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First I will prove some facts that I will use in some problems.

Lemma0.1. Let {fn} , {gn} be two sequences in (C[a, b], ρ)with the uniformmet-
ric ρ such that fn → f uniformly and gn → g uniformly, where f, g ∈ C[a, b].
Then

(1) fn + gn → f + g uniformly.
(2) cfn → cf uniformly, for any c ∈ R.
(3) fngn → fg uniformly.

Proof. Observe that saying hn → h uniformly is the same as saying ρ(hn, h) →
0. So, our hypothesis is that ρ(fn, f) → 0 and ρ(gn, g) → 0 as n → ∞. Also,
since {fn} is a uniformly convergent sequence, it must be uniformly bounded,
i.e |fn(x)| ≤ M1 for all n ≥ 1 and x ∈ [a, b] for someM1 ≥ 0. Since g is continuous
on [a, b], |g(x)| ≤ M2 for someM2 ≥ 0.

(1) For any n ∈ N, we have

ρ(fn + gn, f + g) = sup
x∈[a,b]

|fn(x) + gn(x)− f(x)− g(x)|

≤ sup
x∈[a,b]

|fn(x)− f(x)|+ |gn(x)− g(x)|

≤ sup
x∈[a,b]

|fn(x)− f(x)|+ sup
x∈[a,b]

|gn(x)− g(x)|

= ρ(fn, f) + ρ(gn, g)

and the last term goes to 0 as n → ∞. Thismeans that ρ(fn+gn, f+g) → 0
and hence fn + gn → f + g uniformly.

(2) This has a very similar argument as in (1).
(3) Observe that

ρ(fngn, fg) = sup
x∈[a,b]

|fn(x)gn(x)− f(x)g(x)|

= sup
x∈[a,b]

|fn(x)gn(x)− fn(x)g(x) + fn(x)g(x)− f(x)g(x)|

≤ sup
x∈[a,b]

|fn(x)| |gn(x)− g(x)|+ |g(x)| |fn(x)− f(x)|

≤ sup
x∈[a,b]

|fn(x)| |gn(x)− g(x)|+ sup
x∈[a,b]

|g(x)| |fn(x)− f(x)|

≤ M1ρ(gn, g) +M2ρ(fn, f)

and the last term goes to 0 as n → ∞. So, we have ρ(fngn, fg) → 0 and
hence fngn → fg uniformly.
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Lemma0.2. Let {fn} be a sequence in (C[a, b]), ρ) such that fn → f uniformly for
some f ∈ C[a, b]. Then,

lim
n→∞

∫ b

a

fn(x)dx =

∫ b

a

f(x)dx

Proof. Since all functions in consideration are assumed to be continuous on
[a, b], they are all integrable on this interval, so the integrals exist. Now, let ϵ > 0
be fixed, and let N ∈ N be such that

sup
x∈[a,b]

|fn(x)− f(x)| < ϵ

for all n ≥ N . So for any n ≥ N , we have∣∣∣∣∫ b

a

fn(x)dx−
∫ b

a

f(x)dx

∣∣∣∣ = ∣∣∣∣∫ b

a

fn(x)− f(x)dx

∣∣∣∣
≤
∫ b

a

|fn(x)− f(x)|dx

≤
∫ b

a

ϵdx

= ϵ(b− a)

and since ϵ > 0 is arbitrary, the claim holds. ■
1. Consider the spaceC[0, 1]with the uniformmetric ρ. LetE, a subset ofC[0, 1],
and constantsM1,M2 > 0 be such that f ∈ E is differentiable on (0, 1), |f(x)| ≤
M1, x ∈ [0, 1], f ∈ E and |f ′(x)| ≤ M2, x ∈ (0, 1), f ∈ E. Show that E has compact
closure in (C[0, 1], ρ).

