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1. Let X = [1,∞), with the usual distance. The map T is given by

T (x) =
1

2

(
x+

2

x

)
, x ∈ X

Is T a contraction mapping on a complete metric space? Justify your answer.

Solution. Define the function

h(x, y) =

∣∣∣∣1− 2

xy

∣∣∣∣
for x, y ≥ 1. It is easy to see that the maximum value of h over the set [1,∞) ×
[1,∞) is 1, because for any x, y ≥ 1,

|xy − 2| ≤ |xy|

Now, let x, y ∈ R. So, we have

|T (x)− T (y)| = 1

2

∣∣∣∣(x− y) + 2

(
1

x
− 1

y

)∣∣∣∣
=

1

2

∣∣∣∣(x− y)− 2

(
x− y

xy

)∣∣∣∣
=

1

2
|x− y|

∣∣∣∣1− 2

xy

∣∣∣∣
≤ 1

2
|x− y|

and this implies thatT is indeedacontractionmapping. Now it is easy to see that
[1,∞) is a complete metric space, because any Cauchy sequence will converge
in this space, as any Cauchy sequence will be a subset of a compact subset
of [1,∞), and hence it will be convergent. So, T is a contraction mapping on a
complete metric space. ■

2. Show that the contraction mapping theorem need not hold in the following
cases.

(1) (X, d) is not a complete metric space.
(2) (X, d) is a complete metric space, f : X → X satisfies

d(f(x), f(y)) ≤ rd(x, y) , x, y ∈ X

where r ≥ 1.
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Solution. For (1), let (X, d) be the spaceR−{0}with the usual distance. Clearly,
X is not complete. Consider the map T : X → X defined by

T (x) =
1

2
x

Then, we have for any x, y ∈ X ,

|T (x)− T (y)| = 1

2
|x− y| < 3

4
|x− y|

so that T is a contraction mapping. However, it is clear that T does not have
any fixed point. This is the required counterexample.
For (2), let X = {0, 1} be the discrete metric space where the metric d is de-

fined by d(0, 1) = 1. It is clear that (X, d) is a complete metric space. Define the
map T : X → X by T (0) = 1 and T (1) = 0. Then, for any x, y ∈ X we have

d(T (x), T (y)) ≤ d(x, y)

i.e r = 1. It is clear that T has no fixed points, and this is the required coun-
terexample. ■

3. LetA > 0, x0 ∈ R. Let g : [0, A] → R be a continuous function, and let f : R → R
be a Lipchitz continuous function. Show that the initial value problem for the
ODE

x′(t) = g(t) + f(x(t)) , t ∈ (0, A)

x(0) = x0

has a unique solution.

Solution. The proof is very similar to the proof of Picard’s Theorem that we
have done in class.
Because f is a Lipchitz continuous function, there is someK > 0 such that

|f(x)− f(y)| ≤ K|x− y|

for all x, y ∈ R. Now, let α > 0 be a number such that αK < 1. Also, there is
some natural numberN ∈ N such that (N − 1)α < A ≤ Nα. So, we will consider
the N intervals [0, α], [α, 2α], ..., [(N − 1)α,A].
First, consider the space (C[0, α], ρ0)where ρ0 is the uniformmetric. We know

that this is a complete metric space. Define the map T 0 : C[0, α] → C[0, α] by

T 0(y)(t) := x0 +

∫ t

0

g(s)ds+

∫ t

0

f(y(s))ds , t ∈ [0, α]

for any y ∈ C[0, α]. The fact that T 0 is indeed a map from C[0, α] to itself is a
consequence of the fundamental theorem of calculus, because we know that
g, f and y are all continuous functions on [0, α]. Now, we show that T 0 is a con-
traction mapping on this space. Observe that for any y, z ∈ C[0, α] and t ∈ [0, α]
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we have

|T 0(y)(t)− T 0(z)(t)| =
∣∣∣∣∫ t

0

f(y(s))− f(z(s))ds

∣∣∣∣
≤

∫ t

0

|f(y(s))− f(z(s))|ds

≤ K

∫ t

0

|y(s)− z(s)|ds

≤ Kρ0(y, z)

