ANA3, ASSIGNMENT-1

SIDDHANT CHAUDHARY
BMC201953

1. Let S be a metric subspace of a metric space (X, d). We show that
A is open in $(S, d) \Longleftrightarrow A=S \cap U$ where U is open in X.
First, suppose A is open in (S, d). Then, for every $x \in A$, there is some $\delta_{x}>0$ such that $B\left(x, \delta_{x}\right) \cap S \subset A$. Let

$$
U=\bigcup_{x \in A} B\left(x, \delta_{x}\right)
$$

so that U is open in (X, d), being a union of open sets. We show that $S \cap U=A$. First, suppose $x \in A$. Then, $x \in B\left(x, \delta_{x}\right) \cap S$, and hence $x \in S \cap U$, which shows that $A \subset S \cap U$. To show the reverse inclusion, suppose $x \in S \cap U$, which means that $x \in S$ and $x \in B\left(y, \delta_{y}\right)$ for some $y \in A$, meaning that $x \in B\left(y, \delta_{y}\right) \cap S$, and by definition of δ_{y}, we have that $B\left(y, \delta_{y}\right) \cap S \subset A$, implying $x \in A$, and hence $S \cap U \subset A$. So, $A=S \cap U$, proving one direction.

Conversely, let $A=S \cap U$ where U is open in (X, d). Let $x \in A$, so that $x \in S$ and $x \in U$. Since U is open, there is some $\delta>0$ such that $B(x, \delta) \subset U$. This implies that $S \cap B(x, \delta) \subset S \cap U=A$, and hence this implies that A is open in (S, d), completing the proof.

Next, we show the following analogous statement:
A is closed in $(S, d) \Longleftrightarrow A=S \cap U$ where U is closed in X.
To prove this, suppose A is closed in S, so that $S \cap A^{c}$ is open in S. By what we have proved above, $S \cap A^{c}=S \cap U$ where U is some open subset of X. So,

$$
A=\left(S \cap A^{c}\right)^{c} \cap S=(S \cap U)^{c} \cap S=\left(S^{c} \cup U^{c}\right) \cap S=\left(S^{c} \cap S\right) \cup\left(U^{c} \cap S\right)=S \cap U^{c}
$$

and observe that U^{c} is open in X, because U is closed. Conversely, suppose $A=S \cap U$ for some closed subset U of X. We show that $S \cap A^{c}$ is open in S. Observe that

$$
S \cap A^{c}=S \cap(S \cap U)^{c}=S \cap\left(S^{c} \cup U^{c}\right)=\left(S \cap S^{c}\right) \cup\left(S \cap U^{c}\right)=S \cap U^{c}
$$

and by what we have shown above, $S \cap U^{c}$ is open in S, because U^{c} is open in X. This completes the proof.
2. Let (X, d) be a metric space, and we define

$$
d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}
$$

(i) We first show that d_{1} is a metric on X. It is clear that $d_{1}(x, y)$ is non-negative, being a ratio of two non-negative reals. Observe that

$$
d_{1}(x, x)=\frac{d(x, x)}{1+d(x, x)}=0
$$

Date: September 2020.

Conversely, if $d_{1}(x, y)=0$, then we have

$$
\frac{d(x, y)}{1+d(x, y)}=0
$$

which implies that $d(x, y)=0$, as the denominator is always positive, and hence $x=y$ since d is a metric. Next, we have

$$
d_{1}(x, y)=\frac{d(x, y)}{1+d(x, y)}=\frac{d(y, x)}{1+d(y, x)}=d_{1}(y, x)
$$

so that d_{1} is symmetric in its arguments. Finally, we show the triangle inequality. Let $x, y, z \in X$. Consider the numbers $d(x, z), d(y, z)$ and $d(x, y)$. First, suppose

$$
\max \{d(y, z), d(x, y)\} \geq d(x, z)
$$

and wlog suppose $d(y, z) \geq d(x, z)$. Then, we have

$$
\begin{aligned}
& d(x, z) \leq d(y, z) \\
\Rightarrow & d(x, z)+d(x, z) d(y, z) \leq d(y, z)+d(x, z) d(y, z) \\
\Rightarrow & d(x, z)[1+d(y, z)] \leq d(y, z)[1+d(x, z)] \\
\Rightarrow & \frac{d(x, z)}{1+d(x, z)} \leq \frac{d(y, z)}{1+d(y, z)} \\
\Rightarrow & \frac{d(x, z)}{1+d(x, z)} \leq \frac{d(y, z)}{1+d(y, z)}+\frac{d(x, y)}{1+d(x, y)} \\
\Rightarrow & d_{1}(x, z) \leq d_{1}(x, y)+d_{1}(y, z)
\end{aligned}
$$

