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These are my course notes for ANALYSIS-3. Throughout the document, the
symbol■will stand for QED. Any statement in red was left unfinished, and they
make good exercises to work on.
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1. Metric Spaces

In this section, we will revise some properties of metric spaces, and introduce
some new ones. This is not an introduction to these.

Date: August 2020.
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First, some notation. Consider Rn. The standard Euclidean distance will be de-
noted by d2, and the associated norm is || · ||2. d1 will denote the distance whose
associated norm is || · ||1, i.e

d1(xxx,yyy) =
n∑

i=1

|xi − yi|

where xxx = (x1, ..., xn) and yyy = (y1, ..., yn). Finally, d∞ will denote the distance
whose associated norm is || · ||∞. Given a metric space (X, d), we will be consid-
ering the topology induced by the metric d, i.e the topology which has its basis
all the open balls centered at points of X .
We now look at some examples of metric spaces.

Example 1.1. Let X be a non-empty set. The discrete metric is given by

d(x, y) =

{
1 , if x 6= y

0 , otherwise

Observe that in this case, every set is open: for instance, take the open ball
around a point with radius δ, where δ < 1. This leads to the discrete topology
on X .

Example1.2. LetC[0, 1]denote the space of all real valued continuous functions
on the interval [0, 1]. Define

d(f, g) = sup
x∈[0,1]

|f(x)− g(x)|

It is straightforward to check that this is indeed a metric, and is called the uni-
form metric.

Example 1.3. TakeX = C[0, 1]. Define

ρ(f, g) =

∫ 1

0

|f(x)− g(x)|dx

This is a metric, because of the continuity assumption, i.e d(f, g) = 0 implies
that f = g. If continuity were removed, it wouldn’t be a metric anymore. For
instance, one could take two functions non-zero at only finitely many points.

Next, we introduce the concept of a basis (or base). This is just like the notion
of a basis in point-set topology.

Definition 1.1. Let X be a metric space, and let {Bα} be a collection of open
subsets of X . Suppose, for any open set G in X and every x ∈ G, there is an
α for which x ∈ Bα ⊂ G. Then, the collection {Bα} is said to be a base for X .
Members of a base are called basic open sets.

The following proposition is simple and provides an equivalent definition of a
base.

Proposition 1.1. A collection {Bα} of open subsets of X is a base if and only if
every open set in X can be written as a union of members of this collection.

Definition 1.2. Let D ⊂ X . D is said to be dense in X if D = X . X is said to be
separable if it has a countable dense subset.

Theorem 1.2. Let X be a metric space. Then the following are equivalent.
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(1) X is separable.
(2) X has a countable base.
(3) Every open cover of X has a countable subcover.

Proof. (1) =⇒ (2). Suppose X is separable, and let D be a countable dense
subset. Let G be the family of all open balls of the form

G := {B(x, r)|x ∈ D, r ∈ Q+}
and G is clearly countable. Let O be any open subset of X , and let p ∈ O. Let
B(p, δ) be such thatB(p, δ) ⊂ O (possible becauseO is open). Now, either p ∈ D,
or there is some xp ∈ D and some δ′ ∈ Q+ such that p ∈ B(xp, δ

′) ⊂ B(p, δ) ⊂ O.
This shows that G is indeed a countable base for X .
(2) =⇒ (3). (To be completed) ■

1.1. ContinuousFunctions. Wealready know thedefinitionof continuous func-
tions in metric spaces. In fact, continuous functions might as well be defined
purely in terms of open sets. This we state as a theorem, which is straightfor-
ward to prove.

Theorem 1.3. Let (X, d) and (Y, d′) be metric spaces, and let f : X → Y be a
map. Then the following are equivalent.

(1) f is continuous.
(2) f−1(V ) is open in X for every open set V in Y .
(3) f−1(V ) is closed in X for every closed set V in Y .

And, ofcourse, continuity might as well be formulated using sequences.

Example 1.4. Let (X, d) be a metric space. Let A ⊂ X fixed non-empty set. For
any x ∈ X define

d(x,A) = inf{d(x, y)|y ∈ A}
d(x,A) is called the distance from x toA. We show that distance is a continuous
function.
For any z ∈ A and y ∈ X , we have

d(x, z) ≤ d(x, y) + d(y, z)

and taking the infimum of both sides over all z ∈ A, we see that
d(x,A) ≤ d(x, y) + d(y, A)

implying that
d(x,A)− d(y, A) ≤ d(x, y)

We can reverse the roles of x, y, and hence we get
|d(x,A)− d(y, A)| ≤ d(x, y)

so that this function is continuous. Infact, we can see that this is uniformly
continuous.

Theorem1.4. Let E,F be disjoint closed subsets ofX . Then the following hold.
(1) There is a continuous function f : X → [0, 1] such that E = f−1({0}) and

F = f−1s({1}).
(2) There are disjoint open subsets U, V such that E ⊂ U and F ⊂ V .
(3) If x /∈ F , then there are disjoint open subsets U, V such that x ∈ U and

F ⊂ V .
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Proof. (1) Consider the function f : X → [0, 1] defined by

f(x) =
d(x,E)

d(x,E) + d(x, F )

The continuity of the function follows from the fact that the distance function
is continuous. Moreover, since E and F are closed, we have that d(x,Q) =
0 ⇐⇒ x ∈ Q where Q ∈ {E,F}. This shows that f is our desired function, i.e
f−1({0}) = E and f−1({1}) = F .
(2) Take U = f−1

([
1, 1

3

))
and take V = f−1

((
2
3
, 1
])
noting that the range of f

is the space [0, 1]. (3) Take E = {x} in this case, and apply (2). This shows that
metric spaces are Hausdorff. ■
1.2. Compactness. Here we prove some simple statements regarding com-
pactness. Most of these will be familiar.
Proposition 1.5. Let X be a metric space.

(1) Every compact subset of X is closed and bounded.
(2) Any closed subset of a compact set is compact.

Proof. (1) LetK be a compact subset ofX . Fix a point x0 ∈ X . Consider the open
cover ofK given by the sets B(x0, n) for n ∈ N. SinceK is compact, this admits
a finite subcover, and henceK is bounded.
(2) is very easy to prove. ■

Definition 1.3. Let {Aα} be a collection of non-empty subsets ofX . This collec-
tion is said to have the finite intersection property if any finite sub-collection of
this collection has non-empty intersection.
Theorem 1.6. A metric space X is compact if and only if every collection of
closed subsets of X having the finite intersection property has non-empty in-
tersection.
Proof. To be completed ■
Definition1.4. LetX beametric space. X is said tohave theBolzano-Weierstrass
property if every sequence inX has a convergent subsequence. This property
is also referred to as sequential compactness.
Proposition 1.7. X has the Bolzano-Weierstrass property iff. every infinite set
in X has a limit point.
Proof. To be completed. ■
Now, we see the equivalence between compactness and sequential compact-
ness in metric spaces.
Theorem1.8. Ametric spaceX is compact if and only if every infinite sequence
in X has a convergent subsequence.
Proof. To be completed ■
Theorem 1.9. Let X , Y be metric spaces, and let f : X → Y be a continuous
map. If X is compact, then f(X) is a compact subset of Y .
Proof. To be completed ■
Theorem 1.10. Let X,Y be metric spaces, and let f : X → Y be a continuous
map. If X is compact, then f is uniformly continuous on X .
Proof. To be completed ■
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1.3. Completeness. Completeness in metric spaces is a familiar notion. For
instance, R is complete.
Definition 1.5. A metric space X is said to be complete if every Cauchy se-
quence in X is convergent.
Lemma 1.11. Let X be a complete metric space, and let E ⊂ X be non-empty.
Then, E is complete if and only if E is a closed subset of X .
Proof. First, suppose E is complete, and let x0 ∈ X be a limit point of E. So,
there is a sequence {xn} of points in E such that xn → x0. Since E is com-
plete, it follows that x0 ∈ E, and hence E is closed. Conversely, suppose E is
closed, and take any Cauchy sequence inE. SinceX is complete, this sequence
is convergent, and since E is closed, the limit must be in E. This completes the
proof. ■
We will see some non-trivial examples of complete metric spaces in the next
section.

1.4. Uniform Convergence. Here, we will consider only functions taking val-
ues in R.
Definition 1.6. Let S be any set, and let fn : S → R be a sequence of functions.
We see that this sequence converges uniformly to some f : S → R if given any
ϵ > 0, there is some N ∈ N such that

|fn(s)− f(s)| < ϵ

for all n ≥ N and for all s ∈ S, i.e the N does not depend on s.
Proposition 1.12. Suppose S is a metric space, and suppose fn → f uniformly,
where fn, f : S → R. Additionally, suppose each fn is continuous at some s0 ∈ S.
Then, f is also continuous at s0. This shows that uniform limits of continuous
functions are continuous.
Definition 1.7. Let S be any set. Define

B(S) := {f : S → R|f is bounded}
and define

ρ(f, g) = sup
s∈S

{|f(s)− g(s)|}

for f, g ∈ B(S). If in addition S is a metric space, we define
C(S) := {f ∈ B(S)|f is continuous}

which is a subset of B(S).
Proposition 1.13. Let S be any set.

(1) ρ as defined above is a metric on B(S).
(2) fn → f uniformly over S if and only if ρ(fn, f) → 0 as n → ∞. Hence,

uniform convergence of functions is the same as convergence in this
space.

(3) If in addition S is a metric space, C(S) is a closed subset of B(S).
Proof. The first two assertions are immediate. (3) is true because uniform lim-
its of continuous functiosn are continuous. ■
Theorem 1.14. Let S be a non-empty set.
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(1) The space (B(S), ρ) is complete.
(2) If S is a metric space, then (C(S), ρ) is also a complete metric space.

Proof. (1) Suppose {fn} is a Cauchy sequence in B(S). This means that given
any ϵ > 0, there is some N ∈ N such that

ρ(fn, fm) < ϵ

for allm,n ≥ N , which means
|fn(s)− fm(s)| < ϵ

for all n,m ≥ N and s ∈ S. For a fixed s, this defines a Cauchy sequence in R,
which is convergent. So define

f(s) = lim
n→∞

fn(s)

Now, let ϵ > 0 be given. So, there is some N ∈ N such that
|fn(s)− fm(s)| < ϵ

for all s ∈ S andm,n ≥ N . Lettingm→ ∞, we see that
|fn(s)− f(s)| < ϵ

for all n ≥ N and s ∈ S, implying that fn → f uniformly over S, and hence {fn}
has limit f in B(S). The fact that f is bounded is immediate.
(2) This is true because uniform limits of continuous functions are continu-

ous. This completes the proof. ■
Remark 1.14.1. The above two spaces give us some interesting examples of
complete spaces. For instance, putting S = [0, 1] shows thatC[0, 1] is a complete
space.