Solution. Put S = [0, 1], and we know that S is a compact metric space. By the
Arzela-Ascoli Theorem (whichhasbeenproven in class), we know that a closed
subset E ⊂ C(S) is compact in (C(S), ρ) if and only if E is uniformly bounded
over S andE is uniformly equicontinuous over S. Also, we know that if a subset
E of C(S) is uniformly bounded and uniformly equicontinuous on S, then its
closure in (C(S), ρ) is also uniformly bounded and uniformly equicontinuous on
S (and this has also been proven in class).
So, it is enough to show that the given set E is uniformly bounded and uni-

formly equicontinuous over S. By the given hypothesis, we know that |f(x)| ≤
M1 for each f ∈ E and each x ∈ S, meaning that E is uniformly bounded over S.
Let us now prove equicontinuity. Suppose ϵ > 0 is fixed. Then, for any x, y ∈ S
and any f ∈ E we see that

|x− y| < ϵ/M2 =⇒ |f(x)− f(y)| = |f ′(c)||x− y| ≤ M2|x− y| ≤ M2ϵ/M2 = ϵ

where the point c between x, y was furnished via the mean value theorem. In
particular, this shows thatE is uniformly equicontinuous over S, and this com-
pletes the solution.

2. Find a countable dense subset of (C[0, 1], ρ) where ρ denotes the uniform
metric. Justify your answer.

Solution. By theWeierstrassApproximationTheorem (whichhasbeenproven
in class), we know that the set of polynomials over [0, 1] is a dense subset of
(C[0, 1], ρ). Now, we will show that any polynomial over [0, 1] can be uniformly
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approximatedbya sequenceof polynomials over [0, 1]with rational coefficients,
and hence this will show that the set of polynomials over [0, 1]with rational co-
efficients (which clearly is a countable set) is dense in (C[0, 1], ρ), and that will
show that (C[0, 1], ρ) is a separable space.
Now, we do another reduction. Let {fn}, {gn} be sequences of real continuous

functions over [0, 1] converging uniformly to f, g respectively. From Lemma 0.1
we know that

fn + gn → f + g (uniformly)
fngn → fg (uniformly)

Clearly, these convergence properties can be extended to finite sumsandprod-
ucts via induction. So, if

p(x) = akx
k + ...+ a0

is a polynomial over [0, 1], it is enough to show that for each 0 ≤ i ≤ k, there is a
sequence {qi,n(x)} of polynomials with rational coefficients such that

qi,n(x) → aix
i uniformly

over [0, 1]. Let {ai,n} be a sequence of rational numbers converging to ai (possi-
ble because Q is dense in R). Viewing this as a sequence of constant functions
over [0, 1], we see immediately that

ai,n → ai uniformly

where we view ai as a constant function on [0, 1]. Now, put

ri,n(x) = xi

for each n ∈ N. So, it is clear that

ri,n(x) → xi uniformly

So, define
qi,n(x) = ai,nri,n(x)

so that each qi,n(x) is a polynomial over [0, 1] with rational coefficients. Finally,
by Lemma 0.1 (3), we see that

qi,n(x) → aix
i uniformly

and hence this completes the proof. So, C[0, 1] is a separable space.

3. Let g be a continuous function on [0, 1] such that∫ 1

0

g(x)xndx = 0

for all n ∈ N ∪ {0}. Show that g = 0.

Solution. Let p(x) be any polynomial over [0, 1]. We first show that∫ 1

0

g(x)p(x)dx = 0

Suppose
p(x) = amx

m + am−1x
m−1 + ...+ a0



4 SIDDHANT CHAUDHARY BMC201953

where a0, a1, ..., am ∈ R. Then, observe that∫ 1

0

g(x)p(x)dx =

∫ 1

0

g(x)(a0 + ...+ amx
m)dx

=
m∑
i=0

ai

∫ 1

0

g(x)xidx

= 0

Now, we know that g is a continuous function on [0, 1]. By theWeierstrass Ap-
proximation Theorem, we know that there is a sequence {Pn} of polynomials
over [0, 1] converging uniformly to g. Now if we consider the sequence

gn(x) = g(x)

for each n ∈ N, then clearly gn → g uniformly. In that case, by Lemma 0.1 (3),
we see that

Pngn → g2 (uniformly)
and hence

Png → g2 (uniformly)
and hence by Lemma 0.2 we get that

lim
n→∞

∫ 1

0

Pn(x)g(x)dx =

∫ 1

0

g2(x)dx

But as we showed above, the limit on the LHS of the above equation is zero, and
hence ∫ 1

0

g2(x)dx = 0

implying that g2 = 0 on [0, 1] (because g2 is a positive continuous function), and
hence we get that g = 0 on [0, 1].

