ANA3, ASSIGNMENT-3

SIDDHANT CHAUDHARY

BMC201953

First I will prove some facts that I will use in some problems.
Lemma 0.1. Let $\left\{f_{n}\right\},\left\{g_{n}\right\}$ be two sequences in ($\left.C[a, b], \rho\right)$ with the uniform metric ρ such that $f_{n} \rightarrow f$ uniformly and $g_{n} \rightarrow g$ uniformly, where $f, g \in C[a, b]$. Then
(1) $f_{n}+g_{n} \rightarrow f+g$ uniformly.
(2) $c f_{n} \rightarrow c f$ uniformly, for any $c \in \mathbb{R}$.
(3) $f_{n} g_{n} \rightarrow f g$ uniformly.

Proof. Observe that saying $h_{n} \rightarrow h$ uniformly is the same as saying $\rho\left(h_{n}, h\right) \rightarrow$ 0 . So, our hypothesis is that $\rho\left(f_{n}, f\right) \rightarrow 0$ and $\rho\left(g_{n}, g\right) \rightarrow 0$ as $n \rightarrow \infty$. Also, since $\left\{f_{n}\right\}$ is a uniformly convergent sequence, it must be uniformly bounded, i.e $\left|f_{n}(x)\right| \leq M_{1}$ for all $n \geq 1$ and $x \in[a, b]$ for some $M_{1} \geq 0$. Since g is continuous on $[a, b],|g(x)| \leq M_{2}$ for some $M_{2} \geq 0$.
(1) For any $n \in \mathbb{N}$, we have

$$
\begin{aligned}
\rho\left(f_{n}+g_{n}, f+g\right) & =\sup _{x \in[a, b]}\left|f_{n}(x)+g_{n}(x)-f(x)-g(x)\right| \\
& \leq \sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|+\left|g_{n}(x)-g(x)\right| \\
& \leq \sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|+\sup _{x \in[a, b]}\left|g_{n}(x)-g(x)\right| \\
& =\rho\left(f_{n}, f\right)+\rho\left(g_{n}, g\right)
\end{aligned}
$$

and the last term goes to 0 as $n \rightarrow \infty$. This means that $\rho\left(f_{n}+g_{n}, f+g\right) \rightarrow 0$ and hence $f_{n}+g_{n} \rightarrow f+g$ uniformly.
(2) This has a very similar argument as in (1).
(3) Observe that

$$
\begin{aligned}
\rho\left(f_{n} g_{n}, f g\right) & =\sup _{x \in[a, b]}\left|f_{n}(x) g_{n}(x)-f(x) g(x)\right| \\
& =\sup _{x \in[a, b]}\left|f_{n}(x) g_{n}(x)-f_{n}(x) g(x)+f_{n}(x) g(x)-f(x) g(x)\right| \\
& \leq \sup _{x \in[a, b]}\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+|g(x)|\left|f_{n}(x)-f(x)\right| \\
& \leq \sup _{x \in[a, b]}\left|f_{n}(x)\right|\left|g_{n}(x)-g(x)\right|+\sup _{x \in[a, b]}|g(x)|\left|f_{n}(x)-f(x)\right| \\
& \leq M_{1} \rho\left(g_{n}, g\right)+M_{2} \rho\left(f_{n}, f\right)
\end{aligned}
$$

and the last term goes to 0 as $n \rightarrow \infty$. So, we have $\rho\left(f_{n} g_{n}, f g\right) \rightarrow 0$ and hence $f_{n} g_{n} \rightarrow f g$ uniformly.

Lemma 0.2. Let $\left\{f_{n}\right\}$ be a sequence in $\left.(C[a, b]), \rho\right)$ such that $f_{n} \rightarrow f$ uniformly for some $f \in C[a, b]$. Then,

$$
\lim _{n \rightarrow \infty} \int_{a}^{b} f_{n}(x) d x=\int_{a}^{b} f(x) d x
$$

Proof. Since all functions in consideration are assumed to be continuous on $[a, b]$, they are all integrable on this interval, so the integrals exist. Now, let $\epsilon>0$ be fixed, and let $N \in \mathbb{N}$ be such that

$$
\sup _{x \in[a, b]}\left|f_{n}(x)-f(x)\right|<\epsilon
$$

for all $n \geq N$. So for any $n \geq N$, we have

$$
\begin{aligned}
\left|\int_{a}^{b} f_{n}(x) d x-\int_{a}^{b} f(x) d x\right| & =\left|\int_{a}^{b} f_{n}(x)-f(x) d x\right| \\
& \leq \int_{a}^{b}\left|f_{n}(x)-f(x)\right| d x \\
& \leq \int_{a}^{b} \epsilon d x \\
& =\epsilon(b-a)
\end{aligned}
$$

and since $\epsilon>0$ is arbitrary, the claim holds.