1.5. TotalBoundedness. Wewill provideacharacterisationof compact spaces
using this.

Definition 1.8. Let X be a metric space. X is said to be totally bounded if for
every ϵ > 0, there are finitely many points x1, ..., xn ∈ X such that

X ⊂ B(x1, ϵ) ∪ ... ∪B(xn, ϵ)

Example 1.5. It is easy to see that any totally bounded space is bounded. How-
ever, the converse is not true in general. For instance, let X be any infinite set
equippedwith the discretemetric. ThenX is a bounded spacebut it is not totally
bounded.

Theorem 1.15. A metric space X is compact if and only if it is totally bounded
and complete.

Proof. Weknow that compact sets are complete. Any compact set is also totally
bounded by considering the open cover⋃

x∈X

B(x, ϵ)

So, only the converse needs to be shown. We also know that for metric spaces,
compactness is equivalent to the Bolzano-Weierstrass property. So, we will
show that every infinite sequence in X has a convergent subsequence.
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The idea is as follows: given a sequence inX , we will try to extract a Cauchy-
subsequence, and since the space X is complete, this Cauchy sequence will
have a limit, and that will complete the proof.
So, let {xn} be a sequence inX . Now,X can be covered by finitely many open

balls of radius 1. So, there is atleast one ball which contains a subsequence
{xn1,k

}k∈N of {xn}. Let this ball be B(c1, 1)where c1 ∈ X . Next, finitely many open

balls of radius 1

2
cover X , and hence there is atleast one ball which contains a

subsequence {xn2,k
}k∈N of {xn1,k

}k∈N. Let this ball be B(c2, 1/2). Continuing this

way, for every i ∈ N, there is some open ball of radius 1

i+ 1
containing a sub-

sequence {xni+1,k
}k∈N of {xni,k

}k∈N, and let this ball be B(ci+1, 1/(i+ 1)). Now, we
form a sequence {yn} as

yi = xni,i

and it is not hard to see that {yn} is a subsequence of {xn} (details can be easily
filled in). Moreover, for anym ∈ N, we see that

yn ∈ B(cm, 1/m)

for all n ≥ m, i.e {yn} is a Cauchy sequence. So, {yn} is convergent, and hence
{xn} has a convergent subsequence, completing the proof. ■

Remark1.15.1. The proof technique we used above is a variant of the Cantor’s
diagonal argument, which is used in a lot of proofs in different fields of mathe-
matics.

1.6. ContinuousExtensions. In this section,wewill seewhencontinuousmaps
on subspaces can be extended to the whole space. A natural setting to investi-
gate this question is on dense sets.

Lemma 1.16. Let (X, d) and (Y, ρ) be metric spaces, and let f : X → Y be uni-
formly continuous. If {xn} is a Cauchy sequence inX , then {f(xn)} is a Cauchy
sequence in Y .

Proof. Let ϵ > 0 be given. So, there is some δ > 0 such that

d(x, y) < δ =⇒ ρ(f(x), f(y)) < ϵ

for all x, y ∈ X . Also, there is some N ∈ N such that

d(xn, xm) < δ

for all n,m ≥ N . So, it follows that for n,m ≥ N ,

ρ(f(xn), f(xm)) < ϵ

and hence {f(xn)} is a Cauchy sequence in Y . ■

Theorem 1.17. Let (X, d) and (Y, ρ) be metric spaces such that Y is complete.
LetD be a dense subset ofX , and let f : D → Y be a uniformly continuous func-
tion. Then, there is a unique extension of f onX , i.e there is a unique continuous
function F such that F |D = f . Moreover, F is uniformly continuous.
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Before proving this theorem, by virtue of the following example, we see why
uniform continuity is required.

Example 1.6. Let X = [0, 1], and let D = (0, 1). Let Y = R, so that Y is complete.
Consider the function

f(x) =
1

x
on (0, 1). Clearly, this function cannot be extended to [0, 1]. The reason is simple:
f is not uniformly continuous.

Proof. (of Theorem 1.17). Let x ∈ X \D, and let {xn} be a sequence of points in
D converging to x (true because D is dense). So, {xn} is a Cauchy sequence in
D, and by Lemma 1.16, we see that {f(xn)} is a Cauchy sequence in Y . Since Y
is complete, this sequence is convergent, and define

f(x) = lim
n→∞

f(xn)

First, we need to verify that this is well defined, i.e the limit is the same regard-
less of the sequence chosen. So, let {un} and {wn} be two sequences inD con-
verging to x ∈ X \D. Let ϵ > 0 be given. So, there is some δ > 0 such that

d(x, y) < δ =⇒ ρ(f(x), f(y)) < ϵ

for all x, y ∈ D. Also, there is some N ∈ N such that
d(un, wn) < δ

for all n ≥ N . This shows that
ρ(f(un), f(wn)) < ϵ

for all n ≥ N , hence implying that f is well defined. So, from here on, we denote
this extension by F .
We now show the uniform continuity of F . Let ϵ > 0 be given, and let δ > 0 be

such that
ρ(F (x), F (y)) < ϵ/3

for all x, y ∈ D such that d(x, y) < δ. Now, let x0, y0 be arbitrary points ofX such
that

d(x0, y0) < δ

and let {xn}, {yn} be sequences inD converging to x0 and y0 respectively. So, by
our definition, we have

F (x0) = lim
n→∞

F (xn)

F (y0) = lim
n→∞

F (yn)

Choose N ∈ N such that
ρ(F (x0), F (xN)) < ϵ/3

ρ(F (y0), F (yN)) < ϵ/3

and that
d(xN , yN) < δ

which is possible because d(x0, y0) < δ. Finally, we have
ρ(F (x0), F (y0)) ≤ ρ(F (x0), F (xN)) + ρ(F (xN), F (yN)) + ρ(F (yN), F (y0)) < ϵ
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and hence F is uniformly continuous over X . Uniqueness of F follows easily
because D is dense in X . ■

1.7. Connected Spaces. In this subsection, we will be considering connected
metric spaces. However, this notion also extends to general topological spaces.

Definition1.9. Ametric spaceX is said to be connected if it cannot be awritten
as a disjoint union of two non-empty open sets.

The following proposition is easy to verify.

Proposition 1.18. Let X be a metric space. Then the following hold.
(1) X is connected if and only if it cannot be written as a disjoint union of

two non-empty closed sets.
(2) X is connected if and only if the only subsets of X which are both open

and closed are ϕ and X .

The following proposition shows that the structure of connected sets in R is
relatively simple.

Proposition 1.19. The only connected subsets of R (under the usual metric)
are the intervals (open, closed and half-open).

Proof. To be completed. ■

Theorem 1.20. Let X,Y be metric spaces, and let f : X → Y be continuous. If
X is connected, then f(X) is also connected.

Proof. To be completed. ■

Definition 1.10. Let X be a metric space. A continuous map f : [0, 1] → X is
called a path in X . X is said to be path-connected, if any two points of X are
connected by a path.

Proposition 1.21. A path connected metric space is connected.

Proof. To be completed. ■

Proposition 1.22. LetX be a metric space, and let E be a connected subspace
of X . Then, E is also connected.

Proof. To be completed. ■

1.8. A discussion on the Cantor Set. In this section, we will study some prop-
erties of the Cantor Set.

Definition 1.11. A subset A of a metric space X is said to be nowhere dense if
its closure has empty interior, i.e

Int(A) = ϕ

The terminology used can be explained via the following proposition.

Proposition 1.23. A is a nowhere dense subset of X if and only if (A)c is an
open dense subset of X . So in some sense, A is rare in X .
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Proof. First, suppose A is a nowhere dense subset of X . Hence, Int(A) = ϕ.
Now, take any x ∈ X , and any δ > 0. So, B(x, δ) ⊂ A is not possible, and hence
B(x, δ) contains a point of (A)c, proving that (A)c is an open dense subset of X .
Conversely, suppose (A)c is an open dense subset of X . So, for every x ∈ X

and every δ > 0, B(x, δ) ⊂ A is not possible, and hence Int(A) = ϕ, proving that
A is nowhere dense. ■
Definition1.12. Let F1 be obtained from [0, 1] by removing the interval (1/3, 2/3),
i.e F1 = [0, 1/3] ∪ [2/3, 1] . Similarly, let F2 be obtained by further deleting middle
thirds. And inductively, we define Fn. The Cantor Set is the intersection

F =
∞⋂
i=1

Fi

Proposition 1.24. The Cantor Set F is a non-empty compact subset of [0, 1].

Proof. Observe that the collection {Fn}has thefinite intersectionproperty. More-
over, each Fn is closed. Since [0, 1] is compact, it follows by Theorem 1.6 that F
is non-empty, and being a closed subset of [0, 1], it is compact. ■
Proposition 1.25. The Cantor Set is an uncountable nowhere dense set.
Proof. To be completed. ■

1.9. Baire’s Category Theorem. In this section, we shall prove Baire’s Theo-
rem.

Theorem 1.26. Let X be a complete metric space. Then the following hold.
(1) The intersection of countably many open dense sets is non-empty.
(2) X is not the union of countably many closed nowhere dense sets.

Proof. By Proposition 1.40, it is easily seen that (1) and (2) are equivalent by
taking complements. So, we will just prove (1).
Toprove (1), let {Un}n∈N beacollectionof opendensesubsets ofX . LetB(x1, r1)

be an open ball in U1 (possible as U1 6= ϕ), where r1 < 1. Since U2 is dense,
U2 ∩ B(x1, r1) 6= ϕ, and moreover, U2 ∩ B(x1, r1) is open. So, take an open ball
B(x2, r2) ⊂ U2 ∩B(x1, r1) such that r2 <

1

2
and that

B(x2, r2) ⊂ U2 ∩B(x1, r1)

which is clearly possible. Observe that

B(x2, r2) ⊂ B(x1, r1)

and that
B(x2, r2) ⊂ U1 ∩ U2

Suppose we have chosen open balls B(x1, r1), ..., B(xn, rn) such that

B(xn, rn) ⊂ B(xn−1, rn−1)

B(xn−1, rn−1) ⊂ B(xn−2, rn−2)

...

B(x2, r2) ⊂ B(x1, r1)
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with B(xn, rn) ⊂ U1 ∩ U2 ∩ ... ∩ Un and rn <
1

n
. Consider Un+1, which is open

and dense, and hence Un+1 ∩ B(xn, rn) is a non-empty open set, and hence we
can choose a ball B(xn+1, rn+1) such that B(xn+1, rn+1) ⊂ Un+1 ∩ B(xn, rn) with
rn+1 <

1

n+ 1
. Clearly, it follows that

B(xn+1, rn+1) ⊂ B(xn, rn)

and
B(xn+1, rn+1) ⊂ U1 ∩ ... ∩ Un+1

So inductively, such a family {B(xn, rn)}n∈N exists.
Observe that for a fixed N ∈ N, xn, xm ∈ B(xN , rN) for all n,m ≥ N , and hence

{xn} is a Cauchy sequence inX . SinceX is complete, this sequence converges
to some point, say x ∈ X . Let n > 1 be fixed. So, we have that

xm ∈ B(xn, rn)

for allm ≥ n, and this means that

d(xn, xm) <
1

n

for allm ≥ n. Lettingm→ ∞, we see that

d(xn, x) ≤
1

n

because the distance map is continuous, and this means that
x ∈ B(xn, rn)

for all n ≥ 1. But this means that x ∈ B(xn, rn) for all n ≥ 1, and this shows that

x ∈
∞⋂
n=1

Un

completing the proof. ■
Along the lines of the above proof, we can prove a stronger result.

