ANA3, ASSIGNMENT-4

SIDDHANT CHAUDHARY
BMC201953

Notation. As defined in class, the space H is

$$
H:=C([-\pi, \pi], \mathbb{C})
$$

i.e the space of continuous complex valued functions over the interval $I:=$ $[-\pi, \pi]$. The inner product on this space is defined as

$$
\langle f, g\rangle:=\int_{-\pi}^{\pi} f(x) \overline{g(x)} d x
$$

and it has been proven in class that this is a positive definite Hermitian product. Here are some results on Fourier Series which were proven in class and which I will be using in some problems.

Proposition 0.1. Let $f \in H$ be a periodic function with period 2π, and let c_{n} be the Fourier coefficients for f (for $n \in \mathbb{Z}$). For any $N \geq 0$, define

$$
s_{N}(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}
$$

for any $x \in[-\pi, \pi]$. Then,

$$
\frac{1}{2 \pi} \int_{-\pi}^{\pi}\left|s_{N}(x)\right|^{2} d x=\sum_{n=-N}^{N}\left|c_{n}\right|^{2}
$$

Proposition 0.2 (Riemann-Lebesgue Lemma). Let $f \in H$, and let $\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be the Fourier coefficients of F. Then

$$
\lim _{|n| \rightarrow \infty} c_{n}=0
$$

and hence this means that

$$
\lim _{|n| \rightarrow \infty}\left|c_{n}\right|=0
$$

Proposition 0.3. Let $f \in H$, and let $\left\{c_{n}\right\}_{n \in \mathbb{Z}}$ be the Fourier coefficients of f. For any $N \geq 0$, let s_{N} be defined as in Proposition 0.1. Also, put

$$
c_{0}=\frac{a_{0}}{2} \quad, \quad c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right) \quad, \quad c_{-n}=\frac{1}{2}\left(a_{n}+i b_{n}\right)
$$

for each $n \geq 1$, where a_{0}, a_{n}, b_{n} are complex numbers. Then for any $x \in[-\pi, \pi]$

$$
s_{N}(x)=\frac{a_{0}}{2}+\sum_{n=1}^{N} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

Date: November 2020.
and so if $\left\{s_{N}\right\}_{N \in \mathbb{N}}$ converges uniformly to some function over $[-\pi, \pi]$, the series

$$
\frac{a_{0}}{2}+\sum_{i=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

converges uniformly to the same function over $[-\pi, \pi]$.
Proof. This is an easy computation. For any $N \geq 0$ and $x \in[-\pi, \pi]$, we have the following chain of equations.

$$
\begin{aligned}
s_{N}(x) & =c_{0}+\sum_{n=-N}^{-1} c_{n} e^{i n x}+\sum_{n=1}^{N} c_{n} e^{i n x} \\
& =c_{0}+\sum_{n=1}^{N} c_{n} e^{i n x}+c_{-n} e^{-i n x} \\
& =c_{0}+\sum_{n=1}^{N} c_{n}(\cos (n x)+i \sin (n x))+c_{-n}(\cos (n x)-i \sin (n x)) \\
& =c_{0}+\sum_{n=1}^{N}\left(c_{n}+c_{-n}\right) \cos (n x)+\left(i c_{n}-i c_{-n}\right) \sin (n x) \\
& =\frac{a_{0}}{2}+\sum_{n=1}^{N} a_{n} \cos (n x)+b_{n} \sin (n x)
\end{aligned}
$$

The rest of the statement follows easily from this.

1. Let $\left\{\varphi_{n}: n=0,1, \ldots\right\}$ be an orthonormal system in H. Show that any finite subcollection of $\left\{\varphi_{n}\right\}$ is linearly independent.

Solution. Let $\left\{\varphi_{i_{1}}, \varphi_{i_{2}}, \ldots, \varphi_{i_{k}}\right\}$ be any finite subcollection of the given system. Let us show that they are linearly independent. Suppose there are complex numbers c_{1}, \ldots, c_{k} such that

$$
c_{1} \varphi_{i_{1}}+\ldots+c_{k} \varphi_{i_{k}}=0
$$

Fix $1 \leq j \leq k$. Then we have

$$
\left\langle c_{1} \varphi_{i_{1}}+\ldots+c_{k} \varphi_{i_{k}}, \varphi_{i_{j}}\right\rangle=\left\langle 0, \varphi_{i_{j}}\right\rangle=0
$$