1. Consider the space $C[0,1]$ with the uniform metric ρ. Let E, a subset of $C[0,1]$, and constants $M_{1}, M_{2}>0$ be such that $f \in E$ is differentiable on $(0,1),|f(x)| \leq$ $M_{1}, x \in[0,1], f \in E$ and $\left|f^{\prime}(x)\right| \leq M_{2}, x \in(0,1), f \in E$. Show that E has compact closure in $(C[0,1], \rho)$.
Solution. Put $S=[0,1]$, and we know that S is a compact metric space. By the Arzela-Ascoli Theorem (which has been proven in class), we know that a closed subset $E \subset C(S)$ is compact in $(C(S), \rho)$ if and only if E is uniformly bounded over S and E is uniformly equicontinuous over S. Also, we know that if a subset E of $C(S)$ is uniformly bounded and uniformly equicontinuous on S, then its closure in $(C(S), \rho)$ is also uniformly bounded and uniformly equicontinuous on S (and this has also been proven in class).

So, it is enough to show that the given set E is uniformly bounded and uniformly equicontinuous over S. By the given hypothesis, we know that $|f(x)| \leq$ M_{1} for each $f \in E$ and each $x \in S$, meaning that E is uniformly bounded over S. Let us now prove equicontinuity. Suppose $\epsilon>0$ is fixed. Then, for any $x, y \in S$ and any $f \in E$ we see that

$$
|x-y|<\epsilon / M_{2} \Longrightarrow|f(x)-f(y)|=\left|f^{\prime}(c)\right||x-y| \leq M_{2}|x-y| \leq M_{2} \epsilon / M_{2}=\epsilon
$$

where the point c between x, y was furnished via the mean value theorem. In particular, this shows that E is uniformly equicontinuous over S, and this completes the solution.
2. Find a countable dense subset of $(C[0,1], \rho)$ where ρ denotes the uniform metric. Justify your answer.

Solution. By the Weierstrass Approximation Theorem (which has been proven in class), we know that the set of polynomials over $[0,1]$ is a dense subset of $(C[0,1], \rho)$. Now, we will show that any polynomial over $[0,1]$ can be uniformly
approximated by a sequence of polynomials over $[0,1]$ with rational coefficients, and hence this will show that the set of polynomials over $[0,1]$ with rational coefficients (which clearly is a countable set) is dense in ($C[0,1], \rho$), and that will show that $(C[0,1], \rho)$ is a separable space.

Now, we do another reduction. Let $\left\{f_{n}\right\},\left\{g_{n}\right\}$ be sequences of real continuous functions over $[0,1]$ converging uniformly to f, g respectively. From Lemma 0.1 we know that

$$
\begin{aligned}
f_{n}+g_{n} & \rightarrow f+g \quad \text { (uniformly) } \\
f_{n} g_{n} & \rightarrow f g \quad \text { (uniformly) }
\end{aligned}
$$

Clearly, these convergence properties can be extended to finite sums and products via induction. So, if

$$
p(x)=a_{k} x^{k}+\ldots+a_{0}
$$

is a polynomial over $[0,1]$, it is enough to show that for each $0 \leq i \leq k$, there is a sequence $\left\{q_{i, n}(x)\right\}$ of polynomials with rational coefficients such that

$$
q_{i, n}(x) \rightarrow a_{i} x^{i} \quad \text { uniformly }
$$

over $[0,1]$. Let $\left\{a_{i, n}\right\}$ be a sequence of rational numbers converging to a_{i} (possible because \mathbb{Q} is dense in \mathbb{R}). Viewing this as a sequence of constant functions over $[0,1]$, we see immediately that

$$
a_{i, n} \rightarrow a_{i} \quad \text { uniformly }
$$

where we view a_{i} as a constant function on $[0,1]$. Now, put

$$
r_{i, n}(x)=x^{i}
$$

for each $n \in \mathbb{N}$. So, it is clear that

$$
r_{i, n}(x) \rightarrow x^{i} \quad \text { uniformly }
$$

So, define

$$
q_{i, n}(x)=a_{i, n} r_{i, n}(x)
$$

so that each $q_{i, n}(x)$ is a polynomial over $[0,1]$ with rational coefficients. Finally, by Lemma 0.1 (3), we see that