Theorem1.27 (Baire’s Category Theorem). LetX be a complete metric space.
Then the following hold and are equivalent.

(1) The intersection of countably many open dense sets in X is dense.
(2) Any non-empty open subset of X is never contained in the countable

union of closed nowhere dense sets.

Proof. Again, by Proposition 1.40, it is clear that (1) and (2) are equivalent. So,
we will only prove (1). Let z ∈ X be any point, and let B(z, δ) be any ball, where
δ > 0. Since U1 is dense and open,B(z, δ)∩U1 is a non-empty open set. So, there
is some ball B(x1, r1) such that

B(x1, r1) ⊂ B(z, δ) ∩ U1

Now proceed as in Theorem 1.26. So, we get a point x ∈ B(x1, r1) such that

x ∈
∞⋂
n=1

Un

and clearly x ∈ B(z, δ), proving that the infinite intersection is dense in X . ■
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Corollary 1.27.1. Q is not the intersection of countably many open sets in R.
Proof. If q ∈ Q, then note that R \ {q} is an open dense subset of R. Now, for the
sake of contradiction, suppose

Q =
∞⋂
i=1

Un

for open sets inR. Observe that each Un is dense inR (asQ is). This implies that
∞⋂
i=1

Un ∩
⋂
q∈Q

R \ {q} = ϕ

which contradicts Baire’s Theorem 1.45. ■
Theorem1.28. R cannot be written as a disjoint union of atleast two countably
many closed non-empty sets.
Proof. To be completed. ■
Definition 1.13. A subset E of a space X is said to be of the first category if it
is contained in some countable union of closed nowhere dense sets.
The following proposition is clear by Baire’s Theorem 1.45.
Proposition 1.29. Let X be a complete metric space. Then, no open subset of
X is of the first category.
1.10. Applications of BCT. First, we define notion of the oscillation of a func-
tion at a point, which intuitively measures to what extent a function is continu-
ous.
Definition 1.14. Let U be a metric space, and let g : U → R be a function. For
any x ∈ U , define

oscg(x) = o(g, x) = lim
δ→0

sup{|g(y)− g(x)| : y ∈ B(x, δ)}

Remark 1.29.1. This is not the usual definition of oscillation (see the first ex-
ample given below). Usually, it is defined as the quantity

lim
δ→0

sup{|g(t)− g(s)| : t, s ∈ B(x, δ)}

Proposition 1.30. Let g : U → R be a function as above, and let x ∈ U . Then, g
is continuous at x if and only if o(g, x) = 0.
Proof. This follows by the definition of oscillation at a point. ■
Example 1.7. In this example, we will show that the set

{x : o(g, x) ≥ r}
is not necessarily closed (and this is not the case with the usual definition of
oscillation). Consider the function g : R → R defined as

g(x) =


0 , x /∈ Q
1 , x ∈ Q, x 6= 0

1/2 , x = 0

Then, it is easily seen that o(g, x) = 1 for any x 6= 0, and that o(g, 0) = 1/2, which
proves the claim by taking r = 1.
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Lemma1.31. Let U be a metric space, and let g : U → R be a function. Then for
ϵ > 0,

A = {x ∈ U : o(g, x) ≥ 2ϵ} ⊂ {x ∈ U : o(g, x) ≥ ϵ/2} = B

Proof. If x0 ∈ A, then it is clear that x0 ∈ B. Next, suppose x0 is a limit point of
A. For the sake of contradiction, suppose

o(g, x0) < ϵ/2

So, there is some δ > 0 such that for all y ∈ B(x0, δ), we have
|f(y)− f(x0)| < ϵ/2

Now, let x ∈ A such that x ∈ B(x0, δ). Now, choose some δ′ > 0 such that
B(x, δ′) ⊂ B(x0, δ)

Next, observe that for any y ∈ B(x, δ′), we have
|f(y)− f(x)| ≤ |f(y)− f(x0)|+ |f(x)− f(x0)| < ϵ

which contradicts the fact that x ∈ A. So, it must be that o(g, x0) ≥ ϵ/2, and this
shows that A ⊂ B, completing the proof. ■
Theorem 1.32. Let X be a complete space, and let U ⊂ X be an open subset
of X . Suppose fn : U → R is a sequence of real valued functions on U , and
suppose fn → f pointwise. Then, the set of discontinuities of f is of the first
category.

Proof. To be completed. ■
1.11. Towards Arzela-Ascoli. Let S be a compact metric space. By Theorem
1.14, we know that the space (C(S), ρ) is complete, where ρ is the uniformmet-
ric. For this section, our goal will be to characterize compact subspaces of
(C(S), ρ).

Definition 1.15. Let E be a subset of C(S).
(1) Let x ∈ S be fixed. We say that E is equicontinuous at x ∈ S if for each

ϵ > 0, there is a δ > 0 such that
|f(x)− f(y)| < ϵ

for all y ∈ B(x, δ) and for all f ∈ E. So, intuitively, the family of functions
in E are continuous at x where the number δ works for all members of
the family.

(2) The set E is said to be uniformly equicontinuous if for each ϵ > 0, there
is some δ > 0 such that

|f(x)− f(y)| < ϵ

for all x, y ∈ S such that d(x, y) < δ and for all f ∈ E.

Remark 1.32.1. The best way to remember this notion is as follows. When we
say a function is uniformly continuous, we can choose a δ that works for all
points in the domain. When we say a family of functions is equicontinuous,
we can find a δ that works for all the functions in the family. Finally, uniform
equicontinuity is the combination of these two notions, i.e we can find a δ that
works for all points in the domain and for all functions in the family.

Definition 1.16. As above, let E be a subset of C(S).
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(1) The setE is said to be pointwise-bounded if for each x ∈ S, there is some
Mx such that

|f(x)| ≤Mx

for all f ∈ E.
(2) The set E is said to be uniformly bounded if there is someM such that

|f(x)| ≤M

for all x ∈ S and f ∈ E, i.e the numberMx is independent of x.

The idea of uniform boundedness translates to boundedness in the space C(S)
as we see below.

Proposition 1.33. Let E ⊆ C(S). Then, E is uniformly bounded if and only if E
is a bounded subset of (C(S), ρ).

Proof. First, suppose E is uniformly bounded. Then, there is some constant
M ≥ 0 such that

|f(x)| ≤M

for all f ∈ E and x ∈ S. Let 0 : S → R be the zero function, which is in C(S).
Moreover, we have

ρ(0, f) = sup
x∈S

|f(x)| ≤M

for each f ∈ E, and hence E ⊂ B(0,M +1), implying that E is a bounded subset
of C(S). Conversely, suppose E is a bounded subset of C(S). So, there is some
element f ′ ∈ C(S) and someM > 0 such that

ρ(f ′, f) = sup
x∈S

|f ′(x)− f(x)| < M

for all f ∈ E. Since f ′ is continuous and S is compact, let N > 0 be such that
|f ′(x)| ≤ N for all x ∈ S. So for all f ∈ E and x ∈ S, we have

|f ′(x)− f(x)| < M

and hence
|f(x)| < |f ′(x)|+M ≤ N +M

implying that E is uniformly bounded. ■

1.12. Arzela-Ascoli Theorem. First, let me describe the idea behind this theo-
rem. As before, assume S is a compact metric space, and consider the space
(C(S), ρ). As in basic compactness arguments, we know that any bounded se-
quence in Rn has a convergent subsequence. We try to ask a similar ques-
tion in C(S); given any bounded sequence (which in this case, we use the no-
tion of pointwise/uniform boundedness), is there a convergent subsequence?
Recall that convergence in (C(S), ρ) is equivalent to uniform convergence of a
sequence of functions. The Arzela-Ascoli Theorem will answer this question
precisely.
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First, we mention a fairly simple lemma, which has nothing to do with the above
discussion.
Lemma 1.34. Let S be a compact space, and let {fn} be a pointwise bounded
sequence in (C(S), ρ). Let E be a countable subset of S. Then, there is a sub-
sequence of {fnk

} of {fn} such that {fnk
(x)} is a convergent sequence (in R) for

every x ∈ E.
Proof. As we shall see, this is just another form of the Cantor’s Diagonal argu-
ment. Let E be a countable subset of S, say

E = {x1, x2, x3, ....}
Consider the sequence {fn(x1)}n∈N, which by our hypothesis, is a bounded se-
quence in R. So, this has a convergent subsequence, say {f1,k(x1)}k∈N is a con-
vergent subsequence inR. Similarly, consider the sequence {f1,k(x2)}k∈N, which
again is a bounded sequence in R. So, there is a convergent subsequence of
this, say {f2,k(x2)}k∈N is a convergent subsequence. Inductively, we can find
a convergent subsequence {fn,k(xn)}k∈N of {fn−1,k(xn)}. Writing this in tabular
form, we have the following.

x1 : f1,1(x1) , f1,2(x1) , f1,3(x1) , ....

x2 : f2,1(x2) , f2,2(x2) , f2,3(x2) , ....

...

So, consider the subsequence {fn,n}n∈N of our original sequence {fn}. It is clear
that {fn,n(xk)}n∈N converges for every k ∈ N. This completes the proof. ■
Theorem1.35 (Arzela-Ascoli). Let S be a compactmetric space, and let {fn} be
asequenceof real functionsonS that is equicontinuousandpointwisebounded
at each point of S. Then the following hold.

(1) The setE = {fn}n∈N is uniformly equicontinuous and uniformly bounded
on S.

(2) {fn} has a uniformly convergent subsequence. In simple words, {fn}
has a convergent subsequence in the metric space (C(S), ρ).