In the second case, suppose

$$
\max \{d(y, z), d(x, y)\}<d(x, z)
$$

implying that $1+d(y, z)<1+d(x, z)$ and $1+d(x, y)<1+d(x, z)$. In that case, we have

$$
\begin{aligned}
\frac{d(x, z)}{1+d(x, z)} & \leq \frac{d(x, y)+d(y, z)}{1+d(x, z)} \\
& =\frac{d(x, y)}{1+d(x, z)}+\frac{d(y, z)}{1+d(x, z)} \\
& <\frac{d(x, y)}{1+d(x, y)}+\frac{d(y, z)}{1+d(y, z)}
\end{aligned}
$$

and in this case as well we have

$$
d_{1}(x, z) \leq d_{1}(x, y)+d_{1}(y, z)
$$

So in all cases, the triangle inequality holds and hence d_{1} is a metric on X.
(ii) Here, we determine the class of all bounded sets in $\left(X, d_{1}\right)$. We claim that all subsets B of X are bounded. To show this, let $B \subset X$, and fix $x_{0} \in X$. Then, for all $x \in B$, we have

$$
d\left(x_{0}, x\right)<1+d\left(x_{0}, x\right)
$$

implying that

$$
\frac{d\left(x_{0}, x\right)}{1+d\left(x_{0}, x\right)}<1
$$

for all $x \in B$, and hence

$$
d_{1}\left(x_{0}, x\right)<1
$$

for all $x \in B$, showing that B is bounded. This completes the proof.
3. Let d_{2}, d_{1} and $d_{\max }$ be the metrics in \mathbb{R}^{n} associated to the $\|\cdot\|_{2},\|\cdot\|_{1}$ and $\|\cdot\|_{\infty}$ norms respectively.
(i) We show that for any $x, y \in \mathbb{R}^{n}$

$$
d_{\max }(x, y) \leq d_{2}(x, y) \leq d_{1}(x, y) \leq n d_{\max }(x, y)
$$

Let $x=\left(x_{1}, \ldots, x_{n}\right)$ and $y=\left(y_{1}, \ldots, y_{n}\right)$. So,

$$
\begin{aligned}
d_{\max }(x, y)^{2} & =\left(\max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right|\right)^{2} \\
& =\max _{1 \leq i \leq n}\left(x_{i}-y_{i}\right)^{2} \\
& \leq \sum_{i=1}^{n}\left(x_{i}-y_{i}\right)^{2} \\
& =d_{2}(x, y)^{2}
\end{aligned}
$$

and by taking square roots, it follows that

$$
d_{\max }(x, y) \leq d_{2}(x, y)
$$

Next, we have

$$
\begin{aligned}
d_{2}(x, y)^{2} & =\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2} \\
& \leq \sum_{i=1}^{n}\left|x_{i}-y_{i}\right|^{2}+2 \sum_{1 \leq i<j \leq n}\left|x_{i}-y_{i}\right|\left|x_{j}-y_{j}\right| \\
& =\left(\sum_{i=1}^{n}\left|x_{i}-y_{i}\right|\right)^{2} \\
& =d_{1}(x, y)^{2}
\end{aligned}
$$

and by taking square roots, it follows that

$$
d_{2}(x, y) \leq d_{1}(x, y)
$$

and hence we get

$$
d_{\max }(x, y) \leq d_{2}(x, y) \leq d_{1}(x, y)
$$

Finally, we have

$$
\begin{aligned}
d_{1}(x, y) & =\sum_{i=1}^{n}\left|x_{i}-y_{i}\right| \\
& \leq \sum_{i=1}^{n} \max _{1 \leq i \leq n}\left|x_{i}-y_{i}\right| \\
& =\sum_{i=1}^{n} d_{\max }(x, y) \\
& =n d_{\max }(x, y)
\end{aligned}
$$

and this proves that

$$
d_{\max }(x, y) \leq d_{2}(x, y) \leq d_{1}(x, y) \leq n d_{\max }(x, y)
$$

(ii) Let $x \in \mathbb{R}^{n}$ and let $r>0$. We show that

$$
B_{1}(x, r) \subseteq B_{2}(x, r) \subseteq B_{\max }(x, r) \subseteq B_{1}(x, r n)
$$