4. Let f : [0, 1] × [0, 1] → R be a continuous function. Show that there is a se-
quence of functions of the form

fn(x, y) =
n∑

i=1

gi,n(x)hi,n(y)

for x, y ∈ [0, 1] where gi,n, hi,n are continuous functions on [0, 1] such that {fn}
converges uniformly to f .
Note: In the assignment, the functions fn are of the form

fn(x, y) =
n∑

i=1

gi(x)hi(y)

which make it look like the functions gi, hi for i ≥ 1 are independent of n, which
clearly changes the problem. However, I have confirmed with our professor
that the g′is and h′

is may depend on n, and that is why I have used the notation
gi,n and hi,n.

Solution. First, let A be the set of all functions of the form{
k∑

i=1

gi,k(x)hi,k(y) | k ∈ N, gi,k, hi,k ∈ C[0, 1]

}
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Let us show that A is a subalgebra of C([0, 1]× [0, 1]). By the definition of A, it
is closed under addition. If c ∈ R is any constant, then

c

(
k∑

i=1

gi,k(x)hi,k(y)

)
=

k∑
i=1

(cgi,k)(x)hi,k(y)

and this shows that A is closed under scalar multiplication (because C[0, 1] is
closed under scalar multiplication). Finally, to show thatA is closed undermul-
tiplication, we have the following for any k, l ∈ N.(

k∑
i=1

gi,k(x)hi,k(y)

)(
l∑

i=1

gi,l(x)hi,l(y)

)
=

k∑
i=1

l∑
j=1

gi,k(x)gi,l(x)hi,k(y)hi,l(y)

and because C[0, 1] is closed under multiplication, it immediately follows that A
is closed under multiplication. So, A is a subalgebra of C([0, 1]× [0, 1]).
Next, wewill show thatA separatespoints on [0, 1]×[0, 1]. So let (x1, y1), (x2, y2) ∈

[0, 1] × [0, 1] be two distinct points. Since these points are distinct, they dif-
fer in either their x-ordinate or their y-coordinate. Without loss of generality,
suppose they differ in their x-coordinate (the proof when they differ in their
y-coordinates is analogous), i.e

x1 ̸= x2

Consider the function
π(x, y) = x

i.e the projection onto the first factor, which is evidently continuous. Moreover,
it is easy to see that π ∈ A. So, we see that

π(x1, y1) ̸= π(x2, y2)

and hence this shows that A separates points on [0, 1] × [0, 1], completing the
proof.
Finally, it is easy to see that A contains all constant functions on [0, 1]× [0, 1].

So, by the StoneWeierstrass Theorem applied to the compact set [0, 1]× [0, 1],
it follows that A is dense in C([0, 1]× [0, 1]).
Now, let f : [0, 1]×[0, 1] → R be a continuous function. Bywhatwehave proved

above, there is a sequence {qn} of functions in A that converges uniformly to f
over [0, 1]× [0, 1]. Also, we know that

qn(x, y) =

ϕ(n)∑
i=1

gi,ϕ(n)(x)hi,ϕ(n)(y)

where ϕ : N → N is some function, and each gi,ϕ(n), hi,ϕ(n) ∈ C[0, 1]. Now, suppose
ϕ(1) = 1, i.e

q1(x, y) = g1,1(x)h1,1(y)

In this case, put f1 = q1. Next, suppose ϕ(1) = r > 1, i.e
q1(x, y) = g1,r(x)h1,r(y) + ...+ gr,r(x)hr,r(y)

Here, put fi = 0+0+...+0 (i times) for each 1 ≤ i ≤ r−1, and put fr = q1 (by doing
this, we are ensuring that the fi contains exactly i terms for each 0 ≤ i ≤ r as
required in the problem statement).
We repeat the above procedure inductively. Suppose we have found func-

tions
f1, ..., fn−1
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for some n ∈ N such that

fj(x, y) =

j∑
i=1

gi,j(x)hi,j(y)

for each 1 ≤ j ≤ n− 1. Consider qn+1. If ϕ(n+ 1) = n+ 1, i.e if
qn+1(x, y) = g1,n+1(x, y)h1,n+1(x, y) + ...+ gn+1,n+1(x, y)hn+1,n+1(x, y)

then simply put
fn+1 = qn+1

If 1 ≤ ϕ(n+ 1) < n+ 1, then put
fn+1 = qn+1 + 0 + 0 + ...+ 0 (n+ 1− ϕ(n+ 1)) zeroes

Next, suppose ϕ(n+ 1) = n+ 1 + r for some r ∈ N. In that case, put
fn+i = fn + 0 + ...+ 0 i zeroes

for each 1 ≤ i ≤ r and put
fn+1+r = qn+1

Then it is clear that the sequence {fn} converges to f uniformly (because {qn}
does), and hence we have found the required sequence of functions.