Also, by the bilinearity of this inner product, we see that

$$
\begin{aligned}
\left\langle c_{1} \varphi_{i_{1}}+\ldots+c_{k} \varphi_{i_{k}}, \varphi_{i_{j}}\right\rangle & =\left\langle c_{1} \varphi_{i_{1}}, \varphi_{i_{j}}\right\rangle+\ldots+\left\langle c_{k} \varphi_{i_{k}}, \varphi_{i_{j}}\right\rangle \\
& =c_{1}\left\langle\varphi_{i_{1}}, \varphi_{i_{j}}\right\rangle+\ldots+c_{k}\left\langle\varphi_{i_{k}}, \varphi_{i_{j}}\right\rangle \\
& =c_{j}
\end{aligned}
$$

where in the last step, we used the orthonormality of the given system. So, the above implies that $c_{j}=0$. Since $1 \leq j \leq k$ was arbitrary, it follows that the subcollection $\left\{\varphi_{i_{1}}, \ldots, \varphi_{i_{k}}\right\}$ is linearly independent.
2. Let $f \in \mathscr{C}^{1}(\mathbb{R})$ be periodic with period 2π. Assume also that f is an odd function. Show that in the Fourier Series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

of f, all the cosine terms will be absent.

Solution. Since $f \in \mathscr{C}^{1}(\mathbb{R})$ is periodic with period 2π, we have shown in class that the Fourier Series of f converges to f uniformly over $[-\pi, \pi]$. So, for any $x \in[-\pi, \pi]$, we have

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

As in Proposition 0.3 if we put

$$
c_{0}=\frac{a_{0}}{2} \quad, \quad c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right) \quad, \quad c_{-n}=\frac{1}{2}\left(a_{n}+i b_{n}\right)
$$

for every $n>0$, then we see that for any $x \in[-\pi, \pi]$

$$
f(x)=\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}=\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

Also, from the relations between c_{n}, a_{n} and b_{n}, we see that

$$
a_{n}=c_{-n}+c_{n}
$$

for every $n \geq 1$. Using the formula for the Fourier coefficients, we have

$$
\begin{aligned}
a_{n} & =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{i n x} d x+\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x)\left[e^{i n x}+e^{-i n x}\right] d x \\
& =\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) 2 \cos (n x) d x \\
& =\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x
\end{aligned}
$$

Now, suppose f is an odd function, i.e $f(-x)=-f(x)$ for each $x \in[-\pi, \pi]$. Since cos is an even function, we see that for every $x \in[-\pi, \pi]$

$$
f(-x) \cos (n(-x))=-f(x) \cos (n x)
$$

which means that

$$
a_{n}=\frac{1}{\pi} \int_{-\pi}^{\pi} f(x) \cos (n x) d x=0
$$

since the integrand above is an odd function. It follows that if f is an odd function, then the Fourier series of f does not have any cosine terms, which proves the claim.
3. Let $f \in \mathscr{C}^{1}(\mathbb{R})$ be periodic with period 2π. For $N=0,1,2, \ldots$, let

$$
s_{N}(x)=\sum_{n=-N}^{N} c_{n} e^{i n x}
$$

Show that $f-s_{N}$ and s_{N} are orthogonal in H.

Solution. This is a straightforward computation. We have the following chain of equations.

$$
\begin{aligned}
\left\langle f-s_{N}, s_{N}\right\rangle & =\int_{-\pi}^{\pi}\left[f(x)-s_{N}(x)\right] \overline{s_{N}(x)} d x \\
& =\int_{-\pi}^{\pi} f(x) \overline{s_{N}(x)} d x-\int_{-\pi}^{\pi} s_{N}(x) \overline{s_{N}(x)} d x \\
& =\int_{-\pi}^{\pi} f(x)\left(\sum_{n=-N}^{N} \overline{c_{n}} e^{-i n x}\right) d x-\int_{-\pi}^{\pi}\left|s_{N}(x)\right|^{2} d x \\
& =\int_{-\pi}^{\pi}\left(\sum_{n=-N}^{N} \overline{c_{n}} f(x) e^{-i n x}\right) d x-\int_{-\pi}^{\pi}\left|s_{N}(x)\right|^{2} d x \\
& =\sum_{n=-N}^{N} \int_{-\pi}^{\pi} \overline{c_{n}} f(x) e^{-i n x} d x-\int_{-\pi}^{\pi}\left|s_{N}(x)\right|^{2} d x \\
& =\sum_{n=-N}^{N} \overline{c_{n}} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x-\int_{-\pi}^{\pi}\left|s_{N}(x)\right|^{2} d x \\
& =\sum_{n=-N}^{N} 2 \pi c_{n} \overline{c_{n}}-\int_{-\pi}^{\pi}\left|s_{N}(x)\right|^{2} d x \\
& =2 \pi \sum_{n=-N}^{N}\left|c_{n}\right|^{2}-2 \pi \sum_{n=-N}^{N}\left|c_{n}\right|^{2} \\
& =0
\end{aligned}
$$

