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Before solving the first problem, I will prove some lemmas that I am going to
use.

Lemma 0.1. Let (X, d), (Y, γ) be two metric spaces, and define ρ on X × Y by
ρ((x, y), (x′, y′)) = max{d(x, x′), γ(y, y′)}

Then ρ is a metric on X × Y .

Proof. It is clear that ρ is a non-negative function onX × Y . First, observe that
d(x, x) = 0 = γ(y, y), and hence this means that

ρ((x, y), (x, y)) = 0

for every (x, y) ∈ X × Y . Conversely, suppose
ρ((x, y), (x′, y′)) = 0

for some (x, y), (x′, y′) ∈ X ×Y . This means that d(x, x′) = 0 = γ(y, y′), and hence
(x, y) = (x′, y′). Next, we have
ρ((x, y), (x′, y′)) = max{d(x, x′), γ(y, y′)} = max{d(x′, x), γ(y′, y)} = ρ((x′, y′), (x, y))

for any (x, y), (x′, y′) ∈ X × Y , showing that ρ is a symmetric function.
Finally, we show the triangle inequality. Let (x, y), (x′, y′), (x∗, y∗) be any three

points in X × Y . So, we have
ρ((x, y), (x∗, y∗)) = max{d(x, x∗), γ(y, y∗)}

≤ max{d(x, x′) + d(x′, x∗), γ(y, y′) + γ(y′, y∗)}
≤ max{d(x, x′), γ(y, y′)}+max{d(x′, x∗), γ(y′, y∗)}
= ρ((x, y), (x′, y′)) + ρ((x′, y′), (x∗, y∗))

which shows that ρ is a metric on X × Y . ■
Lemma0.2. LetX,Y bemetric spaces as above, and giveX×Y the metric ρ as
above. Let π : X × Y → X and π′ : X × Y → Y be usual projection maps. Then,
π and π′ are continuous.

Proof. Wewill show that π is continuous, and the same proof will show that π′ is
also continuous. Let U ⊂ X be an open set. Then, observe that π−1(U) = U × Y ,
and U × Y is an open subset of X × Y , implying that π is continuous. ■
Lemma 0.3. Let X,Y be metric spaces as above, and let (Z, d′) be a metric
space. Let g : Z → X × Y be a mapping, and let π : X × Y → X , π′ : X × Y → Y
be the projection maps (which are continuous by the previous lemma). Then, g
is continuous if and only if π ◦ g : Z → X and π′ ◦ g : Z → Y are continuous.
In simpler words, g is continuous if and only if its components functions are
continuous.
Date: October 2020.

1



2 SIDDHANT CHAUDHARY BMC201953

Proof. First, suppose g is continuous. By Lemma 0.2, we know that both pro-
jections π and π′ are continuous. So, the compositions π ◦ g and π′ ◦ g are both
continuous. Conversely, suppose both compositions π ◦g and π′ ◦g are continu-
ous. SupposeQ is any open subset ofX × Y , and from basic topology we know
that Q = U × V , where U ⊂ X and V ⊂ Y are both open sets. So, we see that

g−1(Q) = g−1(U × V ) = (π ◦ g)−1(U) ∩ (π′ ◦ g)−1(V )

and since both π ◦ g and π′ ◦ g are assumed to be continuous, we see that (π ◦
g)−1(U) ∩ (π′ ◦ g)−1(V ) is an open subset of Z (being an intersection of two open
subsets), and hence this proves that g is continuous. ■

Lemma0.4. Let (X, d), (Y, γ) bemetric spaces, and supposeX is compact. Sup-
pose f : X → Y is a continuous bijection. Then, the inverse map f−1 : Y → X is
also continuous.

Proof. Consider f−1 : Y → X , and let U be a closed subset of X . We need to
show that

(f−1)−1(U) = f(U)

is closed in Y (the above equality is true because f is a bijection). Since X is
compact and U is closed in X , U is also compact. Hence, f(U) is compact, be-
cause f is continuous. Clearly, this shows that f(U) is a closed subset of Y , and
hence f−1 is continuous, completing the proof. ■

1. Let (X, d), (Y, γ)bemetric spaces. OnX×Y define themetric ρ((x, y), (x′, y′)) =
max{d(x, x′), γ(y, y′)} for (x, y), (x′, y′) ∈ X × Y . Assume that X is compact. Let
f : X → Y be a function. The graph of f is defined as the subset

Gf = {(x, f(x)) : x ∈ X}

of X × Y . Show that f is continuous if and only if Gf is a compact subset of
X × Y .

Solution. By Lemma 0.1, we know that ρ is a metric on X × Y .
First, suppose f is continuous. Consider the mapping h : X → X×Y given by

h(x) = (x, f(x))

Since f is continuous, we see that the component functions of h are both con-
tinuous, and by Lemma 0.3, we see that h is a continuous function. Since X is
compact, it follows that h(X) is a compact subset ofX × Y . Clearly, h(X) = Gf ,
and hence this shows that Gf is a compact subset of X × Y .
Conversely, supposeGf is a compact subset ofX×Y , and consider the func-

tion h as above. h is clearly a bijection, and hence h−1 : Gf → X is a bijection
as well. Moreover, it is easy to see that h−1 is just the projection π|Gf

from Gf

ontoX , and by Lemma 0.2, we see that h−1 is a continuous map. Because Gf is
compact, it follows that (h−1)−1 = h is a continuous map by Lemma 0.4. Since
f is a component function of h, and since h is continuous, we conclude that f is
continuous by Lemma 0.3, and this completes the proof.

