ANA3, ASSIGNMENT-5

SIDDHANT CHAUDHARY
BMC201953

1. Let $X=[1, \infty)$, with the usual distance. The map T is given by

$$
T(x)=\frac{1}{2}\left(x+\frac{2}{x}\right) \quad, \quad x \in X
$$

Is T a contraction mapping on a complete metric space? Justify your answer.
Solution. Define the function

$$
h(x, y)=\left|1-\frac{2}{x y}\right|
$$

for $x, y \geq 1$. It is easy to see that the maximum value of h over the set $[1, \infty) \times$ $[1, \infty)$ is 1 , because for any $x, y \geq 1$,

$$
|x y-2| \leq|x y|
$$

Now, let $x, y \in \mathbb{R}$. So, we have

$$
\begin{aligned}
|T(x)-T(y)| & =\frac{1}{2}\left|(x-y)+2\left(\frac{1}{x}-\frac{1}{y}\right)\right| \\
& =\frac{1}{2}\left|(x-y)-2\left(\frac{x-y}{x y}\right)\right| \\
& =\frac{1}{2}|x-y|\left|1-\frac{2}{x y}\right| \\
& \leq \frac{1}{2}|x-y|
\end{aligned}
$$

and this implies that T is indeed a contraction mapping. Now it is easy to see that $[1, \infty)$ is a complete metric space, because any Cauchy sequence will converge in this space, as any Cauchy sequence will be a subset of a compact subset of $[1, \infty)$, and hence it will be convergent. So, T is a contraction mapping on a complete metric space.
2. Show that the contraction mapping theorem need not hold in the following cases.
(1) (X, d) is not a complete metric space.
(2) (X, d) is a complete metric space, $f: X \rightarrow X$ satisfies

$$
d(f(x), f(y)) \leq r d(x, y) \quad, \quad x, y \in X
$$

where $r \geq 1$.

Date: November 2020.

Solution. For (1), let (X, d) be the space $\mathbb{R}-\{0\}$ with the usual distance. Clearly, X is not complete. Consider the map $T: X \rightarrow X$ defined by

$$
T(x)=\frac{1}{2} x
$$

Then, we have for any $x, y \in X$,

$$
|T(x)-T(y)|=\frac{1}{2}|x-y|<\frac{3}{4}|x-y|
$$

so that T is a contraction mapping. However, it is clear that T does not have any fixed point. This is the required counterexample.

For (2), let $X=\{0,1\}$ be the discrete metric space where the metric d is defined by $d(0,1)=1$. It is clear that (X, d) is a complete metric space. Define the $\operatorname{map} T: X \rightarrow X$ by $T(0)=1$ and $T(1)=0$. Then, for any $x, y \in X$ we have

$$
d(T(x), T(y)) \leq d(x, y)
$$

i.e $r=1$. It is clear that T has no fixed points, and this is the required counterexample.
3. Let $A>0, x_{0} \in \mathbb{R}$. Let $g:[0, A] \rightarrow \mathbb{R}$ be a continuous function, and let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a Lipchitz continuous function. Show that the initial value problem for the ODE

$$
\begin{aligned}
& x^{\prime}(t)=g(t)+f(x(t)) \quad, \quad t \in(0, A) \\
& x(0)=x_{0}
\end{aligned}
$$

has a unique solution.
Solution. The proof is very similar to the proof of Picard's Theorem that we have done in class.
Because f is a Lipchitz continuous function, there is some $K>0$ such that

$$
|f(x)-f(y)| \leq K|x-y|
$$

for all $x, y \in \mathbb{R}$. Now, let $\alpha>0$ be a number such that $\alpha K<1$. Also, there is some natural number $N \in \mathbb{N}$ such that $(N-1) \alpha<A \leq N \alpha$. So, we will consider the N intervals $[0, \alpha],[\alpha, 2 \alpha], \ldots,[(N-1) \alpha, A]$.

First, consider the space $\left(C[0, \alpha], \rho^{0}\right)$ where ρ^{0} is the uniform metric. We know that this is a complete metric space. Define the map $T^{0}: C[0, \alpha] \rightarrow C[0, \alpha]$ by

$$
T^{0}(y)(t):=x_{0}+\int_{0}^{t} g(s) d s+\int_{0}^{t} f(y(s)) d s \quad, \quad t \in[0, \alpha]
$$

for any $y \in C[0, \alpha]$. The fact that T^{0} is indeed a map from $C[0, \alpha]$ to itself is a consequence of the fundamental theorem of calculus, because we know that g, f and y are all continuous functions on $[0, \alpha]$. Now, we show that T^{0} is a contraction mapping on this space. Observe that for any $y, z \in C[0, \alpha]$ and $t \in[0, \alpha]$
we have

$$
\begin{aligned}
\left|T^{0}(y)(t)-T^{0}(z)(t)\right| & =\left|\int_{0}^{t} f(y(s))-f(z(s)) d s\right| \\
& \leq \int_{0}^{t}|f(y(s))-f(z(s))| d s \\
& \leq K \int_{0}^{t}|y(s)-z(s)| d s \\
& \leq K \rho^{0}(y, z) \int_{0}^{t} d s \\
& \leq K \alpha \rho^{0}(y, z)
\end{aligned}
$$

where in the last step, we used the fact that $t \leq \alpha$. Taking the supremum over $t \in[0, \alpha]$ in the RHS of the above equation, we get that

$$
\rho^{0}\left(T^{0}(y), T^{0}(z)\right) \leq K \alpha \rho^{0}(y, z)
$$

and because $K \alpha<1$, this implies that T^{0} is a contraction mapping. So, by the Contraction Mapping Theorem, there is some $y^{0} \in C[0, \alpha]$ such that $T^{0}\left(y^{0}\right)=y^{0}$, i.e

$$
y^{0}(t)=x_{0}+\int_{0}^{t} g(s) d s+\int_{0}^{t} f\left(y^{0}(s)\right) d s \quad, \quad t \in[0, \alpha]
$$