Proof. (1) We first show that E is uniformly bounded. Observe that since
S is compact, each fn is bounded and uniformly continuous on S, and
attains its bound. So, for each n, let xn ∈ S such that |fn(xn)| = Mn,
whereMn is the upper bound of fn over S. Let

M = sup
n∈N

Mn

and we want to show thatM < ∞. Without loss of generality, suppose
Mn → M as n → ∞ (otherwise we work with a subsequence ofMn con-
verging toM ). Also, consider the sequence {xn} in S. Since S is compact,
this sequence has a convergent subsequence in S, and again without
loss of generality suppose xn → x0 for some x0 ∈ S. Since {fn} is point-
wise bounded, there is someM0 such that

|fn(x0)| ≤M0

for all n ∈ N. Moreover, by the equicontinuity of {fn} at x0, there is some
δ > 0 such that for all y ∈ B(x0, δ),

|fn(y)− fn(x0)| < 1
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and this means that
|fn(y)| < |fn(x0)|+ 1 ≤M0 + 1

for all y ∈ B(x0, δ) and all n ∈ N. Finally, choose N ∈ N such that
d(xn, x0) < δ for all n ≥ N . In that case, we see that

|fn(xn)| =Mn ≤M0 + 1

for all n ≥ N , and hence M < ∞. This shows that {fn} is uniformly
bounded over S.
Next, we show that E is uniformly equicontinuous on S. The proof will

be very similar to that of the fact that a continuous function on a compact
set is uniformly continuous. Let x ∈ S. Since {fn} is equicontinuous at x,
there is some δx > 0 such that for all y ∈ B(x, δx) and all n ∈ N, we have

|fn(x)− fn(y)| < ϵ/2

given any ϵ > 0. Consider all balls of the form B(x, δx/2), which form an
open cover of S. Since S is compact, this cover admits a finite subcover,
say

S = B(x1, δ1/2) ∪ ... ∪B(xn, δn/2)

where δi = δxi
for each i. Put

δ = min{δ1/2, ..., δn/2}
Now, suppose x, y ∈ S such that d(x, y) < δ. Now, x ∈ B(xi, δi/2) for some
i. Clearly, in that case, y ∈ B(xi, δi). So, for any n ∈ N, we have

|fn(x)− fn(y)| ≤ |fn(x)− fn(xi)|+ |fn(xi)− fn(y)| < ϵ

which shows that E is uniformly equicontinuous over S. This completes
the proof of (1).

(2) Since S is compact, it is separable by Theorem 1.2. So, letD be a count-
able dense subset of S, say

D = {x1, x2, x3, ...}
By Lemma 1.34, there is a subsequence of {fnk

} that converges at every
point of D. Let this subsequence be {gk}. We will show that {gk} is the
required subsequence by showing that {gk} is uniformly Cauchy, which
is just saying that {gk} is a Cauchy sequence in the space (C(S), ρ), and
this is enough because by Theorem 1.14, (C(S), ρ) is a complete metric
space.
Now, by part (1) of the thoerem, we know that the family {gk} is uni-

formly equicontinuous on S. So, let ϵ > 0 be given, and hence there is
some δ > 0 such that

d(x, y) < δ =⇒ |gk(x)− gk(y)| < ϵ

for every k ∈ N and x, y ∈ S. So, consider the open balls B(xi, δ) for xi ∈
D. This is an open cover of S, and hence there is some finite subcover,
say

S = B(x1, δ) ∪ ... ∪B(xm, δ)

First, we know that {gk(xi)} converges for every 1 ≤ i ≤ m, and hence is
a Cauchy sequence in R. So, choose N ∈ N such that |gs(xi)− gt(xi)| < ϵ
for every s, t ≥ N and 1 ≤ i ≤ m (possible because we are only working
with finitely many indices i).
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Finally, let x ∈ S, so that x ∈ B(xi, δ) for some 1 ≤ i ≤ m. Let s, t ≥ N .
So, we have

|gs(x)− gt(x)| ≤ |gs(x)− gs(xi)|+ |gs(xi)− gt(xi)|+ |gt(xi)− gt(x)| < 3ϵ

and hence {gk} is uniformly Cauchy, completing the proof of (2).
■

We are moving closer to our original goal of characterising compact subsets
of (C(S), ρ). Here is a lemma in going in that direction.

Lemma 1.36. Let S be a compact metric space, and let E ⊂ C(S). If E is uni-
formly bounded and uniformly equicontinuous on S, then so is its closure E.

Proof. Suppose E is uniformly bounded and uniformly equicontinuous. First,
we show thatE is uniformly bounded. So, there is someM ≥ 0 such that |f(x)| ≤
M for all x ∈ S and f ∈ E. Suppose f ′ is a limit point of E, i.e there is some
sequence {fn} in E such that

fn → f ′

which equivalently means that fn converges to f ′ uniformly. So, take x ∈ S.
Then, we know that

lim
n→∞

fn(x) = f ′(x)

which means
lim
n→∞

|fn(x)| = |f ′(x)|

because | · | is a continuous function on R. But, the left hand side in the above
limit is ≤M , and hence

|f ′(x)| ≤M

showing thatE is uniformly bounded. Next, weshow thatE is uniformly equicon-
tinuous aswell. Again, let f ′ be a limit point ofE, so there is some sequence {fn}
converging uniformly to f ′. Let ϵ > 0 be given. Since {fn} is uniformly equicon-
tinuous, there is some δ > 0 such that

d(x, y) < δ =⇒ |fn(x)− fn(y)| < ϵ/3

for all x, y ∈ S and n ∈ N. Now, let N ∈ N such that n ≥ N implies

|fn(x)− f(x)| < ϵ/3

for all x ∈ S (possible by uniform convergence). So, if d(x, y) < δ for x, y ∈ S,
then

|f(x)− f(y)| ≤ |f(x)− fn(x)|+ |fn(x)− fn(y)|+ |fn(y)− f(y)| < ϵ

and hence this shows that E is also uniformly equicontinuous. ■

Finally, we characterise compact subsets of (C(S), ρ). .

Theorem 1.37. Let S be a compact metric space. Then, a closed subset E of
(C(S), ρ) is compact if andonly ifE is uniformly boundedanduniformly equicon-
tinuousonS. In simplerwords,E is compact if andonly if it is uniformly equicon-
tinuous on S and is a closed and bounded subset of (C(S), ρ)
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Proof. First, suppose E is uniformly bounded and uniformly equicontinuous on
S. Then, by the Arzela-Ascoli Theorem 1.35, any sequence in E has a conver-
gent subsequence, and since E is closed, this shows that E has the Bolzano-
Weierstrass property, and hence E is compact by Theorem 1.8. So, we only
need to prove the converse.
So suppose E is a compact subset of (C(S), ρ). By part (1) of Proposition 1.5,

we know thatE is a bounded subset of (C(S), ρ). So, byProposition1.33, we see
that E is uniformly bounded over S. Next, we need to show that E is uniformly
equicontinuous over S. SinceE is compact, it is totally bounded. So, let ϵ > 0 be
given. Then, there are finitely many functions f1, .., fm ∈ E such that

E ⊂ B(f1, ϵ) ∪ ... ∪B(fm, ϵ)

where the balls are taken in (C(S), ρ). Moreover, since each fi is continuous
over S, it is uniformly continuous. So, there is some δ > 0 such that for any
x, y ∈ S with d(x, y) < δ and for any 1 ≤ i ≤ m,

|fi(x)− fi(y)| < ϵ

Finally, let f ∈ E be any function, and let 1 ≤ i ≤ m be such that f ∈ B(fi, ϵ),
which means

|fi(x)− f(x)| < ϵ

for all x ∈ S. Let x, y ∈ S with d(x, y) < δ. Then, we have

|f(x)− f(y)| ≤ |f(x)− fi(x)|+ |fi(x)− fi(y)|+ |fi(y)− f(y)| < 3ϵ

and since ϵwas arbitrary, it follows that E is uniformly equicontinuous over S.
This completes the proof. ■

In view of the above theorem and its preceding lemma, we have the following
useful corollary.

Corollary 1.37.1. Let S be compact, and let E be a subset of (C(S), ρ). Then
E has compact closure if and only if E is uniformly bounded and uniformly
equicontinuous.

Proof. The forward direction directly follows from Lemma 1.36 and Theorem
1.37. The backward direction is trivial. ■

Example 1.8. Consider the space (C[0, 1], ρ) with ρ the uniform metric. Let K :
[0, 1] × [0, 1] → R be a continuous function. Since [0, 1] × [0, 1] is compact, it is
clear thatK is a bounded function. Put

M = sup{|K(x, y)| : x, y ∈ [0, 1]}

Next, define

(Tf)(x) =

∫ 1

0

K(x, y)f(y)dy

for any f ∈ C[0, 1] and x ∈ [0, 1]. It is easy to see that Tf is a continuous function
too, andhenceTf ∈ C[0, 1]. So, T canbe regardedasamap fromC[0, 1] toC[0, 1].
[0, 1] being compact also means that Tf is a uniformly continuous function on
[0, 1]. (To be completed. See lecture 4 on moodle)
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1.13. Weierstrass Approximation Theorem. In this section, we will prove an
important approximation theorem. We will prove the theorem in three steps.
The first two steps will be simple reductions.
Theorem 1.38 (Weierstrass Approximation Theorem). Let f : [a, b] → R be a
continuous function, where [a, b] is a closed interval. Then, there is a sequence
of polynomials {Pn} on [a, b] such that Pn → f uniformly on [a, b], i.e f can be
uniformly approximated by polynomials on [a, b].
Proposition 1.39. If Theorem 1.38 holds for a continuous function f ′ : [0, 1] →
R, then it also holds for a continous function f : [a, b] → R where [a, b] is any
closed interval.
Proof. Let f : [a, b] → R be a continuous function. Consider the map γ : [0, 1] →
[a, b] given by

γ(t) = a+ t(b− a)

which is a continuous bijection from [0, 1] to [a, b], and infact γ−1 is also continu-
ous. Let f ′ = f ◦ γ, so that f ′ : [0, 1] → R is a continuous function. Let {P ′

n} be a
sequence of polynomials converging uniformly to f ′ over [0, 1]. For t ∈ [a, b], we
define

Pn(t) = P ′
n(γ

−1(t)) = P ′
n

(
t− a

b− a

)
so in simple terms, Pn = P ′

n ◦ γ−1. It is easy to see that each Pn is a polyno-
mial over [a, b]. It remains to show that Pn → f uniformly over [a, b]. But this is
immediate; let ϵ > 0 be given, and so there is some N ∈ N such that

|P ′
n(t)− f ′(t)| < ϵ

for all t ∈ [0, 1] and n ≥ N . Let x ∈ [a, b], and let n ≥ N . So, this means
|P ′

n(γ
−1(x))− f ′(γ−1(x))| < ϵ

and by the bijectivity of γ and the definition of Pn, we have
|Pn(x)− f(x)| < ϵ

which completes the proof. ■
Proposition 1.40. If Theorem 1.38 holds for a continuous function f ′ : [0, 1] →
R with f ′(0) = f ′(1) = 0, then it holds for any continuous function f : [0, 1] → R.
Proof. Let f : [0, 1] → R be a continuous function. Define f ′ : [0, 1] → R by

f ′(x) = f(x)− f(0)− (f(1)− f(0))x

so that f ′(0) = f ′(1) = 0, and f ′ is continuous. Let {P ′
n} be a sequence of poly-

nomials converging uniformly to f ′. Define
Pn(x) = P ′

n(x) + f(0) + (f(1)− f(0))x

and hence Pn is a polynomial over [0, 1] for every n ∈ N. Moreover, observe that
|P ′

n(x)− f ′(x)| = |Pn(x)− f(x)|
for every n ∈ N and x ∈ [0, 1], and it is then clear that Pn → f uniformly, which
completes the proof. ■
Proof of Theorem 1.38. By the reduction in Proposition 1.39 and Proposition
1.40, we just need to prove the theorem for a continuous function f : [0, 1] → R
with f(0) = f(1) = 0. (To be completed) ■
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Corollary 1.40.1. Let [−a, a] be a fixed interval. Then, there is a sequence of
polynomials {Pn} on [−a, a] with Pn(0) = 0 for every n ∈ N such that Pn → | · |
uniformly on [−a, a], where | · | is the absolute value function.