Suppose $y \in B_{1}(x, r)$, so that $d_{1}(x, y)<r$, which implies that $d_{2}(x, y)<r$, and hence $y \in B_{2}(x, r)$. This shows the first inclusion. Next, if $y \in B_{2}(x, r)$, then $d_{2}(x, y)<r$, and hence $d_{\text {max }}(x, y)<r$, implying that $y \in B_{\max }(x, r)$ and this shows the second inclusion. Finally, suppose $y \in B_{\max }(x, r)$, meaning that $d_{\max }(x, y)<r$. Since $d_{1}(x, y) \leq n d_{\max }(x, y)$, this means that $\frac{d_{1}(x, y)}{n}<r$, and hence $d_{1}(x, y)<r n$, implying $y \in B_{1}(x, r n)$, showing the last inclusion. This completes the proof.
4. Let $X=(0,1]$ and define

$$
\gamma(x, y)=|x-y|+\left|\frac{1}{x}-\frac{1}{y}\right|
$$

for $x, y \in X$.
(i) We show that γ is a metric on X. Clearly, $\gamma(x, y)$ is non-negative being a sum of two non-negative reals. Observe that

$$
\gamma(x, x)=|x-x|+\left|\frac{1}{x}-\frac{1}{x}\right|=0
$$

and if $\gamma(x, y)=0$, then

$$
|x-y|+\left|\frac{1}{x}-\frac{1}{y}\right|=0
$$

which implies that $|x-y|=0$, and hence $x=y$.
Next, we have

$$
\gamma(x, y)=|x-y|+\left|\frac{1}{x}-\frac{1}{y}\right|=|y-x|+\left|\frac{1}{y}-\frac{1}{x}\right|=\gamma(y, x)
$$

Finally, if $x, y, z \in X$, we have

$$
\begin{aligned}
\gamma(x, z) & =|x-z|+\left|\frac{1}{x}-\frac{1}{z}\right| \\
& \leq|x-y|+|y-z|+\left|\frac{1}{x}-\frac{1}{y}\right|+\left|\frac{1}{y}-\frac{1}{z}\right| \\
& =\gamma(x, y)+\gamma(y, z)
\end{aligned}
$$

where we just used the triangle inequality of the absolute value in \mathbb{R}. Hence, γ is a metric on X.
(ii) Next, we will show that $x_{n} \rightarrow x$ in the γ-metric if and only if $x_{n} \rightarrow x$ in the Euclidean metric.

First, suppose $x_{n} \rightarrow x$ in the γ metric, and observe that $x \neq 0$ (since $x \in X$). This means that

$$
\gamma\left(x_{n}, x\right) \rightarrow 0
$$

which means that

$$
\left|x_{n}-x\right|+\left|\frac{1}{x_{n}}-\frac{1}{x}\right| \rightarrow 0
$$

The above condition implies that

$$
\left|x_{n}-x\right| \rightarrow 0
$$

and hence $x_{n} \rightarrow x$ in the Euclidean metric.

