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1. Let S be a metric subspace of a metric space (X, d). We show that
A is open in (S, d) ⇐⇒ A = S ∩ U where U is open in X.

First, suppose A is open in (S, d). Then, for every x ∈ A, there is some δx > 0
such that B(x, δx) ∩ S ⊂ A. Let

U =
⋃
x∈A

B(x, δx)

so that U is open in (X, d), being a union of open sets. We show that S ∩ U = A.
First, suppose x ∈ A. Then, x ∈ B(x, δx) ∩ S, and hence x ∈ S ∩ U , which shows
that A ⊂ S ∩U . To show the reverse inclusion, suppose x ∈ S ∩U , which means
that x ∈ S and x ∈ B(y, δy) for some y ∈ A, meaning that x ∈ B(y, δy) ∩ S, and
by definition of δy, we have that B(y, δy) ∩ S ⊂ A, implying x ∈ A, and hence
S ∩ U ⊂ A. So, A = S ∩ U , proving one direction.
Conversely, let A = S ∩ U where U is open in (X, d). Let x ∈ A, so that x ∈ S

and x ∈ U . Since U is open, there is some δ > 0 such that B(x, δ) ⊂ U . This
implies that S ∩ B(x, δ) ⊂ S ∩ U = A, and hence this implies that A is open in
(S, d), completing the proof.
Next, we show the following analogous statement:

A is closed in (S, d) ⇐⇒ A = S ∩ U where U is closed in X.

To prove this, supposeA is closed in S, so that S ∩Ac is open in S. By what we
have proved above, S ∩ Ac = S ∩ U where U is some open subset of X . So,
A = (S ∩ Ac)c ∩ S = (S ∩ U)c ∩ S = (Sc ∪ U c) ∩ S = (Sc ∩ S) ∪ (U c ∩ S) = S ∩ U c

and observe that U c is open in X , because U is closed. Conversely, suppose
A = S ∩ U for some closed subset U of X . We show that S ∩ Ac is open in S.
Observe that

S ∩ Ac = S ∩ (S ∩ U)c = S ∩ (Sc ∪ U c) = (S ∩ Sc) ∪ (S ∩ U c) = S ∩ U c

and by what we have shown above, S ∩U c is open in S, because U c is open inX .
This completes the proof.

2. Let (X, d) be a metric space, and we define

d1(x, y) =
d(x, y)

1 + d(x, y)

(i)Wefirst show that d1 is ametric onX . It is clear that d1(x, y) is non-negative,
being a ratio of two non-negative reals. Observe that

d1(x, x) =
d(x, x)

1 + d(x, x)
= 0
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Conversely, if d1(x, y) = 0, then we have
d(x, y)

1 + d(x, y)
= 0

which implies that d(x, y) = 0, as the denominator is always positive, and hence
x = y since d is a metric. Next, we have

d1(x, y) =
d(x, y)

1 + d(x, y)
=

d(y, x)

1 + d(y, x)
= d1(y, x)

so that d1 is symmetric in its arguments. Finally, we show the triangle inequality.
Let x, y, z ∈ X . Consider the numbers d(x, z), d(y, z) and d(x, y). First, suppose

max{d(y, z), d(x, y)} ≥ d(x, z)

and wlog suppose d(y, z) ≥ d(x, z). Then, we have
d(x, z) ≤ d(y, z)

=⇒ d(x, z) + d(x, z)d(y, z) ≤ d(y, z) + d(x, z)d(y, z)

=⇒ d(x, z)[1 + d(y, z)] ≤ d(y, z)[1 + d(x, z)]

=⇒ d(x, z)

1 + d(x, z)
≤ d(y, z)

1 + d(y, z)

=⇒ d(x, z)

1 + d(x, z)
≤ d(y, z)

1 + d(y, z)
+

d(x, y)

1 + d(x, y)

=⇒ d1(x, z) ≤ d1(x, y) + d1(y, z)