Now we will repeat the same process as above with the interval [$\alpha, 2 \alpha]$, but this time our constant will be $y^{0}(\alpha)$ (earlier the constant was x_{0}). So, consider the space $\left(C[\alpha, 2 \alpha], \rho^{1}\right)$ where ρ^{1} is the uniform metric, and we know that this space is complete. As before, define a map $T^{1}: C[\alpha, 2 \alpha] \rightarrow C[\alpha, 2 \alpha]$ by

$$
T^{1}(y)(t)=y^{0}(\alpha)+\int_{\alpha}^{t} g(s) d s+\int_{\alpha}^{t} f(y(s)) d s \quad, \quad t \in[\alpha, 2 \alpha]
$$

for any $y \in C[\alpha, 2 \alpha]$. By the same proof as above, it follows that T^{1} is a contraction mapping on this space, and hence by the Contraction Mapping Theorem, there is some $y^{1} \in C[\alpha, 2 \alpha]$ such that $T^{1}\left(y^{1}\right)=y^{1}$, i.e

$$
y^{1}(t)=y^{0}(\alpha)+\int_{\alpha}^{t} g(s) d s+\int_{\alpha}^{t} f\left(y^{1}(s)\right) d s \quad, \quad t \in[\alpha, 2 \alpha]
$$

Note that $y^{0}(\alpha)=y^{1}(\alpha)$, i.e these functions are equal on the common endpoint between the intervals $[0, \alpha]$ and $[\alpha, 2 \alpha]$. Continuing the same procedure as above for each of the N intervals, we see that there are functions $y^{0} \in C[0, \alpha], y^{1} \in$ $C[\alpha, 2 \alpha], \ldots ., y^{N-1} \in C[(N-1) \alpha, A]$ such that

$$
y^{k}((k+1) \alpha)=y^{k+1}((k+1) \alpha)
$$

for each $0 \leq k \leq N-2$ and

$$
\begin{array}{ll}
y^{0}(t)=x_{0}+\int_{0}^{t} g(s) d s+\int_{0}^{t} f\left(y^{0}(s)\right) d s \quad, \quad t \in[0, \alpha] \\
y^{1}(t)=y^{0}(\alpha)+\int_{\alpha}^{t} g(s) d s+\int_{\alpha}^{t} f\left(y^{1}(s)\right) d s & , \quad t \in[\alpha, 2 \alpha]
\end{array}
$$

$$
y^{N-2}(t)=y^{N-3}((N-2) \alpha)+\int_{(N-2) \alpha}^{t} g(s) d s+\int_{(N-2) \alpha}^{t} f\left(y^{N-2}(s)\right) d s \quad, \quad t \in[(N-2) \alpha,(N-1) \alpha]
$$

$$
y^{N-1}(t)=y^{N-2}((N-1) \alpha)+\int_{(N-1) \alpha}^{t} g(s) d s+\int_{(N-1) \alpha}^{t} f\left(y^{N-1}(s)\right) d s \quad, \quad t \in[(N-1) \alpha, A]
$$

Note that the N functions $y^{0}, y^{1}, \ldots, y^{N-1}$ agree on the common endpoints of the intervals $[0, \alpha], \ldots,[(N-1) \alpha, A]$. So, we can define a continuous function x : $[0, A] \rightarrow \mathbb{R}$ by these N functions piecewise, i.e

$$
x(t)=y^{k}(t) \quad, \quad t \in[k \alpha, \min \{A,(k+1) \alpha\}]
$$

for $0 \leq k \leq N-1$. It is clear that x is a continuous function. Moreover, by the above integral equations that the y^{k} s satisfy, it follows that

$$
x(t)=x_{0}+\int_{0}^{t} g(s) d s+\int_{0}^{t} f(x(s)) d s \quad, \quad t \in[0, A]
$$

So, it follows that

$$
x(0)=x_{0}
$$

Moreover, because g, f and x are all continuous, we can apply the fundamental theorem of calculus in the open interval $(0, A)$ to get

$$
x^{\prime}(t)=g(t)+f(x(t))
$$

for any $t \in(0, A)$. So, x is the required solution to the given initial value problem.
The uniqueness of x easily follows from the uniqueness of the functions $y^{0}, y^{1}, \ldots, y^{N-1}$ as guaranteed by the Contraction Mapping Theorem, because given the solution x, we can obtain functions y^{0}, \ldots, y^{N-1} by restricting x to the suitable subintervals. This completes the proof.