5. Let E = {(x, y) ∈ R2 |x2 + y2 = 1}, that is, E is the boundary of the open unit
ball inR2. Note thatE can be parametrized by the angle θwhere tan(θ) = y/x (as
the tan function is periodic, θ = 0 will be taken the same as θ = 2π). A function
p : E → R is called a trigonometric polynomial if

p(θ) = a0 +
n∑

k=1

(ak cos(kθ) + bk sin(kθ))

where aj, bj ∈ R. Show that any R-valued continuous function on E can be
uniformly approximated by trigonometric polynomials.

Solution. Observe that E is a compact subset of R2 being closed and bounded.
To show that any R-valued continuous function on E can be uniformly approxi-
mated by trigonometric polynomials, it is enough to show that the set of trigono-
metric polynomials is dense in (C(E), ρ) (ρ is the uniform metric), and we will
use the Stone-Weierstrass Theorem to do this (and this theorem was proved
in class).
Let T ⊂ (C(E), ρ) be the set of all trigonometric polynomials over E. Let us

first show that T is a subalgebra of C(E). So let p1, p2 be two trigonometric
polynomials given by

p1(θ) = a0 +
n∑

k=1

(ak cos(kθ) + bk sin(kθ))

p2(θ) = c0 +
m∑
k=1

(ck cos(kθ) + dk sin(kθ))

andwithout loss of generality assume that n ≤ m (the case n ≥ m is analogous).
So, we have the following.

(p1 + p2)(θ) = (a0 + c0) +
n∑

k=1

((ak + ck) cos(kθ) + (bk + dk) sin kθ) +
m∑

k=n+1

(ck cos(kθ) + dk sin(kθ))
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and this shows that T is closed under addition. Next, if q0 ∈ R, then

(q0p1)(θ) = q0a0 +
n∑

k=1

(q0ak cos(kθ) + q0bk sin(kθ))

which shows that T is closed under scalar multiplication. Finally, we have

(p1p2)(θ) =

[
a0 +

n∑
k=1

(ak cos(kθ) + bk sin(kθ))
][

c0 +
m∑
k=1

(ck cos(kθ) + dk sin(kθ))
]

We can expand the above product, but observe that it is enough to show that
each function of one of the forms cos(iθ) cos(jθ), cos(iθ) sin(jθ), sin(iθ) cos(jθ)
and sin(iθ) sin(jθ) is a trigonometric polynomial for any positive integers i, j ≥ 1.
Then, by the fact that T is closed under addition and scalar multiplication, it will
follow that T is closed under multiplication as well. Now, we have the usual
trigonometric identities:

cos(iθ) cos(jθ) = 1

2
[cos((i− j)θ) + cos((i+ j)θ)]

cos(iθ) sin(jθ) = 1

2
[sin((i+ j)θ)− sin((i− j)θ)]

sin(iθ) cos(jθ) = 1

2
[sin((i+ j)θ) + sin((i− j)θ)]

sin(iθ) sin(jθ) = 1

2
[cos((i− j)θ)− cos((i+ j)θ)]

which shows that each of these products is a trigonometric polynomial (which
is easily seen by the definition of a trigonometric polynomial). Hence, it follows
that T is closed under multiplication as well, and so T is a subalgebra of func-
tions.
Next, it is clear that T contains all constant functions over E (because any

constant function is a trigonometric polynomial as well). Finally, let us show
that T separates points on E. Let θ1, θ2 ∈ [0, 2π) be distinct numbers, and con-
sider their corresponding points on the unit circle, i.e let

A = (cos θ1, sin θ1)
B = (cos θ2, sin θ2)

Since A and B are distinct points on the unit circle, they differ either in their
x-coordinate or their y-coordinate. Without loss of generality, suppose that
they differ in their x-coordinate (the proof being analogous if they differ in y-
coordinate), i.e

cos θ1 ̸= cos θ2
We know that

p(θ) = cos(θ)
is a trigonometric polynomial, and we see that

p(θ1) ̸= p(θ2)

and so we see that T separates points of E. So, by the StoneWeierstrass The-
orem, it follows that T is a dense subset of C(E), and this completes the proof.
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