Conversely, suppose $x_{n} \rightarrow x$ in the Euclidean metric, which means that

$$
\left|x_{n}-x\right| \rightarrow 0
$$

Now, the function

$$
f(x)=\frac{1}{x}
$$

is continuous in X, and hence this means that

$$
\left|f\left(x_{n}\right)-f(x)\right| \rightarrow 0
$$

which means

$$
\left|\frac{1}{x_{n}}-\frac{1}{x}\right| \rightarrow 0
$$

So, we get

$$
\left|x_{n}-x\right|+\left|\frac{1}{x_{n}}-\frac{1}{x}\right| \rightarrow 0
$$

implying that $x_{n} \rightarrow x$ in the $\gamma-$ metric. This completes the proof.
5. Let f be the function on $([0, \infty), d)$ defined by

$$
f(x)= \begin{cases}0 & , \text { if } x \text { is irrational } \\ \frac{1}{n} & , \text { if } x=\frac{m}{n} \text { with } \operatorname{gcd}(m, n)=1\end{cases}
$$

(i) We show that f is a bounded function. Observe that for every $n \in \mathbb{N}$,

$$
\frac{1}{n} \leq 1
$$

and hence for every $x \in[0, \infty)$, we see that

$$
|f(x)| \leq 1
$$

implying that f is bounded.
(ii) We now show that f is continuous at each $x \notin \mathbb{Q}$ and discontinuous at each $x \in \mathbb{Q}$.

Suppose $x \in \mathbb{Q}$, so that $x=a / b$ with $\operatorname{gcd}(a, b)=1$. Then, $f(x)=1 / b>0$, since $b \in \mathbb{N}$. Every neighborhood of x contains an irrational number, and we know that f vanishes at every irrational number. This means that for every neighborhood N of x,

$$
\sup _{y \in N \cap[0, \infty)}|f(y)-f(x)| \geq \frac{1}{b}
$$

implying that f is not continuous at x.
Now, let $x \notin \mathbb{Q}$, so that $f(x)=0$. Let $\epsilon>0$ be given. Choose $N \in \mathbb{N}$ such that

$$
\frac{1}{N}<\epsilon
$$

Take a small neighborhood $(x-\delta, x+\delta)$ of x such that $(x-\delta, x+\delta) \subset(0, \infty)$. Let S be the set of all rational numbers in $(x-\delta, x+\delta)$ in lowest terms such that the denominator of the rational is bounded above by N. Observe that S must be a finite set, because if not, the numerator will blow up, taking the number out of the interval. So, there is some $0<\delta_{1}<\delta$ such that all rational numbers in the interval $\left(x-\delta_{1}, x+\delta_{1}\right)$ in their lowest form have a denominator greater than N. This means that if $|y-x|<\delta_{1}$, then

$$
|f(y)-f(x)|=|f(y)|<\epsilon
$$

because $\frac{1}{N}<\epsilon$. Hence, f is continuous at x, i.e f is continuous at every irrational number.
6. Let $X=\mathbb{R}^{2}$, and let d denote the Euclidean metric on \mathbb{R}^{2}. Define

$$
\rho(x, y)= \begin{cases}d(x, y) & , \quad \text { if } x, y \text { are on the same ray from } 0 \\ d(x, 0)+d(0, y) & , \quad \text { otherwise }\end{cases}
$$

(i) First, we show that ρ is a metric on X. It is clear that $\rho(x, y)$ is non-negative. Observe that

$$
\rho(x, x)=d(x, x)=0
$$

and conversely, suppose $\rho(x, y)=0$. If x, y lie on the same ray, then this means that $d(x, y)=0$, and hence implies that $x=y$. If x and y don't lie on the same ray, then this means that

$$
d(x, 0)+d(0, y)=0
$$

implying that $d(x, 0)=d(0, y)=0$, and hence $x=y=0$. Next, we have that

$$
\rho(x, y)=\rho(y, x)
$$

because the expressions defining ρ are symmetric in x and y. Finally, we show the triangle inequality. So, let $x, y, z \in X$. We will prove this using casework.
(1) In the first case, x and y lie on the same ray. Now, there are two possibilities for z. If z lies on the same ray as x and y, then we have

$$
\begin{aligned}
\rho(x, z) & =d(x, z) \\
& \leq d(x, y)+d(y, z) \\
& =\rho(x, y)+\rho(y, z)
\end{aligned}
$$