∫ t

0

ds

≤ Kαρ0(y, z)

where in the last step, we used the fact that t ≤ α. Taking the supremum over
t ∈ [0, α] in the RHS of the above equation, we get that

ρ0(T 0(y), T 0(z)) ≤ Kαρ0(y, z)

and because Kα < 1, this implies that T 0 is a contraction mapping. So, by the
ContractionMappingTheorem, there is some y0 ∈ C[0, α] such that T 0(y0) = y0,
i.e

y0(t) = x0 +

∫ t

0

g(s)ds+

∫ t

0

f(y0(s))ds , t ∈ [0, α]

Nowwe will repeat the same process as above with the interval [α, 2α], but this
time our constant will be y0(α) (earlier the constant was x0). So, consider the
space (C[α, 2α], ρ1)where ρ1 is the uniformmetric, and we know that this space
is complete. As before, define a map T 1 : C[α, 2α] → C[α, 2α] by

T 1(y)(t) = y0(α) +

∫ t

α

g(s)ds+

∫ t

α

f(y(s))ds , t ∈ [α, 2α]

for any y ∈ C[α, 2α]. By the same proof as above, it follows that T 1 is a contrac-
tion mapping on this space, and hence by the ContractionMapping Theorem,
there is some y1 ∈ C[α, 2α] such that T 1(y1) = y1, i.e

y1(t) = y0(α) +

∫ t

α

g(s)ds+

∫ t

α

f(y1(s))ds , t ∈ [α, 2α]

Note that y0(α) = y1(α), i.e these functions are equal on the common endpoint
between the intervals [0, α]and [α, 2α]. Continuing the sameprocedure as above
for each of the N intervals, we see that there are functions y0 ∈ C[0, α], y1 ∈
C[α, 2α],...., yN−1 ∈ C[(N − 1)α,A] such that

yk((k + 1)α) = yk+1((k + 1)α)
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for each 0 ≤ k ≤ N − 2 and

y0(t) = x0 +

∫ t

0

g(s)ds+

∫ t

0

f(y0(s))ds , t ∈ [0, α]

y1(t) = y0(α) +

∫ t

α

g(s)ds+

∫ t

α

f(y1(s))ds , t ∈ [α, 2α]

......

yN−2(t) = yN−3((N − 2)α) +

∫ t

(N−2)α

g(s)ds+

∫ t

(N−2)α

f(yN−2(s))ds , t ∈ [(N − 2)α, (N − 1)α]

yN−1(t) = yN−2((N − 1)α) +

∫ t

(N−1)α

g(s)ds+

∫ t

(N−1)α

f(yN−1(s))ds , t ∈ [(N − 1)α,A]

Note that the N functions y0, y1, ..., yN−1 agree on the common endpoints of the
intervals [0, α], ..., [(N − 1)α,A]. So, we can define a continuous function x :
[0, A] → R by these N functions piecewise, i.e

x(t) = yk(t) , t ∈ [kα,min{A, (k + 1)α}]
for 0 ≤ k ≤ N − 1. It is clear that x is a continuous function. Moreover, by the
above integral equations that the yks satisfy, it follows that

x(t) = x0 +

∫ t

0

g(s)ds+

∫ t

0

f(x(s))ds , t ∈ [0, A]

So, it follows that
x(0) = x0

Moreover, because g, f and x are all continuous, we can apply the fundamental
theorem of calculus in the open interval (0, A) to get

x′(t) = g(t) + f(x(t))

for any t ∈ (0, A). So, x is the required solution to the given initial value problem.
Theuniquenessofxeasily follows from theuniquenessof the functions y0, y1, ..., yN−1

as guaranteed by the ContractionMapping Theorem, because given the solu-
tion x, we can obtain functions y0, ..., yN−1 by restricting x to the suitable sub-
intervals. This completes the proof. ■
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