$$
q_{i, n}(x) \rightarrow a_{i} x^{i} \quad \text { uniformly }
$$

and hence this completes the proof. So, $C[0,1]$ is a separable space.
3. Let g be a continuous function on $[0,1]$ such that

$$
\int_{0}^{1} g(x) x^{n} d x=0
$$

for all $n \in \mathbb{N} \cup\{0\}$. Show that $g=0$.
Solution. Let $p(x)$ be any polynomial over $[0,1]$. We first show that

$$
\int_{0}^{1} g(x) p(x) d x=0
$$

Suppose

$$
p(x)=a_{m} x^{m}+a_{m-1} x^{m-1}+\ldots+a_{0}
$$

where $a_{0}, a_{1}, \ldots, a_{m} \in \mathbb{R}$. Then, observe that

$$
\begin{aligned}
\int_{0}^{1} g(x) p(x) d x & =\int_{0}^{1} g(x)\left(a_{0}+\ldots+a_{m} x^{m}\right) d x \\
& =\sum_{i=0}^{m} a_{i} \int_{0}^{1} g(x) x^{i} d x \\
& =0
\end{aligned}
$$

Now, we know that g is a continuous function on $[0,1]$. By the Weierstrass Approximation Theorem, we know that there is a sequence $\left\{P_{n}\right\}$ of polynomials over $[0,1]$ converging uniformly to g. Now if we consider the sequence

$$
g_{n}(x)=g(x)
$$

for each $n \in \mathbb{N}$, then clearly $g_{n} \rightarrow g$ uniformly. In that case, by Lemma 0.1 (3), we see that

$$
P_{n} g_{n} \rightarrow g^{2} \quad \text { (uniformly) }
$$

and hence

$$
P_{n} g \rightarrow g^{2} \quad \text { (uniformly) }
$$

and hence by Lemma 0.2 we get that

$$
\lim _{n \rightarrow \infty} \int_{0}^{1} P_{n}(x) g(x) d x=\int_{0}^{1} g^{2}(x) d x
$$

But as we showed above, the limit on the LHS of the above equation is zero, and hence

$$
\int_{0}^{1} g^{2}(x) d x=0
$$

implying that $g^{2}=0$ on $[0,1]$ (because g^{2} is a positive continuous function), and hence we get that $g=0$ on $[0,1]$.
4. Let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function. Show that there is a sequence of functions of the form

$$
f_{n}(x, y)=\sum_{i=1}^{n} g_{i, n}(x) h_{i, n}(y)
$$

for $x, y \in[0,1]$ where $g_{i, n}, h_{i, n}$ are continuous functions on $[0,1]$ such that $\left\{f_{n}\right\}$ converges uniformly to f.
Note: In the assignment, the functions f_{n} are of the form

$$
f_{n}(x, y)=\sum_{i=1}^{n} g_{i}(x) h_{i}(y)
$$

which make it look like the functions g_{i}, h_{i} for $i \geq 1$ are independent of n, which clearly changes the problem. However, I have confirmed with our professor that the $g_{i}^{\prime} \mathrm{s}$ and $h_{i}^{\prime} \mathrm{s}$ may depend on n, and that is why I have used the notation $g_{i, n}$ and $h_{i, n}$.

Solution. First, let A be the set of all functions of the form

$$
\left\{\sum_{i=1}^{k} g_{i, k}(x) h_{i, k}(y) \mid k \in \mathbb{N}, g_{i, k}, h_{i, k} \in C[0,1]\right\}
$$

Let us show that A is a subalgebra of $C([0,1] \times[0,1])$. By the definition of A, it is closed under addition. If $c \in \mathbb{R}$ is any constant, then

$$
c\left(\sum_{i=1}^{k} g_{i, k}(x) h_{i, k}(y)\right)=\sum_{i=1}^{k}\left(c g_{i, k}\right)(x) h_{i, k}(y)
$$

and this shows that A is closed under scalar multiplication (because $C[0,1]$ is closed under scalar multiplication). Finally, to show that A is closed under multiplication, we have the following for any $k, l \in \mathbb{N}$.

$$
\left(\sum_{i=1}^{k} g_{i, k}(x) h_{i, k}(y)\right)\left(\sum_{i=1}^{l} g_{i, l}(x) h_{i, l}(y)\right)=\sum_{i=1}^{k} \sum_{j=1}^{l} g_{i, k}(x) g_{i, l}(x) h_{i, k}(y) h_{i, l}(y)
$$

and because $C[0,1]$ is closed under multiplication, it immediately follows that A is closed under multiplication. So, A is a subalgebra of $C([0,1] \times[0,1])$.