In the second case, suppose
max{d(y, z), d(x, y)} < d(x, z)

implying that 1+ d(y, z) < 1+ d(x, z) and 1+ d(x, y) < 1+ d(x, z). In that case, we
have

d(x, z)

1 + d(x, z)
≤ d(x, y) + d(y, z)

1 + d(x, z)

=
d(x, y)

1 + d(x, z)
+

d(y, z)

1 + d(x, z)

<
d(x, y)

1 + d(x, y)
+

d(y, z)

1 + d(y, z)

and in this case as well we have
d1(x, z) ≤ d1(x, y) + d1(y, z)

So in all cases, the triangle inequality holds and hence d1 is a metric on X .
(ii) Here, we determine the class of all bounded sets in (X, d1). We claim that

all subsets B of X are bounded. To show this, let B ⊂ X , and fix x0 ∈ X . Then,
for all x ∈ B, we have

d(x0, x) < 1 + d(x0, x)

implying that
d(x0, x)

1 + d(x0, x)
< 1

for all x ∈ B, and hence
d1(x0, x) < 1
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for all x ∈ B, showing that B is bounded. This completes the proof.

3. Let d2, d1 and dmax be the metrics in Rn associated to the || · ||2, || · ||1 and || · ||∞
norms respectively.

(i)We show that for any x, y ∈ Rn

dmax(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤ ndmax(x, y)

Let x = (x1, ..., xn) and y = (y1, ..., yn). So,

dmax(x, y)
2 =

(
max
1≤i≤n

|xi − yi|
)2

= max
1≤i≤n

(xi − yi)
2

≤
n∑

i=1

(xi − yi)
2

= d2(x, y)
2

and by taking square roots, it follows that
dmax(x, y) ≤ d2(x, y)

Next, we have

d2(x, y)
2 =

n∑
i=1

|xi − yi|2

≤
n∑

i=1

|xi − yi|2 + 2
∑

1≤i<j≤n

|xi − yi||xj − yj|

=

(
n∑

i=1

|xi − yi|

)2

= d1(x, y)
2

and by taking square roots, it follows that
d2(x, y) ≤ d1(x, y)

and hence we get
dmax(x, y) ≤ d2(x, y) ≤ d1(x, y)

Finally, we have

d1(x, y) =
n∑

i=1

|xi − yi|

≤
n∑

i=1

max
1≤i≤n

|xi − yi|

=
n∑

i=1

dmax(x, y)

= ndmax(x, y)

and this proves that
dmax(x, y) ≤ d2(x, y) ≤ d1(x, y) ≤ ndmax(x, y)
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(ii) Let x ∈ Rn and let r > 0. We show that
B1(x, r) ⊆ B2(x, r) ⊆ Bmax(x, r) ⊆ B1(x, rn)

Suppose y ∈ B1(x, r), so that d1(x, y) < r, which implies that d2(x, y) < r, and
hence y ∈ B2(x, r). This shows the first inclusion. Next, if y ∈ B2(x, r), then
d2(x, y) < r, and hence dmax(x, y) < r, implying that y ∈ Bmax(x, r) and this shows
the second inclusion. Finally, suppose y ∈ Bmax(x, r), meaning that dmax(x, y) < r.

Since d1(x, y) ≤ ndmax(x, y), this means that
d1(x, y)

n
< r, and hence d1(x, y) < rn,

implying y ∈ B1(x, rn), showing the last inclusion. This completes the proof.

4. Let X = (0, 1] and define

γ(x, y) = |x− y|+
∣∣∣∣1x − 1

y

∣∣∣∣
for x, y ∈ X .

