comparing cardinalities, it follows that
E1

∼= E2, and this completes the proof of the first part of the theorem. Need to
write the proof of the rest of the theorem. ■

Corollary 3.9.1. For every positive integer n ∈ N, there is an irreducible poly-
nomial of degree n over the field Fp.

Proof. As mentioned in the beginning of this section, we assume that there is a
finite field E with |E| = pn. Now, consider the generator α of the cyclic group
E×. As in the above proof, we see that deg(minFpα) = n. So this is the required
irreducible polynomial. ■
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Theorem 3.10 (Subfields of Finite Fields). Let E be a finite field with |E| = pn.
Then,

E has a unique subfieldM with |M | = pd ⇐⇒ d | n

Proof. One direction is clear; if M is a subfield of E with |M | = pd, then Mul-
tiplicativity of Degree 3.1 implies that d | n. Moreover, the subfield M will be
unique; this is because the polynomial xpd − x completely splits over the field
M (again by problem 9. (iii) of HW-1), and this polynomial can have atmost pd
roots. So, only the harder direction needs to be proven.
Let d be any divisor of n. Consider the polynomial xpd − x over E. By Propo-

sition 3.6, we see that xpd − x | xpn − x in Fp[x]. Now, the polynomial xpn − x

completely splits into linear factors inE, and hence it follows that xpd −x has all
its roots inE. Clearly, there are pd roots of this polynomial, because the polyno-
mial xpn −x in E[x] does not have any root with multiplicity greater than 1. Now,
we will show that all roots of xpd − x in E form a field; that will be the required
fieldM . It is clear that 0 and 1 are roots of xpd −x. Now, suppose α 6= 0 is a root.
So, we see that

αpd − α = 0

So, we have
1

αpd
− 1

α
=

−(αpd − α)

αpd+1
= 0

and hence α−1 is also a root, so that the set of roots is closed under multiplica-
tive inverses. Next, suppose p is odd. So, we have

(α)p
d − (−α) = −αpd + α = −(αpd − α) = 0

and hence it implies that −α is also a root. If p = 2, then we have
(−α)2

d − (−α) = α2d + α = −α2d + α = 0

and hence again −α is a root, where we have used the fact that −1 = 1 in E in
this case. So, the set of roots is also closed under additive inverses. The fact
that the set of roots is closed under multiplication is clear, and the fact that the
set of roots is closed under addition follows by using the fact that the Frobenius
Map x 7→ xp is a homomorphism inE. So, it follows that the set of roots of xpd−x
is a field itself, and this completes the proof. ■
Exercise 3.10. Find gcd(xa − 1, xb − 1) in Z[x].
Solution. To be completed.
3.6. Splitting Fields and Construction of Finite Fields. The idea in this section
will be very similar to what we did in Exercise 3.9, and we will give a construc-
tion of finite fields.
Definition 3.4. Let F be a field, and let g(x) ∈ F [x] be a given polynomial. A
splitting field of F is an extension E/F such that g(x) factors completely in E[x],
i.e

g(x) =
∏

i=1,...,n

(x− αi)

and that E = F [α1, ..., αn].
Theorem 3.11. Let F be any field, and let g(x) ∈ F [x] be any polynomial. Then,
there exists a splitting field for g(x).
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Proof. This is a very natural construction, and very similar to what we did in
Exercise 3.9. PutE0 = F . ConsiderEi[x], and factor g(x) into irreducibles in the
UFD Ei[x]. If g(x) factors completely into linear factors, then stop. Otherwise,
g(x) has an irreducible factor of degree atleast 2. Say this factor is q(x). Then,
put

Ei+1 =
E[ti]

(q(ti))

So, ti is a root of q(x) in the Ei+1, i.e q(x) has a linear factor in Ei+1[x]. Continue
this processuntil g(x) factors completely into linear factors. Suppose this stops
at the field Ek. So, observe that

F = E0 ⊂ E1 ⊂ ... ⊂ Ei ⊂ Ei+1 ⊂ ... ⊂ Ek

as Ei+1 contains Ei as constants. So, observe that g(x) has all its roots in Ek.
So suppose α1, ..., αn are the roots of g(x), where n = deg(g(x)). Consider the
subfield F (α1, ..., αn) = F [α1, ..., Fαn ] ⊂ Ek. This subfield is the required splitting
field. ■
Finally, we have all but one tool to construct a finite field. So let us define the
tool first.