If z lies on a different ray then x and y, then

$$
\begin{aligned}
\rho(x, z) & =d(x, 0)+d(0, z) \\
& \leq d(x, y)+d(y, 0)+d(0, z) \\
& =\rho(x, y)+\rho(y, z)
\end{aligned}
$$

and hence in this case, the triangle inequality holds.
(2) In the second case, x and y lie on different rays. Again, there are two possibilities of z. First wlog suppose z lies on the same ray as x, then

$$
\begin{aligned}
\rho(x, z) & =d(x, z) \\
& \leq d(x, 0)+d(0, z) \\
& \leq d(x, 0)+d(0, y)+d(y, 0)+d(0, z) \\
& =\rho(x, y)+\rho(y, z)
\end{aligned}
$$

Next, the other possibility is that all x, y, z lie on different rays. In that case,

$$
\begin{aligned}
\rho(x, z) & =d(x, 0)+d(0, z) \\
& \leq d(x, 0)+d(0, y)+d(y, 0)+d(0, z) \\
& =\rho(x, y)+\rho(y, z)
\end{aligned}
$$

and hence in this case as well, the triangle inequality holds.

So, ρ is a metric on X.
(ii) Next, we show that (X, ρ) is not separable. So, suppose D is a dense subset of this space. Consider the unit circle S^{1}, i.e

$$
S^{1}=\left\{(x, y) \in X \mid x^{2}+y^{2}=1\right\}
$$

It is clear that all points on S^{1} lie on different rays, so if $p_{1}, p_{2} \in S^{1}$, then

$$
\rho\left(p_{1}, p_{2}\right)=d\left(p_{1}, 0\right)+d\left(0, p_{2}\right)=2
$$

so that the ρ-distance between any two points on S^{1} is bounded below by $\frac{3}{2}$. Now, for every point in S^{1}, consider an open ball of radius $\frac{1}{2}$ (ball is taken with respect to the metric ρ). Since D is dense, each such ball contains a point of D, and no two such balls can contain the same point of D (because of the fact that ρ-distance between any two points on S^{1} is bounded below by $\frac{3}{2}$). This proves that D has a subset in bijection with S^{1}, and we know that S_{1} is uncountable. So, it follows that D is also uncountable, so that X is not separable.
7. Let (X, d) be a metric space, and let $A \subset X$.
(i) We show that

$$
\bar{A}=\{x \in X \mid d(x, A)=0\}
$$

Suppose $x \in \bar{A}$, which means either $x \in A$ or x is a limit point of A. If $x \in A$, then $d(x, A)=\inf _{y \in A} d(x, y)=0$. If x is a limit point of A, then there is a sequence $\left\{x_{n}\right\}$ of points of A such that $x_{n} \rightarrow x$. Again, this means that $d(x, A)=\inf _{y \in A} d(x, y)=0$, and this shows that $\bar{A} \subset\{x \in X \mid d(x, A)=0\}$.

To prove the reverse inclusion, suppose $x_{0} \in\{x \in X \mid d(x, A)=0\}$, meaning that $\inf _{x \in A} d\left(x_{0}, x\right)=0$. If $x_{0} \in A$, then $x_{0} \in \bar{A}$. If $x_{0} \notin A$, then the condition

$$
\inf _{x \in A} d\left(x_{0}, x\right)=0
$$

implies the existence of a sequence $\left\{x_{n}\right\}$ of points of A such that $x_{n} \rightarrow x$, implying that x is a limit point of A, and hence $x \in \bar{A}$. This shows that $\{x \in X \mid d(x, A)=$ $0\} \subset \bar{A}$, hence showing the equality of the two sets.
(ii) Let $y \in X$ and $E \subset X$. We show that

$$
y \text { is not a limit point of } E \Longleftrightarrow d(y, E \backslash\{y\})>0
$$

First, suppose y is not a limit point of E, implying that there is some $\delta>0$ such that

$$
(B(y, \delta) \backslash\{y\}) \cap E=\phi
$$

and hence $d(y, x) \geq \delta$ for all $x \in E \backslash\{y\}$, and taking the infimum over all $x \in E \backslash\{y\}$, we see that $d(y, E \backslash\{y\}) \geq \delta>0$.

Conversely, suppose $d(y, E \backslash\{y\})=\delta>0$. This means that for any $x \in E \backslash\{y\}$, $d(y, x) \geq \delta$. Thus, it follows that

$$
(B(y, \delta) \backslash\{y\}) \cap E=\phi
$$

and hence y is not a limit point of E. This completes the proof.