Proof. By theWeierstrass Approximation Theorem 1.38, we know that there
is a sequence {P ∗

n} of polynomials converging uniformly to | · | on [−a, a]. In
particular, this means that

P ∗
n(0) → 0 as n→ ∞

So, for every n ∈ N and x ∈ [−a, a] define
Pn(x) = P ∗

n(x)− P ∗
n(0)

and it is clear that {Pn} is the required sequence of polynomials. ■
Corollary 1.40.2. The metric space (C[a, b], ρ) is a separable space. Hence,
(C[a, b], ρ) is a complete separable metric space where [a, b] is any closed in-
terval.

Proof. See problem 2. of ASSIGNMENT-3. ■
1.14. Convolutions. In this section, we will define an important operator on
the space of functions.

Definition 1.17. Let f : R → R be a function. The support of f is defined to be
the closure of the set

C = {x ∈ R|f(x) 6= 0}
If f is continuous and its support is a compact set, then f is said to be a function
of compact support.

Definition 1.18. Let f, g ∈ C(R) be continuous functions of compact support.
The convolution of f and g is defined as

f ∗ g(x) =
∫ ∞

−∞
f(y)g(x− y)dy, x ∈ R

Remark1.40.1. In theabovedefinition, there is noambiguity regarding the con-
vergence of the improper integral. Since both functions in the definition have
compact support, we can restrict the integral to a closed interval in R.

Let us see two quick properties of the convolution.

Proposition 1.41. Let f, g be continuous functions with compact support. Then
the following hold.

(1) f ∗ g is a continuous function.
(2) f ∗ g = g ∗ f , i.e convolution is a commutative operation.

Proof. To be completed. ■
Definition 1.19. Let {gn} be a sequence of continuous functions on R satisfying
the following properties.

(1) gn ≥ 0 for n ≥ 1.
(2)

∫∞
−∞ gn(x)dx = 1 for n ≥ 1.

(3) For every δ > 0, it is true that

lim
n→∞

∫
|x|≥δ

gn(x)dx = 0
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Then the sequence {gn} is said to be an approximate identity.

Example1.9. As in the proof of theWeierstrassApproximationTheorem 1.38,
it can be checked that the sequence {φn} is actually an approximation identity.
Moreover, the sequence of polynomials {Pn} was precisely the sequence {f ∗
φn}, and we showed that this sequence converged uniformly to f . Now, if we
define {Tn(f)} = {f ∗ φn}, then we see that ρ(Tn(f), f) → 0 as n → ∞. So,
the sequence {Tn} approximates the identity map on C[a, b]. This justifies the
reasoning behind the name of these (and in fact, this convergence is a case of
Theorem 1.43 below.)

Wewill now state two theoremswithout proof, and thesewill not be used in this
course.

Theorem 1.42. Let f, g be continuous functions with compact support. If g ∈
C k(R), then f ∗ g ∈ C k(R), where k ∈ N ∪ {∞}.

Remark 1.42.1. A very useful way of looking at this theorem is the smoothing
property of convolutions, i.e convolutions can be looked at as operators which
are used to smoothen a function.

Theorem 1.43. Let {gn : n ≥ 1} be an approximate identity with common com-
pact support, i.e the support of gn isC for everyn ∈ N, whereC is somecompact
subset of R. Also suppose gn ∈ C ∞(R) for every n ∈ N, and let f be a function
of compact support. Then f ∗ gn → f uniformly on R.

Remark 1.43.1. This is exactly what was done in the proof of theWeierstrass
Approximation Theorem 1.38.

Example 1.10. Let

ψ(x) =

cexp
(
− 1

(1− |x|)2

)
, |x| < 1

0 , |x| ≥ 1

where c > 0 is chosen so that ∫ ∞

−∞
ψ(x)dx = 1

To be completed. See lecture 5 on moodle

1.15. Towardsageneralisation. Wewill now try to generalise the approxima-
tion theorem we proved in the last section.

Definition 1.20. Let S be a metric space, and let E ⊂ S. Let E be a family of real
valued functions on E such that

(1) f + g ∈ E ,
(2) fg ∈ E ,
(3) cf ∈ E

for all f, g ∈ E , i.e E is closed under addition, multiplication, and scalar multipli-
cations of functions. Then E is called an algebra of functions.
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From now on, we let S to be a compact metric space, and we consider the usual
space (C(S), ρ) with the uniform metric ρ.

Definition 1.21. A non-empty subsetA of C(S) is called a subalgebra of C(S) if
A is an algebra of functions.

Lemma1.44. LetA be a subalgebra of C(S), and let B be the closure ofA in the
uniform metric ρ. Then, B is also a subalgebra of C(S).

Proof. This lemma is just saying that sums, products and scalar multiples of
uniform limits are also uniform limits. So, let f, g ∈ C(S) be points of B, and let
{fn} and {gn} be sequences of functions in A such that fn → f uniformly and
gn → g uniformly. Since A is a subalgebra of C(S), it follows that for any c ∈ R,
fn + gn ∈ A, fngn ∈ A and cfn ∈ A for any n ∈ N. In the following, let ϵ > 0 be
fixed.

(1) Let us show that fn + gn → f + g uniformly. We know that there are
N1, N2 ∈ N such that |fn(x)− f(x)| < ϵ/2 for all n ≥ N1, x ∈ S and |gn(x)−
g(x)| < ϵ/2 for all n ≥ N2, x ∈ S. If N = max{N1, N2}, it immediately
follows that

|fn(x) + gn(x)− f(x)− g(x)| < ϵ

for all n ≥ N and x ∈ S, completing the proof. Inparticular, this shows
that f + g ∈ B.

(2) Similarly, we can show that cfn → cf uniformly, which will show that
cf ∈ B, and this is very easy and I won’t write it here.

(3) Finally, let us show that fngn → fg uniformly. Consider the identity

|fngn − fg| ≤ |fn(gn − g)|+ |g(fn − f)|

Since fn is a uniformly convergent sequence, it is uniformly bounded,
and g is obviously a bounded continuous function. So, it immediately fol-
lows that

|fngn − fg| → 0

uniformly and hence fngn → fg uniformly (the arguments here can be
made more precise, but this is the general idea).

■

Remark 1.44.1. Let A be the subalgebra of all polynomials over the interval
[a, b]. WeierstrassApproximationTheorem 1.38 says that the uniform closure
(i.e the closure with the uniformmetric) ofA in C[a, b] is C[a, b]. We will consider
a generalisation of this further.

Definition1.22. LetAbeasubalgebraofC(S). ThenA is said to separate points
if given any two points x 6= y ∈ S, there is some f ∈ A such that f(x) 6= f(y).

We now have the generalisation of the approximation theorem.

Theorem 1.45 (Stone-Weierstrass Theorem). Let (S, d) be a compact metric
space, and let A be a subalgebra of C(S) that separates points and contains
the constant functions. Then A is dense in (C(S), ρ).

We shall prove this theorem using two important results, which we will prove
now. This whole section must be completed! Look at Metric Spaces-6 Notes!
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1.16. ContractionMapping Theorem. In this section, we will prove a theorem
that is frequently used in a lot of proofs.

Definition 1.23. Let (X, d) be a metric space. A mapping T : X → X is said to
be a contraction mapping if there is some 0 < r < 1 such that

d(Tx, Ty) ≤ rd(x, y)

for every x, y ∈ X . It is easily seen that a contraction mapping is uniformly
continuous.

Theorem 1.46 (ContractionMapping Theorem). Let (X, d) be a complete met-
ric space, and let T be a contraction mapping onX . Then, T has a unique fixed
point, i.e there is a unique x ∈ X such that T (x) = x.

Proof. Proving uniqueness is almost trivial. Suppose x, y are two points fixed
by T . Because T is a contraction mapping, this means

d(x, y) ≤ rd(x, y)

for some 0 < r < 1, and this is only possible if x = y. So, we only need to prove
existence of a fixed point.
We will give a constructive proof of the existence of a fixed point, and the idea
is actually pretty simple. Let x0 ∈ X be a fixed point in X . Define a sequence
{xn}n≥0 by putting

xn = T (xn−1)

for each n ∈ N. So, the sequence looks as an infinite iteration
{x0, T (x0), T 2(x0), ...}

Observe that for any n ≥ 1, we have
d(xn+1, xn) = d(T (xn), T (xn−1)) ≤ rd(xn, xn−1)

and hence by induction it can be shown that for all n ≥ 1,
d(xn+1, xn) ≤ rnd(x1, x0)

Now, we know that the series
∞∑
n=0

rn <∞

So, suppose ϵ > 0 is given. Choose N ∈ N such that for allm > n ≥ N ,
m∑

k=n

rk < ϵ

Then, supposem > n ≥ N . We have
d(xn, xm) ≤ d(xn, xn+1) + ...+ d(xm−1, xm)

≤ (rn + rn+1 + ...+ rm−1)d(x1, x0)

≤ ϵd(x1, x0)

and hence this shows that the sequence {xn}n≥0 is a Cauchy sequence inX . So,
this sequence is convergent, and let

x = lim
n→∞

xn
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Since T is a continuous map, we see that
T (x) = lim

n→∞
T (xn) = lim

n→∞
xn+1 = x

showing that x is a fixed point of T . This completes the proof. ■
Remark1.46.1. The above theorem need not be true ifX is not a completemet-
ric space. As a counter example, Complete this

1.17. ODEs and Picard’s Theorem. In this section, we will see an application
of theContractionMappingTheorem 1.46 to a particular problem involving an
ordinary differential equation (ODE).

Problem Statement. Let A > 0 be a fixed real number, f : R → R a continuous
function and x0 ∈ R a given number. We want to find a continuous function
x : [0, A] → R such that x is differentiable in the open interval (0, A) with

x′(t) = f(x(t))(∗)
for any t ∈ (0, A), and satisfying the initial condition

x(0) = x0(†)
This is a typical example of an initial value problem.

An Equivalent Formulation. Consider the following problem: Let A, f and x0 be
as above. We want to find a continuous function x : [0, A] → R satisfying the
integral equation

x(t) = x0 +

∫ t

0

f(x(s))ds(‡)

for any t ∈ [0, A].

Proposition 1.47. Solving the ODE (∗) along with the initial value (†) is equiva-
lent to solving the integral equation (‡).