(i) We show that γ is a metric on X . Clearly, γ(x, y) is non-negative being a
sum of two non-negative reals. Observe that

γ(x, x) = |x− x|+
∣∣∣∣1x − 1

x

∣∣∣∣ = 0

and if γ(x, y) = 0, then

|x− y|+
∣∣∣∣1x − 1

y

∣∣∣∣ = 0

which implies that |x− y| = 0, and hence x = y.
Next, we have

γ(x, y) = |x− y|+
∣∣∣∣1x − 1

y

∣∣∣∣ = |y − x|+
∣∣∣∣1y − 1

x

∣∣∣∣ = γ(y, x)

Finally, if x, y, z ∈ X , we have

γ(x, z) = |x− z|+
∣∣∣∣1x − 1

z

∣∣∣∣
≤ |x− y|+ |y − z|+

∣∣∣∣1x − 1

y

∣∣∣∣+ ∣∣∣∣1y − 1

z

∣∣∣∣
= γ(x, y) + γ(y, z)

where we just used the triangle inequality of the absolute value in R. Hence, γ
is a metric on X .
(ii) Next, we will show that xn → x in the γ-metric if and only if xn → x in the

Euclidean metric.
First, suppose xn → x in the γ metric, and observe that x ̸= 0 (since x ∈ X).

This means that
γ(xn, x) → 0

which means that
|xn − x|+

∣∣∣∣ 1xn

− 1

x

∣∣∣∣→ 0

The above condition implies that
|xn − x| → 0

and hence xn → x in the Euclidean metric.
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Conversely, suppose xn → x in the Euclidean metric, which means that
|xn − x| → 0

Now, the function
f(x) =

1

x
is continuous in X , and hence this means that

|f(xn)− f(x)| → 0

which means ∣∣∣∣ 1xn

− 1

x

∣∣∣∣→ 0

So, we get

|xn − x|+
∣∣∣∣ 1xn

− 1

x

∣∣∣∣→ 0

implying that xn → x in the γ−metric. This completes the proof.

5. Let f be the function on ([0,∞), d) defined by

f(x) =

0 , if x is irrational
1

n
, if x =

m

n
with gcd(m,n) = 1

(i)We show that f is a bounded function. Observe that for every n ∈ N,
1

n
≤ 1

and hence for every x ∈ [0,∞), we see that
|f(x)| ≤ 1

implying that f is bounded.
(ii) We now show that f is continuous at each x /∈ Q and discontinuous at

each x ∈ Q.
Suppose x ∈ Q, so that x = a/b with gcd(a, b) = 1. Then, f(x) = 1/b > 0, since

b ∈ N. Every neighborhoodof x contains an irrational number, andweknow that
f vanishes at every irrational number. This means that for every neighborhood
N of x,

sup
y∈N∩[0,∞)

|f(y)− f(x)| ≥ 1

b

implying that f is not continuous at x.
Now, let x /∈ Q, so that f(x) = 0. Let ϵ > 0 be given. Choose N ∈ N such that

1

N
< ϵ

Take a small neighborhood (x− δ, x+ δ) of x such that (x− δ, x+ δ) ⊂ (0,∞). Let
S be the set of all rational numbers in (x− δ, x+ δ) in lowest terms such that the
denominator of the rational is bounded above by N . Observe that S must be a
finite set, because if not, the numerator will blow up, taking the number out of
the interval. So, there is some 0 < δ1 < δ such that all rational numbers in the
interval (x− δ1, x+ δ1) in their lowest form have a denominator greater thanN .
This means that if |y − x| < δ1, then

|f(y)− f(x)| = |f(y)| < ϵ
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because 1

N
< ϵ. Hence, f is continuous at x, i.e f is continuous at every irra-

tional number.

6. Let X = R2, and let d denote the Euclidean metric on R2. Define

ρ(x, y) =

{
d(x, y) , if x, y are on the same ray from 0
d(x, 0) + d(0, y) , otherwise

(i) First, we show that ρ is ametric onX . It is clear that ρ(x, y) is non-negative.
Observe that

ρ(x, x) = d(x, x) = 0

and conversely, suppose ρ(x, y) = 0. If x, y lie on the same ray, then this means
that d(x, y) = 0, and hence implies that x = y. If x and y don’t lie on the same ray,
then this means that

d(x, 0) + d(0, y) = 0

implying that d(x, 0) = d(0, y) = 0, and hence x = y = 0. Next, we have that
ρ(x, y) = ρ(y, x)

because the expressions defining ρ are symmetric in x and y. Finally, we show
the triangle inequality. So, let x, y, z ∈ X . We will prove this using casework.

