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Before solving the first problem, I will prove some lemmas that I am going to
use.

Lemma0.1. Let (X, d),(Y,~) be two metric spaces, and define pon X x Y by

p((I’ y)> (55,7 y/)) = max{d(:c, $,)> V(ya y/)}
Then pis a metricon X x Y.

Proof. It is clear that p is a non-negative function on X x Y. First, observe that
d(z,x) =0 =(y,y), and hence this means that

p((z,y), (z,y)) =0

for every (z,y) € X x Y. Conversely, suppose

p((z,y), (2", y) =0
for some (z,y), (¢/,y') € X x Y. This means that d(z,2’) = 0 = ~(y,v’), and hence
(x,y) = (2, y). Next we have

p((z,y), (2,y) = max{d(z,2’),v(y,y)} = max{d(z’, z),y(y/', y)} = p((z", ), (z,y))
forany (z,y), (¢/,y) € X x Y, showing that p is a symmetric function.

Finally, we show the triangle inequality. Let (z,y), (',v), (z*,y*) be any three
points in X x Y. So, we have

p((z,y), (z7,y")) = max{d(z,z*),v(y,y") }
< max{d(z,z") + d(z’,z*),v(y,v') + v, y")}
< max{d(z,z'),v(y,y")} + max{d(z', 2*),v(v', y*)}

p((z,y), (@, 4) + p((«',9), (", y7))

which shows that p is a metricon X x Y. |

Lemma0.2. Let X, Y be metric spaces as above, and give X x Y the metric p as
above. Letm: X xY — X and 7' : X xY — Y be usual projection maps. Then,
m and 7" are continuous.

Proof. We will show that 7 is continuous, and the same proof will show that 7’ is
also continuous. Let U C X be an open set. Then, observe that 7~1(U) = U x Y,
and U x Y is an open subset of X x Y, implying that 7 is continuous. ]

Lemma 0.3. Let X,Y be metric spaces as above, and let (Z,d’) be a metric
space. Letg: Z — X x Y beamapping,andletn: X xY —- X, 7 : X XY =Y
be the projection maps (which are continuous by the previous lemma). Then, g
is continuous ifand only if rog : Z — X and n’ o g : Z — Y are continuous.
In simpler words, g is continuous if and only if its components functions are
continuous.
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Proof. First, suppose g is continuous. By Lemma 0.2, we know that both pro-
jections 7 and 7’ are continuous. So, the compositions 7 o g and 7’ o g are both
continuous. Conversely, suppose both compositions 7o g and n’ o g are continu-
ous. Suppose (Q is any open subset of X x Y, and from basic topology we know
that Q = U x V,where U C X and V C Y are both open sets. So, we see that

g (Q)=g ' (UxV)=(rog) {(U)n (" 0g) (V)

and since both 7 o g and 7’ o g are assumed to be continuous, we see that (7 o
g)"HU)N (7' o g)~1(V) is an open subset of Z (being an intersection of two open
subsets), and hence this proves that g is continuous. |

LemmaO0.4. Let (X, d), (Y,~) be metric spaces, and suppose X is compact. Sup-
pose f : X — Y is a continuous bijection. Then, the inversemap f~:Y — X is
also continuous.

Proof. Consider f~! : Y — X, and let U be a closed subset of X. We need to
show that

(fH7HU) = f(U)
is closed in Y (the above equality is true because f is a bijection). Since X is
compact and U is closed in X, U is also compact. Hence, f(U) is compact, be-

cause f is continuous. Clearly, this shows that f(U) is a closed subset of Y, and
hence f~!is continuous, completing the proof. |

1. Let (X, d), (Y,7)bemetric spaces. On X xY define the metric p((z,v), (¢, ) =
max{d(x,z'),v(y,y')} for (z,y), (2',y") € X x Y. Assume that X is compact. Let
f: X — Y be afunction. The graph of f is defined as the subset

Gy ={(z, f(x)) : x € X}

of X x Y. Show that f is continuous if and only if G is a compact subset of
X xY.

Solution. By Lemma 0.1, we know that p is a metricon X x Y.
First, suppose f is continuous. Consider the mapping h : X — X x Y given by

W) = (z, f(x))

Since f is continuous, we see that the component functions of h are both con-
tinuous, and by Lemma 0.3, we see that & is a continuous function. Since X is
compact, it follows that 4(X) is a compact subset of X x Y. Clearly, h(X) = Gy,
and hence this shows that Gy is a compact subset of X x Y.

Conversely, suppose G is a compact subset of X x Y, and consider the func-
tion h as above. h is clearly a bijection, and hence ™! : G; — X is a bijection
as well. Moreover, it is easy to see that ! is just the projection mlg, from Gy
onto X, and by Lemma 0.2, we see that ! is a continuous map. Because G/ is
compact, it follows that (»~!)~! = h is a continuous map by Lemma 0.4. Since
f 1s a component function of h, and since h is continuous, we conclude that f is
continuous by Lemma 0.3, and this completes the proof.