Definition 3.5. Let F be any field, and let f(x) = cnxn + ... + c0 ∈ F [x]. The
derivative f ′(x) ∈ F [x] is defined as

f ′(x) = ncnxn−1 + ...+ c1

i.e f ′(x) is defined exactly as the derivative in calculus.

Proposition 3.12. Let f(x) ∈ F [x] be a polynomial. Then f has a multiple root α
in an extensionK/F if and only if α is a root of f and f ′.

Proof. Suppose α ∈ K is a root of f(x). Then, f(x) = (x − α)g(x) for some
g(x) ∈ K[x]. So, α is a multiple root of f if and only if it is a root of g(x). Now,

f ′(x) = (x− α)g′(x) + g(x)

So, g(α) = 0 if and only if f ′(α) = 0. So, f has a multiple root inK if and only if it
is the root of both f and f ′. ■
Proposition 3.13. Let f(x) ∈ F [x]. Then, there exists a field extension K/F in
which f has amultiple root if and only if f and f ′ are not relatively prime. Infact,
we can takeK to be the splitting field of f .

Proof. Let K/F be a field extension containing all roots of f . In particular, we
can letK to be the splitting field of f . By Proposition 3.12 f has a multiple root
in K if and only if both f and f ′ have a common factor, i.e if and only if f and f ′

are not relatively prime. ■
Theorem 3.14 (Existence of Finite Fields). Let p be any prime, and let n ∈ N be
any positive integer. Then, there is a field E such that |E| = pn. By Theorem
3.9, this field is unique upto isomorphism, and is denoted by Fpn .

Proof. Let E be the splitting field of the polynomial xpn −x ∈ Fp[x]. We show that
Emust be equal to the set of roots of xpn−x. But this is easy: observe thatE has
characteristic p, and hence the FrobeniusMap x 7→ xp is a homomorphism. So
by the exact same reasoning as in Theorem 3.10, we conclude that E is equal
to the set of roots of the polynomial xpn − x in E[x].
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Since xpn−xhas atmost pn roots, it follows that |E| ≤ pn. To show that |E| = pn,
wemust show that xpn −x has distinct roots. But this is easy to see by using the
derivative as inProposition 3.13; observe that (xpn−1)′ = −1 in Fp[x], and hence
it follows that all roots of xpn − x are distinct. This completes the proof. ■
3.7. Cyclicity ofSubgroupsofMultiplicativeGroupsof Fields. In this section,
we will prove a result that will be very important in studying finite fields.

Theorem3.15. Let F be any field, and let F× be themultiplicative group of units
of F . Then any finite subgroup of F× is cyclic.

To prove this result, we will use a simple fact from abelian group theory.

Proposition 3.16. LetG be any abelian group, and let x, y be elements ofGwith
orders k, l respectively. Then, G contains an element of order lcm(k, l).

Proof. First, suppose gcd(k, l) = 1. In that case, we see that lcm(k, l) = kl.
We will show that the element xy has order kl. To show this, first suppose
(xy)m = xmym = 1. We will show that ym = xm = 1 necessarily. For the sake
of contradiction, suppose ym 6= 1. Then, ym is a power of x, and hence the order
of ym divides the order of x. Clearly, the order of ym divides the order of x, and
hence the order of ym is a common factor of k and l. Since ym 6= 1, this contra-
dicts the fact that gcd(k, l) = 1. Hence, xm = ym = 1, i.e lcm(k, l) = kl|m. So, it
follows that the order of xy is kl.
Next, let k, l be arbitrary, i.e gcd(k, l) = 1 is not necessary. Let

k = pa11 ...pann

l = pb11 ...p
bn
n

be the prime factorisations of k and l respectively. Now, we can easily find an
element of order pmax{ai,bi}i for each 1 ≤ i ≤ n. The product of all these elements
has order

p
max{a1,b1}
1 ...pmax{an,bn}n = lcm(k, l)

because the orders of all these elements are pairwise coprime, and hence we
can apply the case above. This completes the proof. ■
Proof of Theorem 3.15. LetG be any finite subgroup of F×, and let n be the lcm
of the orders of all elements of G. If y ∈ G, then we have yn = 1; now the
polynomial xn − 1 in F [x] has atmost n roots, and hence we see that |G| ≤ n.
Moreover, by Proposition 3.16 we know that G contains an element α of order
n, and hence n|G. This forces |G| = n, and henceG = 〈α〉, i.eG is a cyclic group,
completing the proof. ■
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