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1. Let X = [1,0), with the usual distance. The map T is given by

1 2
T(x) = 5 <.’r+ 1) , veX
Is T"a contraction mapping on a complete metric space? Justify your answer.

Solution. Define the function

2

h =1-—

e =[1-2

for x,y > 1. It is easy to see that the maximum value of . over the set [1,0) x
[1,00) is 1, because for any =,y > 1,

|2y — 2| < |zy|
Now, let z,y € R. So, we have
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and thisimplies that T isindeed a contraction mapping. Now itis easy to see that
[1,00) is a complete metric space, because any Cauchy sequence will converge
in this space, as any Cauchy sequence will be a subset of a compact subset
of [1,00), and hence it will be convergent. So, T' is a contraction mapping on a
complete metric space. |

2. Show that the contraction mapping theorem need not hold in the following
cases.

(1) (X,d) is not a complete metric space.
(2) (X,d)is a complete metric space, f : X — X satisfies

d(f(@), f(y) <rd(x,y) , zyeX
where r > 1.
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Solution. For (1), let (X, d) be the space R— {0} with the usual distance. Clearly,
X is not complete. Consider the map 7' : X — X defined by

1
T(x)= 3%
Then, we have forany z,y € X,
1 3
T(z) = T(y)| = le =yl < ;o —yl

so that 7' is a contraction mapping. However, it is clear that 7" does not have
any fixed point. This is the required counterexample.

For (2), let X = {0, 1} be the discrete metric space where the metric d is de-
fined by d(0,1) = 1. It is clear that (X, d) is a complete metric space. Define the
map7T: X — X byT(0)=1and T'(1) = 0. Then, for any z,y € X we have

d(T'(x), T(y)) < d(z,y)

i.e r = 1. It is clear that 7" has no fixed points, and this is the required coun-
terexample. |

3. LetA > 0,29 € R. Letg : [0, A] - Rbeacontinuous function,andlet f : R — R
be a Lipchitz continuous function. Show that the initial value problem for the
ODE

'(t) =g(t) + f(z(t)) , te(0,A)
x(0) = g

has a unique solution.

Solution. The proof is very similar to the proof of Picard’s Theorem that we
have done in class.
Because f is a Lipchitz continuous function, there is some K > 0 such that

[f(z) = f(y)] < K|z —y]

for all x,y € R. Now, let « > 0 be a number such that a X' < 1. Also, there is
some natural number N € N such that (N —1)a < A < Na. So, we will consider
the N intervals [0, o], [o, 2a], ..., [(N — 1)a, A].

First, consider the space (C|0, o], p°) where o is the uniform metric. We know
that this is a complete metric space. Define the map 7° : C[0, o] — C[0, a] by

TO(y)(t) = 20 + / o(s)ds + / f(s)ds . teo,a]

for any y € C[0,a]. The fact that 7 is indeed a map from C[0, o] to itself is a
consequence of the fundamental theorem of calculus, because we know that
g, f and y are all continuous functions on [0, a]. Now, we show that 7" is a con-
traction mapping on this space. Observe that for any y, z € C[0,a] and t € [0, o]
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we have

\W@W%JW@@%—AJ@@D—ﬂdw%
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t
SK/JO(%Z)/ ds
0
< Kap’(y, 2)

where in the last step, we used the fact that ¢ < a. Taking the supremum over
t € [0, «] in the RHS of the above equation, we get that

P(T°(y), T°(z)) < Kap®(y, 2)

and because Ka < 1, this implies that 7° is a contraction mapping. So, by the
Contraction Mapping Theorem, there is some y° € C[0, o] such that T°(y°) = ¢°,
i.e

w@=m+42@w+[ﬂf@ws,tGMM

Now we will repeat the same process as above with the interval [«, 2a], but this
time our constant will be y°(«) (earlier the constant was z;). So, consider the
space (Cla, 2a], p') where p! is the uniform metric, and we know that this space
is complete. As before, define a map 7" : Cla, 2a] — Cla, 2a] by

W@W%w%ﬂ+/g@w+/f@@M87tehﬁﬂ

for any y € C|a, 2a]. By the same proof as above, it follows that 7" is a contrac-
tion mapping on this space, and hence by the Contraction Mapping Theorem,
there is some y' € C[a,2a] such that T (y!) = 4!, i.e

s =o'+ [ go)ds+ [ 1 )ds .t fa2a]

Note that y°(a) = y'(«a), i.e these functions are equal on the common endpoint
between the intervals [0, o] and [«, 2a]. Continuing the same procedure as above
for each of the NV intervals, we see that there are functions 3° € C[0,q], y' €
Cla, 2a],e, yV 71 € C[(N — 1)a, A] such that

yE((k + Da) =y ((k + 1)a)
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foreach0 < k< N —-2and

w@—%+AE@m+Avw@m5,temm
M@-f@+/g@®+/f@@ﬂs,tewm]

w*@=¢“%N—m@+/ mwu+[ F@2s)ds . te (N —2)a, (N - 1)a)

(N-2)« N-2)a

t t

PO = W D)+ [ gdss [ feY s Lt (V- Dad
(N-Da (N-1)a

Note that the NV functions 3°, 4!, ...,4V ! agree on the common endpoints of the

intervals [0, ], ..., [(N — 1)a, A]. So, we can define a continuous function z :

[0, A] — R by these N functions piecewise, i.e

z(t) =y*(t) , te[ka,min{A, (k+1)a}]

for0 < k < N — 1. Itis clear that = is a continuous function. Moreover, by the
above integral equations that the y*s satisfy, it follows that

x(t) :xo—i—/o g(s)ds+/0 flz(s))ds , te]0,A]

So, it follows that

z(0) = xg
Moreover, because g, f and = are all continuous, we can apply the fundamental
theorem of calculus in the open interval (0, A) to get

'(t) = g(t) + f(x(t))
foranyt € (0, A). So, x is the required solution to the given initial value problem.
The uniqueness of z easily follows from the uniqueness of the functions 3%, y*, ..., yV !
as guaranteed by the Contraction Mapping Theorem, because given the solu-
tion z, we can obtain functions 3°, ..., yV~! by restricting x to the suitable sub-
intervals. This completes the proof. |
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