(1) In the first case, x and y lie on the same ray. Now, there are two possi-
bilities for z. If z lies on the same ray as x and y, then we have

ρ(x, z) = d(x, z)

≤ d(x, y) + d(y, z)

= ρ(x, y) + ρ(y, z)

If z lies on a different ray then x and y, then
ρ(x, z) = d(x, 0) + d(0, z)

≤ d(x, y) + d(y, 0) + d(0, z)

= ρ(x, y) + ρ(y, z)

and hence in this case, the triangle inequality holds.
(2) In the second case, x and y lie on different rays. Again, there are two

possibilities of z. First wlog suppose z lies on the same ray as x, then
ρ(x, z) = d(x, z)

≤ d(x, 0) + d(0, z)

≤ d(x, 0) + d(0, y) + d(y, 0) + d(0, z)

= ρ(x, y) + ρ(y, z)

Next, the other possibility is that all x, y, z lie on different rays. In that
case,

ρ(x, z) = d(x, 0) + d(0, z)

≤ d(x, 0) + d(0, y) + d(y, 0) + d(0, z)

= ρ(x, y) + ρ(y, z)

and hence in this case as well, the triangle inequality holds.
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So, ρ is a metric on X .
(ii)Next, we show that (X, ρ) isnot separable. So, supposeD is a dense subset

of this space. Consider the unit circle S1, i.e
S1 = {(x, y) ∈ X|x2 + y2 = 1}

It is clear that all points on S1 lie on different rays, so if p1, p2 ∈ S1, then
ρ(p1, p2) = d(p1, 0) + d(0, p2) = 2

so that the ρ-distance between any two points on S1 is bounded below by 3

2
.

Now, for every point in S1, consider an open ball of radius 1

2
(ball is taken with

respect to the metric ρ). SinceD is dense, each such ball contains a point ofD,
and no two such balls can contain the same point ofD (because of the fact that
ρ-distance between any two points on S1 is bounded below by 3

2
). This proves

thatD has a subset in bijection with S1, andwe know that S1 is uncountable. So,
it follows thatD is also uncountable, so thatX is not separable.

7. Let (X, d) be a metric space, and let A ⊂ X .
(i)We show that

A = {x ∈ X|d(x,A) = 0}
Suppose x ∈ A, which means either x ∈ A or x is a limit point of A. If x ∈ A, then
d(x,A) = infy∈A d(x, y) = 0. If x is a limit point ofA, then there is a sequence {xn}
of points ofA such that xn → x. Again, thismeans that d(x,A) = infy∈A d(x, y) = 0,
and this shows that A ⊂ {x ∈ X|d(x,A) = 0}.
To prove the reverse inclusion, suppose x0 ∈ {x ∈ X|d(x,A) = 0}, meaning

that infx∈A d(x0, x) = 0. If x0 ∈ A, then x0 ∈ A. If x0 /∈ A, then the condition
inf
x∈A

d(x0, x) = 0

implies the existence of a sequence {xn} of points of A such that xn → x, imply-
ing that x is a limit point ofA, and hence x ∈ A. This shows that {x ∈ X|d(x,A) =
0} ⊂ A, hence showing the equality of the two sets.

(ii) Let y ∈ X and E ⊂ X . We show that
y is not a limit point of E ⇐⇒ d(y, E \ {y}) > 0

First, suppose y is not a limit point of E, implying that there is some δ > 0 such
that

(B(y, δ) \ {y}) ∩ E = ϕ

andhence d(y, x) ≥ δ for allx ∈ E\{y}, and taking the infimumoverallx ∈ E\{y},
we see that d(y, E \ {y}) ≥ δ > 0.
Conversely, suppose d(y, E \{y}) = δ > 0. This means that for any x ∈ E \{y},

d(y, x) ≥ δ. Thus, it follows that
(B(y, δ) \ {y}) ∩ E = ϕ

and hence y is not a limit point of E. This completes the proof.
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