2. Let (X, d) be a connected metric space with atleast two points. Show that X
is uncountable (Hint: consider sets of the form {y : d(z,y) < 6}, {y : d(x,y) > §}
for appropriate values of ¢.)
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Solution. Fix a point zy € X. Define the map f : X — R given by f(x) = d(x, ()
for any z € X. We know that the distance function is continuous, and hence
f: X = Risacontinuous function. Moreover we know that X is connected, and
since [ is continuous, it follows that f(X) is a connected subset of R. Moreover,
since X contains atleast two points, there is a point z; € X with d(z1,x¢) > 0, i.e
f(X) contains the point 0 and a positive real number. So, f(X) is a connected
subset of R with atleast two points, and we know that the only such connected
subsets of R are intervals (open, closed or half-open). Since any interval is un-
countable, we conclude that f(X) is uncountable. Finally, since f : X — f(X)is
a surjective map, we conclude that X must be uncountable as well, completing
the proof.

3. Let (X, d) be a compact metric space. For a set A C X, define the diameter
of A by d(A) = sup{d(ai,as) : aj,as € A}. Let {C,} be a sequence of non-empty
closed sets such that C,,,; C C, foralln > 1, and that

lim d(C,) =0

n—o0

What can you say about C = (", C,,?

Solution. Since X isa compact space and each C,, is closed, it follows that each
C, is compact too. Moreover, the sequence {C,,} forms a nested sequence of
non-empty closed sets, it follows that this family of sets has the finite intersec-
tion property, i.eif C;,,C,,, ..., C;, are any sets in this family with i; < i, < ... <y,
then observe that

by hypothesis. Since X is compact, this means that the intersection
(Cn#¢
=1

(this fact was proven in class). Next, we shall show that the intersections ac-
tually contains exactly one point. For the sake of contradiction, suppose the
intersection contains two points, say z,z’. So, z,2’ € C, for every n € N. Also,
let e = d(x,2") > 0, and by the definition of the diameter, we see that

d(Cy) > €

for all n € N, and hence
lim d(C,) > €

n—oo
contradicting the fact that the limit is zero. So, the intersection contains exactly
one point, completing the proof.

4. Let (X,d)and (Y,d') be complete metric spaces. Define the metric pon X xY
by

p((21,91), (22, y2)) = max{d(z1,22),d (y1,y2)}
for (x1,11), (x2,92) € X x Y. Show that (X x Y, p) is a complete metric space.
Solution. By Lemma 0.1, we know that the metric p as defined makes (X x Y, p)

a valid metric space. Now, suppose {p,} is a Cauchy sequence in (X x Y, p).
Write

Pn = (mm yn)
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where z,, € X and y, € Y for eachn € N. Let ¢ > 0 be given. Since {p,} is
Cauchy, there is some N € N such that

p((‘rm yn)v (xrm ym)) < €

for all n,m > N. By the way p is defined, this means that d(z,, z,,) < ¢ for all
n,m > N,and d'(y,,ym) < € forall n,m > N. This means that {z,,} and {y,} are
Cauchy sequences in (X, d) and (Y, d') respectively. Since they are complete by
assumption, we conclude that z,, — rand y, — yforsomex € X andy € Y.
Again, let ¢ > 0 be given. So, there are N;, N, € N such that d(z,,z) < ¢ for all
n > Ny and d'(y,,y) < e foralln > N,. Put N = max{Ny, N>}, and we get that
d(z,,x) < eand d'(y,,y) < € foralln > N. Putting this together, we see that
p((xn,yn), (x,y)) < e foralln > N, and hence p, — p, where p = (z,y). So, this
proves that (X x Y, p) is a complete metric space.

5. Show that the set of all irrational numbers in R is not the union of countably
many closed nowhere dense sets.

Solution. For the sake of contradiction, suppose the set Q° (the set of irrational
numbers in R) is the union of countably many closed nowhere dense sets, i.e

we have .
Q=[]
where C, is closed nowhere dense set li;‘ every n € N. Now, observe that
Q= Ha
q€Q

where the union on the RHS of the above equation is a countable union, since Q
is a countable set. Moreover, for any ¢ € Q, the set R — {¢} is open and dense,
implying that {¢} is a closed nowhere dense subset of R. So, we see that

R=QUQ=]Jc,ulJ{a}
i=1 qeQ
and observe that the RHS of the above equation is a countable union of closed
nowhere dense sets. But, this clearly contradicts Baire’s Theorem on R (and
this was proven in class), since we know that R is complete. Hence, it follows
that the set of irrational numbers is not the countable union of closed nowhere
dense sets.
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