Next, we will show that A separates points on $[0,1] \times[0,1]$. So let $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in$ $[0,1] \times[0,1]$ be two distinct points. Since these points are distinct, they differ in either their x-ordinate or their y-coordinate. Without loss of generality, suppose they differ in their x-coordinate (the proof when they differ in their y-coordinates is analogous), i.e

$$
x_{1} \neq x_{2}
$$

Consider the function

$$
\pi(x, y)=x
$$

i.e the projection onto the first factor, which is evidently continuous. Moreover, it is easy to see that $\pi \in A$. So, we see that

$$
\pi\left(x_{1}, y_{1}\right) \neq \pi\left(x_{2}, y_{2}\right)
$$

and hence this shows that A separates points on $[0,1] \times[0,1]$, completing the proof.

Finally, it is easy to see that A contains all constant functions on $[0,1] \times[0,1]$. So, by the Stone Weierstrass Theorem applied to the compact set $[0,1] \times[0,1]$, it follows that A is dense in $C([0,1] \times[0,1])$.

Now, let $f:[0,1] \times[0,1] \rightarrow \mathbb{R}$ be a continuous function. By what we have proved above, there is a sequence $\left\{q_{n}\right\}$ of functions in A that converges uniformly to f over $[0,1] \times[0,1]$. Also, we know that

$$
q_{n}(x, y)=\sum_{i=1}^{\phi(n)} g_{i, \phi(n)}(x) h_{i, \phi(n)}(y)
$$

where $\phi: \mathbb{N} \rightarrow \mathbb{N}$ is some function, and each $g_{i, \phi(n)}, h_{i, \phi(n)} \in C[0,1]$. Now, suppose $\phi(1)=1$, i.e

$$
q_{1}(x, y)=g_{1,1}(x) h_{1,1}(y)
$$

In this case, put $f_{1}=q_{1}$. Next, suppose $\phi(1)=r>1$, i.e

$$
q_{1}(x, y)=g_{1, r}(x) h_{1, r}(y)+\ldots+g_{r, r}(x) h_{r, r}(y)
$$

Here, put $f_{i}=0+0+\ldots+0\left(i\right.$ times) for each $1 \leq i \leq r-1$, and put $f_{r}=q_{1}$ (by doing this, we are ensuring that the f_{i} contains exactly i terms for each $0 \leq i \leq r$ as required in the problem statement).

We repeat the above procedure inductively. Suppose we have found functions

$$
f_{1}, \ldots, f_{n-1}
$$

for some $n \in \mathbb{N}$ such that

$$
f_{j}(x, y)=\sum_{i=1}^{j} g_{i, j}(x) h_{i, j}(y)
$$

for each $1 \leq j \leq n-1$. Consider q_{n+1}. If $\phi(n+1)=n+1$, i.e if

$$
q_{n+1}(x, y)=g_{1, n+1}(x, y) h_{1, n+1}(x, y)+\ldots+g_{n+1, n+1}(x, y) h_{n+1, n+1}(x, y)
$$

then simply put

$$
f_{n+1}=q_{n+1}
$$

If $1 \leq \phi(n+1)<n+1$, then put

$$
f_{n+1}=q_{n+1}+0+0+\ldots+0 \quad(n+1-\phi(n+1)) \text { zeroes }
$$

Next, suppose $\phi(n+1)=n+1+r$ for some $r \in \mathbb{N}$. In that case, put

$$
f_{n+i}=f_{n}+0+\ldots+0 \quad i \text { zeroes }
$$

for each $1 \leq i \leq r$ and put

$$
f_{n+1+r}=q_{n+1}
$$

Then it is clear that the sequence $\left\{f_{n}\right\}$ converges to f uniformly (because $\left\{q_{n}\right\}$ does), and hence we have found the required sequence of functions.
5. Let $E=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$, that is, E is the boundary of the open unit ball in \mathbb{R}^{2}. Note that E can be parametrized by the angle θ where $\tan (\theta)=y / x$ (as the tan function is periodic, $\theta=0$ will be taken the same as $\theta=2 \pi$). A function $p: E \rightarrow \mathbb{R}$ is called a trigonometric polynomial if

$$
p(\theta)=a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos (k \theta)+b_{k} \sin (k \theta)\right)
$$

where $a_{j}, b_{j} \in \mathbb{R}$. Show that any \mathbb{R}-valued continuous function on E can be uniformly approximated by trigonometric polynomials.

Solution. Observe that E is a compact subset of \mathbb{R}^{2} being closed and bounded. To show that any \mathbb{R}-valued continuous function on E can be uniformly approximated by trigonometric polynomials, it is enough to show that the set of trigonometric polynomials is dense in $(C(E), \rho$) (ρ is the uniform metric), and we will use the Stone-Weierstrass Theorem to do this (and this theorem was proved in class).