Proof. Suppose x satisfies the ODE (∗) alongwith the initial value (†). Because x
and f are assumed to be continuous functions, it follows that f ◦x is continuous
as well, and we can extend x′ to the interval [0, A] by putting x′(0) = f(x(0)) and
x′(A) = f(x(1)), so that x′ is a continuous function on [0, A]. By the fundamental
theorem of calculus, we then see that for any t ∈ [0, A],

x(t)− x(0) =

∫ t

0

f(x(s))ds

which implies that x satisfies the integral equation (‡). Conversely, suppose x
satisfies the integral equation (‡). It is clear that equation (†) is satisfied. By
the fundamental of calculus, it easily follows that x is differentiable in the open
interval (0, A), and that the derivative of x is

x′(t) = f(x(t))

for any t ∈ (0, A), so that (∗) is also satisfied. This completes the proof. ■
Theorem 1.48 (Picard’s Theorem). Let A > 0 and x0 ∈ R. Let f : R → R be a
Lipchitz continuous function, i.e there is someK > 0 such that

|f(x)− f(y)| ≤ K|x− y|
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for all x, y ∈ R. Consider the initial value problem given by the equations (∗)
and (†). Then there is a unique solution to this initial value problem.

Proof. The idea of the proof is simple and uses the ContractionMapping The-
orem 1.46. By Proposition 1.47, it is enough to prove that there is a unique
solution to the integral equation in (‡). Let α > 0 be any real number such that
Kα < 1. Consider the space (C[0, α], ρ) of continuous functions with the uni-
form metric ρ. For ease of notation, we will denote the metric ρ by ρ0. Now, we
know that (C[0, α], ρ0) is a complete metric space. On this space, define a map
T 0 : C[0, α] → C[0, α] by

T 0(y)(t) = x0 +

∫ t

0

f(y(s))ds , t ∈ [0, α]

for any y ∈ C[0, α]. The fact that T 0 is indeed a map from C[0, α] to itself is a
consequence of the fundamental theorem of calculus. Let us show that T 0 is
a contraction mapping on the complete metric space (C[0, α], ρ0). To see this,
observe that for any y, z ∈ C[0, α] and t ∈ [0, α], we have

|T 0(y)(t)− T 0(z)(t)| ≤
∫ t

0

|f(y(s))− f(z(s))|ds

≤ K

∫ t

0

|y(s)− z(s)|ds

≤ Kρ0(y, z)

∫ t

0

ds

= Kρ0(y, z)t

≤ Kαρ0(y, z)

Now taking the supremum over all t ∈ [0, α] in the RHS of the above equation,
we get

ρ0(T 0(y), T 0(z)) ≤ Kαρ0(y, z)

and since Kα < 1, this implies that T 0 is a contraction mapping. Hence, by the
ContractionMapping Theorem 1.46, T 0 has a unique fixed point in C[0, α]. Call
this fixed point y0. So, we see that y0 ∈ C[0, α] satisfying

y0(t) = x0 +

∫ t

0

f(y0(s))ds , t ∈ [0, α]

Next, we want to extend y0 to the interval [α, 2α]. This is done in a very similar
way. Consider the space (C[α, 2α], ρ1) with the uniform metric ρ1, and we know
that this is a complete metric space. Again, define a mapping T 1 : C[α, 2α] →
C[α, 2α] by

T 1(y)(t) = y0(α) +

∫ t

α

f(y(s))ds , t ∈ [α, 2α]

for any y ∈ C[α, 2α]. By the exact same reasoning as above, it can be shown
that T 1 is a contraction mapping on this space, and hence there is a unique
fixed point y1 ∈ C[α, 2α] so that

y1(t) = y0(α) +

∫ 2α

α

f(y1(s))ds , t ∈ [α, 2α]
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Note that y1 is an extension of y0, as y0(α) = y1(α), i.e they agree on endpoints.
Now we can keep repeating this procedure. The advantage is this: there is
someN ∈ N such that (N−1)α < A ≤ αN . So, weconsider intervals [0, α], [α, 2α], ...., [(N−
1)α,Nα] and we have functions y0, y1, ..., yN−1 on each of theseN intervals such
that

yk((k + 1)α) = yk+1((k + 1)α)

for each 0 ≤ k ≤ N − 2, i.e these continuous functions agree on the end points
of the corresponding intervals. Moreover, for each 0 ≤ k ≤ N − 1 we have

yk(t) = yk−1(kα) +

∫ (k+1)α

kα

f(yk(s))ds , t ∈ [kα, (k + 1)α]

where we put y−1(0) = x0.
Now, define the function x : [0, A] → R by each of these piecewise functions

y0, ..., yN−1. Because these functions are continuous and agree on their end-
points, it follows that x is a continuous function. Moreover, it is not hard to see
that x satisfies the integral equation

x(t) = x0 +

∫ t

0

f(x(s))ds , t ∈ [0, A]

and hence there is a solution to the given initial value problem. Now, because
y0, y1, ..., yN−1 are unique, it follows that x is also unique. This completes the
proof. ■
We now mention a generalised version of this theorem without proof.

Theorem 1.49 (Generalised Picard’s Theorem). Let [A,B] be an interval and
let f : R → R be a Lipchitz continuous function. Let t0 ∈ (A,B) and x0 ∈ R. Then
there is a unique solution to the initial value problem

x′(t) = f(x(t)) , x ∈ (A,B)

x(t0) = x0

1.18. Dini’s Theorem. In this section, we will see a theorem about when the
limit of a sequence of continuous functions being continuous implies uniform
convergence.

Theorem 1.50 (Dini’s Theorem). Let (X, d) be a compact metric space, and let
{fn} be a sequence of continuous real functions on X such that

f1 ≤ f2 ≤ f3 ≤ ...

Also, suppose fn → f pointwise on f and assume that f is continuous. Then
{fn} converges uniformly to f .

Proof. Let gn = f − fn, so that gn is a non-negative continuous function for each
n ∈ N. Let ϵ > 0 be fixed. For any n ∈ N, put

Un = {x ∈ X | gn(x) < ϵ}
Because each gn is continuous, Un is an open set for each n ∈ N. Moreover,
because fn converges to f pointwise, we see that

X =
⋃
n∈N

Un
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BecauseX is compact, there is a finite subcover. So, without loss of generality
suppose

X = U1 ∪ ... ∪ UN

for some N ∈ N. By the monotonicity assumption, we see thatX = UN . But this
proves uniform convergence of fn to f , and this completes the proof. ■

2. Fourier Series

2.1. Complex Series. In this short section, we will mention some facts about
series of complex numbers. This will mainly serve as a revision.

Proposition 2.1. Let
∑

n an be a series of complex numbers. If
∑

n |an| is con-
vergent, then

∑
n an is also convergent. So, absolute convergence implies con-

vergence of a series.

Theorem 2.2 (Root Test). Let
∑

n an be a series of complex numbers, and put

α = lim sup
n→∞

n
√
|an|

(1) If α < 1, then
∑

n |an| <∞.
(2) If α > 1, then

∑
n |an| = ∞.

(3) If α = 1 then nothing can be concluded.

There is a root test as well, which I am not going to include here, as it is a fairly
straightforward test.

Definition 2.1. Let
∑
an and

∑
bn be two series of complex numbers. Define the

convolution or product of these two series as∑
an ·

∑
bn =

∑
cn

where

cn =
n∑

i=0

aibn−i

Note that multiplication of two power series is just the convolution of the two
series.

Theorem 2.3. Let
∑
an,

∑
bn be two series of complex numbers. Then, their

convolution converges if atleast one of the series is absolutely convergent.
Moreover, if both the series are absolutely convergent, then the convolution
also converges absolutely.

The proofs of all these statements can be found in any analysis source like Baby
Rudin.

2.2. Exponential and Trigonometric Functions. Here we will review some im-
portant functions over the complex numbers.
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Definition 2.2. For z ∈ C, define

ez =
∞∑
n=0

zn

n!

cos z =
∞∑
n=0

(−1)nz2n

(2n)!

sin z =
∞∑
n=0

(−1)nz2n+1

(2n+ 1)!

By the root test, it is clear that all these series converge absolutely for every z ∈
C, and hence the definitions make sense. It is also clear that all these functions
are real valued when z is real.

Proposition 2.4 (Euler’s Formula). For any z ∈ C,

eiz = cos(z) + i sin(z)

Proof. We have

eiz =
∞∑
n=0

(iz)n

n!

=
∞∑
n=0

inzn

n!

=
∞∑
n=0

z4n

(4n)!
+

iz4n+1

(4n+ 1)!
− z4n+2

(4n+ 2)!
− iz4n+3

(4n+ 3)!

=
∞∑
n=0

z4n

(4n)!
− z4n+2

(4n+ 2)!
+ i

∞∑
n=0

z4n+1

(4n+ 1)!
− z4n+3

(4n+ 3)!

= cos(z) + i sin(z)

where we can rearrange the order of summation because of absolute conver-
gence. ■

Proposition 2.5. The following properties are true of the exponential function.
(1) For any z, w ∈ C, ezew = ez+w.
(2) For any z ∈ C, eze−z = e0 = 1. Hence, ez 6= 0 for any z ∈ C.
(3) For any z ∈ C, ez = ez.
(4) For any x ∈ R, |eix|2 = 1.
(5) For any x ∈ R,

lim
h→0

ei(x+h) − eix

h
= ieix

and this is equivalent to saying that the map x 7→ eix has derivative ieix.

Proof. These properties are more or less a consequence of the absolute con-
vergence of ez for any z.
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(1) By the definition of convolution, we have

ezew =
∞∑
n=0

zn

n!

∞∑
n=0

wn

n!

=
∞∑
n=0

n∑
k=0

zk

k!

wn−k

(n− k)!

=
∞∑
k=0

1

n!

n∑
k=0

(
n

k

)
zkwn−k

=
∞∑
n=0

1

n!
(z + w)n

= ez+w

(2) This easily follows from (1).
(3) Let z = x+ iy, where x, y ∈ R. Then, we have

ez = ex−iy = exe−iy = ex(cos y − i sin y)
= ex(cos y + i sin y) = exeiy = ez

where we have used the fact that cosx is an even function and sin x is
an odd function, which is immediate from the definition.

(4) Let x ∈ R. Then, we have

|eix|2 = eixeix = eixe−ix = e0 = 1

and hence eix is on the unit circle for real x.
(5) We have

lim
h→0

ei(x+h) − eix

h
= eix lim

h→0

eih − 1

h
= ieix

where the last limit is clear from the power series expansion.
■

We will assume some properties of sin and cos as functions on R, and these
can be proven using standard analytical methods.

Proposition 2.6. The functions sin : R → R and cos : R → R have the following
properties.

(1) Both are periodic with period 2π, i.e there is a (smallest) positive con-
stant 2π ∈ R such that sin(x + 2π) = sin(x) and cos(x + 2π) = cos(x) for
every x ∈ R.

(2) The map t→ (cos(t), sin(t)) for t ∈ [0, 2π) to the unit circle S1 is bijective.

Corollary 2.6.1. The map z → ez is periodic with period 2πi. Moreover, for any
z ∈ C with |z| = 1, there is a unique θ ∈ [0, 2π] such that eiθ = z.