where in the second last step, we used Proposition 0.1. This completes the proof.
4. Is

$$
\sum_{n=1}^{\infty} \sin (n x) \quad x \in[-\pi, \pi]
$$

the Fourier Series of some $f \in H$?
Solution. Suppose there was some $f \in H$ with the Fourier series as given above. As in Proposition 0.3, we have the formulae

$$
c_{0}=\frac{a_{0}}{2} \quad, \quad c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right) \quad, \quad c_{-n}=\frac{1}{2}\left(a_{n}+i b_{n}\right)
$$

where the Fourier series is

$$
\frac{a_{0}}{2}+\sum_{i=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

Now from the given Fourier series, we see that

$$
a_{n}=0
$$

for all $n \in \mathbb{Z}$, and $b_{n}=1$ for all $n \geq 1$. So, it follows that

$$
c_{0}=0 \quad, c_{n}=\frac{-i}{2} \quad, c_{-n}=\frac{i}{2} \forall n \geq 1
$$

So, it follows that

$$
\lim _{|n| \rightarrow \infty}\left|c_{n}\right|=\frac{i}{2} \neq 0
$$

which contradicts the Riemann-Lebesgue Lemma 0.2, since it was assumed that $f \in H$. So, there is no $f \in H$ having this Fourier series.
5. Find all the Fourier coefficients of the function

$$
f(x)=\sin ^{2}(3 x)+\cos (7 x) \quad, x \in[-\pi, \pi]
$$

Solution. First, observe that $f \in \mathscr{C}^{1}(\mathbb{R})$ (and infact it is $\mathscr{C}^{\infty}(\mathbb{R})$, but that is not needed). It is also easily seen that f is periodic with period 2π. So, we have shown in class that the series

$$
\sum_{n=-\infty}^{\infty} c_{n} e^{i n x}
$$

converges uniformly to f over $[-\pi, \pi]$, where the Fourier Coefficients c_{n} are given by

$$
c_{n}=\frac{1}{2 \pi} \int_{-\pi}^{\pi} f(x) e^{-i n x} d x
$$

Now we can either directly compute c_{n} using the above formula, but there is a much easier way. Observe that by putting

$$
c_{0}=\frac{a_{0}}{2} \quad, \quad c_{n}=\frac{1}{2}\left(a_{n}-i b_{n}\right) \quad, \quad c_{-n}=\frac{1}{2}\left(a_{n}+i b_{n}\right)
$$

we can write the series in the form

$$
\frac{a_{0}}{2}+\sum_{n=1}^{\infty} a_{n} \cos (n x)+b_{n} \sin (n x)
$$

and we can simply read off the coefficients a_{n}, b_{n}. Now, we know that for any $x \in \mathbb{R}$

$$
\sin ^{2}(3 x)+\cos (7 x)=\frac{1-\cos (6 x)}{2}+\cos (7 x)=\frac{1}{2}-\frac{1}{2} \cos (6 x)+\cos (7 x)
$$

So, it follows that

$$
a_{0}=1 \quad, \quad a_{6}=\frac{-1}{2} \quad, \quad a_{7}=1
$$

and $b_{n}=0$ for all ≥ 1, and all the rest of $a_{n}^{\prime} s$ are 0 as well. Consequently, it follows that

$$
\begin{aligned}
& c_{0}=\frac{1}{2} \\
& c_{6}=\frac{-1}{4}=c_{-6} \\
& c_{7}=\frac{1}{2}=c_{-7}
\end{aligned}
$$

and the rest of the c_{n}^{\prime} s are zero. So, all the Fourier coefficients have been found.