Let $T \subset(C(E), \rho)$ be the set of all trigonometric polynomials over E. Let us first show that T is a subalgebra of $C(E)$. So let p_{1}, p_{2} be two trigonometric polynomials given by

$$
\begin{aligned}
& p_{1}(\theta)=a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos (k \theta)+b_{k} \sin (k \theta)\right) \\
& p_{2}(\theta)=c_{0}+\sum_{k=1}^{m}\left(c_{k} \cos (k \theta)+d_{k} \sin (k \theta)\right)
\end{aligned}
$$

and without loss of generality assume that $n \leq m$ (the case $n \geq m$ is analogous). So, we have the following.
$\left(p_{1}+p_{2}\right)(\theta)=\left(a_{0}+c_{0}\right)+\sum_{k=1}^{n}\left(\left(a_{k}+c_{k}\right) \cos (k \theta)+\left(b_{k}+d_{k}\right) \sin k \theta\right)+\sum_{k=n+1}^{m}\left(c_{k} \boldsymbol{\operatorname { c o s }}(k \theta)+d_{k} \boldsymbol{\operatorname { s i n }}(k \theta)\right)$
and this shows that T is closed under addition. Next, if $q_{0} \in \mathbb{R}$, then

$$
\left(q_{0} p_{1}\right)(\theta)=q_{0} a_{0}+\sum_{k=1}^{n}\left(q_{0} a_{k} \cos (k \theta)+q_{0} b_{k} \sin (k \theta)\right)
$$

which shows that T is closed under scalar multiplication. Finally, we have

$$
\left(p_{1} p_{2}\right)(\theta)=\left[a_{0}+\sum_{k=1}^{n}\left(a_{k} \cos (k \theta)+b_{k} \sin (k \theta)\right)\right]\left[c_{0}+\sum_{k=1}^{m}\left(c_{k} \cos (k \theta)+d_{k} \sin (k \theta)\right)\right]
$$

We can expand the above product, but observe that it is enough to show that each function of one of the forms $\cos (i \theta) \cos (j \theta), \cos (i \theta) \sin (j \theta), \sin (i \theta) \cos (j \theta)$ and $\sin (i \theta) \sin (j \theta)$ is a trigonometric polynomial for any positive integers $i, j \geq 1$. Then, by the fact that T is closed under addition and scalar multiplication, it will follow that T is closed under multiplication as well. Now, we have the usual trigonometric identities:

$$
\begin{aligned}
\cos (i \theta) \cos (j \theta) & =\frac{1}{2}[\cos ((i-j) \theta)+\cos ((i+j) \theta)] \\
\cos (i \theta) \sin (j \theta) & =\frac{1}{2}[\sin ((i+j) \theta)-\sin ((i-j) \theta)] \\
\sin (i \theta) \cos (j \theta) & =\frac{1}{2}[\sin ((i+j) \theta)+\boldsymbol{\operatorname { s i n }}((i-j) \theta)] \\
\sin (i \theta) \sin (j \theta) & =\frac{1}{2}[\cos ((i-j) \theta)-\cos ((i+j) \theta)]
\end{aligned}
$$

which shows that each of these products is a trigonometric polynomial (which is easily seen by the definition of a trigonometric polynomial). Hence, it follows that T is closed under multiplication as well, and so T is a subalgebra of functions.

Next, it is clear that T contains all constant functions over E (because any constant function is a trigonometric polynomial as well). Finally, let us show that T separates points on E. Let $\theta_{1}, \theta_{2} \in[0,2 \pi)$ be distinct numbers, and consider their corresponding points on the unit circle, i.e let

$$
\begin{aligned}
& A=\left(\cos \theta_{1}, \sin \theta_{1}\right) \\
& B=\left(\cos \theta_{2}, \sin \theta_{2}\right)
\end{aligned}
$$

Since A and B are distinct points on the unit circle, they differ either in their x-coordinate or their y-coordinate. Without loss of generality, suppose that they differ in their x-coordinate (the proof being analogous if they differ in y coordinate), i.e

$$
\cos \theta_{1} \neq \cos \theta_{2}
$$

We know that

$$
p(\theta)=\cos (\theta)
$$

is a trigonometric polynomial, and we see that

$$
p\left(\theta_{1}\right) \neq p\left(\theta_{2}\right)
$$

and so we see that T separates points of E. So, by the Stone Weierstrass Theorem, it follows that T is a dense subset of $C(E)$, and this completes the proof.