Proof. To prove the first claim, we have

ez+2πi = eze2πi = ez

and the second claim clearly follows from the above proposition. ■



30 SIDDHANT CHAUDHARY

2.3. More Preliminaries. (Caution: click here) From this section, the word in-
tegrablewillmean Lebesgue integrable, which I don’t know yet. However, there
is a famous theorem that Riemann Integrable functions are integrable in the
Lebesgue sense as well. Moreover, a real/complex valued function f on an
interval I is Lebesgue integrable if and only if |f | is Lebesgue integrable. More-
over, ∣∣∣∣∫

I

f

∣∣∣∣ ≤ ∫
I

|f |

Definition2.3. Let I be an interval inR (closed, open or half-open). Let g : I → C
be a complex function. Put

g = u+ iv

so that g(x) = u(x) + iv(x) for x ∈ I . We say that g is integrable on I if both u, v
are integrable on I . In such a case, define∫

I

g(x)dx =

∫
I

u(x)dx+ i

∫
I

v(x)dx

Proposition 2.7. Let g1, g2 : I → C be integrable. Then, for any c1, c2 ∈ C,∫
I

c1g1 + c2g2 = c1

∫
I

g1 + c2

∫
I

g2

Proof. Immediate. ■
Definition 2.4. Let I be any interval in R. Define

L2(I) :=

{
f : I → C :

∫
I

|f(x)|2 <∞
}

On this space, define the inner product of two functions f, g ∈ L2(I) as

〈f, g〉 =
∫
I

f(x)g(x)dx

and this definition of the inner product is very similar to the usual Hermitian
product on Cn. Finally, for any f ∈ L2(I), define the norm of f by

||f || =
√
〈f, f〉

and it is immediate that ||f || ≥ 0.

Proposition 2.8. Consider the space L2(I). Put
d(f, g) = ||f − g||

for any f, g ∈ L2(I). Then (L2(I), d) is a pseudo-metric space.

Proof. SeeASSIGNMENT-1 of Calculus, specifically for the proof of the triangle
inequality. ■
Remark 2.8.1. As we’ve seen before, the reason why this is a pseudo-metric
space and not just a metric space is because there non-zero functions whose
integral over I is zero.

Proposition 2.9. Let I be a closed and bounded interval in R, and let f be a
continuous complex function on I . Show that f ∈ L2(I).

Proof. This is immediate from the fact that continuous functions over a closed
and bounded interval in R are Riemann integrable. ■
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Scratch this section. I won’t delete this section from the pdf, but the prof. de-
cided not to go into measure theory. So the section 2.3. More Preliminaries.
will be present, but can be discarded without any hesitation. We will deal only
with complex continuous functions of a real variable, which will make life easy
as continuous functions are already Riemann integrable.

2.4. The Objective of Fourier Series. Let f be a continuous complex valued
periodic function on R with period 2π. The question is whether we can write it
in the form

f(x) =
∞∑

n=−∞

cne
inx

where cn ∈ C and n ∈ Z. Notice that we are summing on Z, and since Z is
countable, this is a usual infinite series. Moreover, there will be no ambiguity
in the rearrangement of this series, as the series will turn out to be absolutely
convergent. A series of the above form is called a Fourier Series and the coef-
ficients cn are called the Fourier Coefficients of f .
Definition 2.5. Consider the space

H := C([−π, π],C)
i.e the space of complex continuous functions on [−π, π] with the uniform met-
ric ρ. By Theorem 1.14, we know that this is a complete metric space (the
same proof works for complex functions as well). We will only be interested
in functions in H with f(−π) = f(π) (i.e period 2π) and we will use the notation
I = [−π, π].
Definition 2.6. Let f ∈ H , so we can write

f = u+ iv

so that f(x) = u(x) + iv(x) for every x ∈ I . Define∫
I

f :=

∫
I

u+ i

∫
I

v

and the definition makes sense since both u, v are continuous.
Proposition 2.10. For any f ∈ H , ∫

I

|f |2 <∞

Proof. This is clear since f is a continuous function. ■
Definition 2.7. On H , define the inner product

〈f, g〉 :=
∫
I

f(x)g(x)dx

for any f, g ∈ H , and define the norm as
||f || :=

√
〈f, f〉

and it is clear that ||f || ≥ 0 for every f ∈ H .
Remark 2.10.1. Since we are dealing with continuous functions, it turns out
that the given normmakesH into a normed linear space. Aswe showbelow, the
given inner product is a Hermitian product. So, this inner product is a positive
definite Hermitian product overH .
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Lemma 2.11. Let f, g, h ∈ H and c ∈ C. Then the following hold.
(1) 〈f, g〉 = 〈g, f〉.
(2) 〈f + g, h〉 = 〈f, h〉+ 〈g, h〉.
(3) 〈cf, g〉 = c〈f, g〉.
(4) ||cf || = |c|||f ||.
(5) (Cauchy-Schwarz inequality). |〈f, g〉| ≤ ||f ||||g||.
(6) ||f + g|| ≤ ||f ||+ ||g||.
(7) Putting d(f, g) = ||f − g||makesH into a metric space.

Proof. For sake of simplicity, we will write f = f1 + if2 for any f ∈ H .
(1) We see that for any continuous complex function F ,∫

I

F =

∫
I

F

which easily follows from the definition of the integral. So, we have

〈f, g〉 =
∫
I

f(x)g(x)dx =

∫
I

f(x)g(x)dx =

∫
I

g(x)f(x)dx = 〈g, f〉

(2) This property easily follows from the linearity of the integral.
(3) This also follows from the linearity of the integral.
(4) This follows from the definition of the norm.
(5) This property is true for any vector space with a positive definite Her-

mitian product on it. See the beginning section of the Analysis-2 notes
for this.

(6) This easily follows follows from (4), because:
||f + g||2 = 〈f + g, f + g〉

= 〈f, f〉+ 〈f, g〉+ 〈g, f〉+ 〈g, g〉
≤ ||f ||2 + 2|〈f, g〉|+ ||g||2

≤ ||f ||2 + 2||f ||||g||+ ||g||2

= (||f ||+ ||g||)2

and this completes the proof by taking square roots.
(7) This is immediate, because H contains only continuous functions.

■
Definition 2.8. Let S = {φ0, φ1, φ2, ...} be a collection of elements of H . If

〈φm, φn〉 = 0

form 6= n, then S is said to be an orthogonal system in H . If, in addition
||φn|| = 1

for all n = 0, 1, 2, .. then S is called an orthonormal system in H .
Example 2.1. As before, let I = [−π, π]. Put

φn(x) =
1√
2π
einx

for any x ∈ I and n ∈ {0,±1,±2,±3...}. We see that

1

2π

∫
I

eimxdx =

{
1 ,m = 0

0 ,m 6= 0
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So in this case, φn, n ∈ {0,±1,±2,±3, ...} is an orthonormal system in H .

Lemma2.12. Let the sequence {fn} inH convergeuniformly to f ∈ H , i.e ρ(fn, f) →
0. Then,

||fn − f || → 0

and for any g ∈ H ,
〈fn, g〉 → 〈f, g〉

Moreover, we have that
||f || = lim

n→∞
||fn||

Proof. Suppose ρ(fn, f) → 0. Observe that

||fn − f ||2 =
∫
I

|fn − f |2 < 2πϵ2

because for eventually large n, we know that |fn−f | < ϵ over the interval I , and
since ϵ is arbitrary this means that

||fn − f || → 0

To prove the second claim, let g ∈ H . Observe that
|〈fn, g〉 − 〈f, g〉| = |〈fn − f, g〉| ≤ ||fn − f || · ||g||

where we applied the Cauchy-Schwarz inequality in the last step. So, it follows
that

〈fn, g〉 → 〈f, g〉
Finally, it is straightforward to check that

| ||fn|| − ||f || | ≤ ||fn − f ||
(this is just a consequence of the properties of norms), and hence by the first
claim it follows that

||fn|| → ||f ||
and this completes the proof. ■
2.5. Some Important Computations. Suppose f : R → R is a complex contin-
uous periodic function with period 2π. Also, suppose f has a representation

f(x) =
∞∑

n=∞

cne
inx(•)

in the interval I = [−π, π]. For every N ∈ N, define

sN(x) =
N∑

n=−N

cne
inx(••)

and suppose the sequence {sN} of functions on I converges uniformly to f on
I , i.e

sN → f (uniformly)(⋆)
(and this will be our assumption throughout this section).

Proposition 2.13. If f is as above, then for any k ∈ Z,

ck =
1

2π

∫
I

f(x)e−ikxdx(†)
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Proof. By Lemma 2.12, we see that for k ∈ Z,

〈sN , eikx〉 → 〈f, eikx〉

Writing this explicitly, we see that

∫
I

f(x)e−ikxdx = lim
N→∞

∫
I

sN(x)e
−ikxdx(∗)

It is clear that each sN(x) is a continuous function on I , and can be easily inte-
grated. So, we see that

lim
N→∞

∫
I

sN(x)e
−ikxdx = lim

N→∞

∫
I

N∑
n=−N

cne
inxe−ikxdx

= lim
N→∞

N∑
n=−N

cn

∫
I

einx−ikxdx

= lim
N→∞

N∑
n=−N

cn〈einx, eikx〉

= lim
N→∞

2πck

= ck2π

where in the second last step we used the results in Example 2.1 (in particu-
lar, we used the orthogonality of the functions occurring in the inner product).
Combining equation (∗) with the above result, we see that

ck =
1

2π

∫
I

f(x)e−ikxdx

for any k ∈ Z. This completes the proof. ■

Proposition 2.14. For any N ∈ N, let sN be as in equation (••). Then,

||sN ||2 = 2π
N∑

n=−N

|cn|2
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Proof. This is just a straightforward computation as below.

||sN ||2 =
∫
I

|sN(x)|2dx

=

∫
I

sN(x)sN(x)dx

=

∫
I

(
N∑

n=−N

cne
inx

)(
N∑

n=−N

cne
−inx

)
dx

=

∫
I

N∑
n1=−N

N∑
n2=−N

cn1cn2e
in1xe−in2xdx

=
N∑

n1=−N

N∑
n2=−N

cn1cn2

∫
I

ein1xe−in2xdx

=
N∑

n1=−N

N∑
n2=−N

cn1cn2〈ein1x, ein2x〉

=
N∑

n1=−N

|cn1|22π

= 2π
N∑

n=−N

|cn|2

where we have again used the orthogonality relations in Example 2.1. This
completes the proof. ■
Theorem2.15 (Minimality of Fourier coefficients). Let f ∈ H , and letN > 0 be
a fixed positive integer. Among all choice of {di : −N ≤ i ≤ N} the expression

1

2π

∫ π

−π

∣∣∣∣∣f(x)−
N∑

n=−N

dne
inx

∣∣∣∣∣
2

dx

is uniquely minimised when dn = cn for all |n| ≤ N , where cn is defined as in
equation (†) in Proposition 2.13. Moreover, the minimum value is

1

2π

∫ π

−π

|f(x)|2dx−
N∑

n=−N

|cn|2

Proof. Since f ∈ H , i.e f is a continuous function, the coefficients cn are well
defined for |n| ≤ N . Let dn ∈ C be chosen for every |n| ≤ N , and suppose

dn = cn + αn

for some αn ∈ C. We have the following equalities.
(f(x)dneinx) + (f(x)dne

inx) = 2Re(f(x)dneinx)
= 2Re(dnf(x)e−inx)(⋆⋆)

for each |n| ≤ N and x ∈ I . Now, as in Example 2.1, we know that{
1√
2π
eikx : k ∈ Z

}
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is an orthonormal system, and hence we get the following chain of equalities.