2. Let (X, d) be a connected metric space with atleast two points. Show thatX
is uncountable (Hint: consider sets of the form {y : d(x, y) < δ}, {y : d(x, y) > δ}
for appropriate values of δ.)
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Solution. Fix a point x0 ∈ X . Define the map f : X → R given by f(x) = d(x, x0)
for any x ∈ X . We know that the distance function is continuous, and hence
f : X → R is a continuous function. Moreoverweknow thatX is connected, and
since f is continuous, it follows that f(X) is a connected subset ofR. Moreover,
sinceX contains atleast two points, there is a point x1 ∈ X with d(x1, x0) > 0, i.e
f(X) contains the point 0 and a positive real number. So, f(X) is a connected
subset of R with atleast two points, and we know that the only such connected
subsets of R are intervals (open, closed or half-open). Since any interval is un-
countable, we conclude that f(X) is uncountable. Finally, since f : X → f(X) is
a surjective map, we conclude thatX must be uncountable as well, completing
the proof.

3. Let (X, d) be a compact metric space. For a set A ⊂ X , define the diameter
of A by d(A) = sup{d(a1, a2) : a1, a2 ∈ A}. Let {Cn} be a sequence of non-empty
closed sets such that Cn+1 ⊂ Cn for all n ≥ 1, and that

lim
n→∞

d(Cn) = 0

What can you say about C =
∩∞

n=1 Cn?

Solution. SinceX is a compact space and eachCn is closed, it follows that each
Cn is compact too. Moreover, the sequence {Cn} forms a nested sequence of
non-empty closed sets, it follows that this family of sets has the finite intersec-
tion property, i.e if Ci1 , Ci2 , ..., Cik are any sets in this family with i1 < i2 < ... < ik,
then observe that

Ci1 ∩ ... ∩ Cik = Cik ̸= ϕ

by hypothesis. Since X is compact, this means that the intersection
n∩

i=1

Cn ̸= ϕ

(this fact was proven in class). Next, we shall show that the intersections ac-
tually contains exactly one point. For the sake of contradiction, suppose the
intersection contains two points, say x, x′. So, x, x′ ∈ Cn for every n ∈ N. Also,
let ϵ = d(x, x′) > 0, and by the definition of the diameter, we see that

d(Cn) ≥ ϵ

for all n ∈ N, and hence
lim
n→∞

d(Cn) ≥ ϵ

contradicting the fact that the limit is zero. So, the intersection contains exactly
one point, completing the proof.

4. Let (X, d) and (Y, d′) be complete metric spaces. Define themetric ρ onX×Y
by

ρ((x1, y1), (x2, y2)) = max{d(x1, x2), d
′(y1, y2)}

for (x1, y1), (x2, y2) ∈ X × Y . Show that (X × Y, ρ) is a complete metric space.

Solution. By Lemma 0.1, we know that the metric ρ as defined makes (X ×Y, ρ)
a valid metric space. Now, suppose {pn} is a Cauchy sequence in (X × Y, ρ).
Write

pn = (xn, yn)
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where xn ∈ X and yn ∈ Y for each n ∈ N. Let ϵ > 0 be given. Since {pn} is
Cauchy, there is some N ∈ N such that

ρ((xn, yn), (xm, ym)) < ϵ

for all n,m ≥ N . By the way ρ is defined, this means that d(xn, xm) < ϵ for all
n,m ≥ N , and d′(yn, ym) < ϵ for all n,m ≥ N . This means that {xn} and {yn} are
Cauchy sequences in (X, d) and (Y, d′) respectively. Since they are complete by
assumption, we conclude that xn → x and yn → y for some x ∈ X and y ∈ Y .
Again, let ϵ > 0 be given. So, there are N1, N2 ∈ N such that d(xn, x) < ϵ for all
n ≥ N1 and d′(yn, y) < ϵ for all n ≥ N2. Put N = max{N1, N2}, and we get that
d(xn, x) < ϵ and d′(yn, y) < ϵ for all n ≥ N . Putting this together, we see that
ρ((xn, yn), (x, y)) < ϵ for all n ≥ N , and hence pn → p, where p = (x, y). So, this
proves that (X × Y, ρ) is a complete metric space.

5. Show that the set of all irrational numbers in R is not the union of countably
many closed nowhere dense sets.

Solution. For the sake of contradiction, suppose the setQc (the set of irrational
numbers in R) is the union of countably many closed nowhere dense sets, i.e
we have

Qc =
∞∪
i=1

Cn

where Cn is closed nowhere dense set for every n ∈ N. Now, observe that
Q =

∪
q∈Q

{q}

where the union on the RHS of the above equation is a countable union, sinceQ
is a countable set. Moreover, for any q ∈ Q, the set R − {q} is open and dense,
implying that {q} is a closed nowhere dense subset of R. So, we see that

R = Qc ∪Q =
∞∪
i=1

Cn ∪
∪
q∈Q

{q}

and observe that the RHS of the above equation is a countable union of closed
nowhere dense sets. But, this clearly contradicts Baire’s Theorem on R (and
this was proven in class), since we know that R is complete. Hence, it follows
that the set of irrational numbers is not the countable union of closed nowhere
dense sets.
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