1

2π

∫ π

−π

∣∣∣∣∣f(x)−
N∑

n=−N

dne
inx

∣∣∣∣∣
2

dx

=
1

2π

∫ π

−π

(
f(x)−

N∑
n=−N

dne
inx

)(
f(x)−

N∑
n=−N

dneinx

)
dx

=
1

2π

∫ π

−π

|f(x)|2dx− 1

2π

∫ π

−π

(
N∑

n=−N

f(x)dneinx + f(x)dne
inx

)
dx+

1

2π

∫ π

−π

(
N∑

m,n=−N

dmdne
imx−inx

)
dx

=
1

2π
||f ||2 −

N∑
n=−N

1

2π

∫ π

−π

2Re(dnf(x)e−inx)dx+
1

2π

N∑
m,n=−N

dmdn〈eimx, einx〉

=
1

2π
||f ||2 −

N∑
n=−N

1

2π
2Re

∫ π

−π

dnf(x)e
−inxdx+

N∑
n=−N

|dn|2

=
1

2π
||f ||2 − 2Re

N∑
n=−N

dn
1

2π

∫ π

−π

f(x)e−inxdx+
N∑

n=−N

|dn|2

=
1

2π
||f ||2 − 2Re

N∑
n=−N

cndn +
N∑

n=−N

|dn|2

From the last equation, weuse the fact that dn = cn+αn, andwe get the following
(for easy understanding, I will rewrite the last equation again).

1

2π

∫ π

−π

∣∣∣∣∣f(x)−
N∑

n=−N

dne
inx

∣∣∣∣∣
2

dx

=
1

2π
||f ||2 − 2Re

N∑
n=−N

cndn +
N∑

n=−N

|dn|2

=
1

2π
||f ||2 − 2Re

N∑
n=−N

(|cn|2 + cnαn) +
N∑

n=−N

(|cn|2 + cnαn + cnαn + |αn|2)

=
1

2π
||f ||2 − 2

N∑
n=−N

(|cn|2 + Re cnαn) +
N∑

n=−N

(|cn|2 + 2Re cnαn + |αn|2)

=
1

2π
||f ||2 −

N∑
n=−N

|cn|2 +
N∑

n=−N

|αn|2

and hence the claim follows from the last equality. ■
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Corollary 2.15.1 (Bessel’s Inequality). Let f ∈ H and let cn be as defined in (†)
in Proposition 2.13. Then,

∞∑
n=−∞

|cn|2 ≤
1

2π

∫ π

−π

|f(x)|2dx

Also,
1

2π
||sN ||2 ≤

1

2π
||f ||2

for any N ∈ N.

Proof. This follows immediately from Theorem 2.15. In particular, we see that
∞∑

n=−∞

|cn|2 <∞

and hence this series converges absolutely. The second claim follows immedi-
ately from Proposition 2.14. ■

Corollary 2.15.2 (Riemann-Lebesgue Lemma). Let f ∈ H and let cn be as de-
fined in (†) in Proposition 2.13. Then

lim
|n|→∞

cn = 0

Moreover, we have

lim
n→∞

∫ π

−π

f(x) cos(nx)dx = lim
n→∞

∫ π

−π

f(x) sin(nx)dx = 0

Proof. The first claim is immediate from the convergence of∑
n∈Z

|cn|2

For the second claim, let n > 0. Then observe that

lim
n→∞

cn = lim
n→∞

c−n = 0

which means

lim
n→∞

∫ π

−π

f(x)e−inxdx = lim
n→∞

∫ π

−π

f(x)einxdx = 0

So, we get that

lim
n→∞

∫ π

−π

f(x)[einx + e−inx]dx = 2 lim
n→∞

∫ π

−π

f(x) cos(nx)dx = 0

and similarly

lim
n→∞

∫ π

−π

f(x)[einx − e−inx]dx = 2 lim
n→∞

∫ π

−π

f(x) sin(nx)dx = 0

and this completes the proof of the second claim. ■
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2.6. Convergence Results. Having carried out important computations in the
last section, we will now move to the question of convergence.

Theorem 2.16. Let f ∈ H such that f ∈ C 1(R) and f is periodic with period 2π.
Let sN be as defined in (••)where cn is defined as in equation (†) in Proposition
2.13. Then {sN} converges uniformly.

Proof. By the hypothesis it is clear that f and f ′ are continuous periodic func-
tions on R with period 2π. Let {dn} be the Fourier coefficients of f ′, i.e

dn =
1

2π

∫ π

−π

f ′(x)e−inxdx

for any n ∈ Z. Using integration by parts, we see that

dn =
1

2π

∫ π

−π

f ′(x)e−inxdx

=
1

2π

[
f(x)e−inx|π−π −

∫ π

−π

f(x)(−in)e−inxdx

]
=

1

2π
in

∫ π

−π

f(x)e−inxdx

= incn

for any n ∈ Z. So we see that∑
n∈Z−{0}

|cn| =
∑

n∈Z−{0}

|dn|
|n|

≤

 ∑
n∈Z−{0}

|dn|2
 1

2
 ∑

n∈Z−{0}

1

|n|2

 1
2

≤ 1√
2π

√∫ π

−π

|f ′(x)|2dx

 ∑
n∈Z−{0}

1

|n|2

 1
2

<∞
where above we have used the Cauchy-Schwarz inequality in the second step,
Bessel’s Inequality 2.15.1 for dn in the third step and the fact that

∑∞
n=0

1

n2
is a

convergent series. So, it follows that∑
n∈Z

|cn| <∞

and hence this series converges. Now observe that for any n ∈ Z,
|cneinx| = |cn|

and hence by the Weierstrass M-test, it follows that the sequence {sN} con-
verges uniformly. ■
Remark 2.16.1. As you may have observed, we are using non-traditional nota-
tions for writing countable infinite sums. However, this leads to no ambiguity,
because all series we are considering converge absolutely, so we can work
with any rearrangement of the series.
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Definition 2.9. For any N ≥ 0, put

DN(x) =
N∑

n=−N

einx , x ∈ R

The sequence of functions {DN} is called the Dirichlet Kernel.

Lemma 2.17. EachDN is a continuous periodic function with period 2π. Also,

DN(x) =
sin((N + 1

2
)x)

sin 1
2
x

, x ∈ R− {0}

Moreover,

1

2π

∫ π

−π

DN(x)dx = 1

Proof. That each DN is continuous and periodic with period 2π is clear. More-
over, DN(x) is a geometric series with common ratio eix for every x ∈ R. So
using the geometric sum formula, we see that for x 6= 0

DN(x) = (e−iNx)
ei(2N+1)x − 1

eix − 1

=
ei(N+1)x − e−iNx

eix − 1

=
(ei(N+1)x − e−iNx)e−

1
2
ix

(eix − 1)e−
1
2
ix

=
(eiNx+ 1

2
ix − e−iNx− 1

2
ix)

e
1
2
ix − e−

1
2
ix

=
sin((N + 1

2
)x)

sin 1
2
x

The last assertion is immediate by the results in Example 2.1. ■

Lemma 2.18. Let f ∈ H be a continuous periodic function on R with period 2π.
Let N > 0 be any integer, and let DN be as defined in Definition 2.9, and let sN
be as defined in (••). Then

sN(x) =
1

2π

∫ π

−π

f(x− t)DN(t)dt
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Proof. By the definitions of sN , DN and cn, we see that

sN(x) =
N∑

n=−N

cne
inx

=
N∑

n=−N

1

2π

(∫ π

−π

f(t)e−intdt

)
einx

=
N∑

n=−N

1

2π

∫ π

−π

f(t)ein(x−t)dt

=
1

2π

∫ π

−π

f(t)
N∑

n=−N

ein(x−t)dt

=
1

2π

∫ π

−π

f(t)DN(x− t)dt

=
1

2π

∫ x+π

x−π

f(x− u)DN(u)du

=
1

2π

∫ π

−π

f(x− u)DN(u)du

In the second last step, we have used a change of variables. In the last step, by
the periodicity of f , it doesn’t matter which interval we integrate on as long as
its length is 2π. ■

We now prove the existence of a uniformly convergent Fourier Series for C 1

functions.

Theorem 2.19. Let f ∈ C 1(R) be a periodic function with period 2π. Let sN be
defined as in (••). Then {sN} converges to f uniformly.

Proof. ByTheorem2.16,wehavealready shown that {sN}convergesuniformly.
So, it is enough to show that sN converges to f pointwise.
Let x ∈ R be fixed. By Lemma 2.17 and Lemma 2.18, we have the following

chain of equalities for any N ≥ 0

sN(x)− f(x) =
1

2π

∫ π

−π

f(x− t)DN(t)dt−
1

2π

∫ π

−π

f(x)DN(t)dt

=
1

2π

∫ π

−π

(f(x− t)− f(x))DN(t)dt

Now we define a function g : [−π, π] → R by

g(t) =


f(x− t)− f(x)

sin 1
2
t

, t 6= 0

−2f ′(x) , t = 0

So it follows that g is a continuous function on I , i.e g ∈ H (the way we have
defined g at 0makes it continuous). Also, for any t ∈ [−π, π] we can write

(f(x− t)− f(x))DN(t) = g(t) sin
((

N +
1

2

)
t

)
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and here we are using Lemma 2.17. So, we see that

sN(x)− f(x) =
1

2π

∫ π

−π

g(t) sin
((

N +
1

2

)
t

)
dt

=
1

2π

∫ π

−π

(
g(t) sin

(
1

2
t

))
cos(Nt)dt+ 1

2π

∫ π

−π

(
g(t) cos

(
1

2
t

))
sin(Nt)dt(∗∗)

Now observe that the functions t 7→ g(t) sin
(
1
2
t
)
and t 7→ g(t) cos

(
1
2
t
)
are both

elements of H . So by The Riemann-Lebesgue Lemma 2.15.2, we see that both
the integrals in equation (∗∗) go to 0 as N → ∞. This completes the proof. ■
Corollary 2.19.1 (Parseval’s Identity). Let f ∈ C 1(R) be periodic with period
2π. Then

1

2π

∫ π

−π

|f(x)|2dx =
1

2π
||f || =

∞∑
n=−∞

|cn|2

where cn are the Fourier coefficients of F .

Proof. By Theorem 2.19, we see that {sN} converges to f uniformly on [−π, π].
Thismeans that {|sN |} converges to |f | uniformly, and sincewe are dealingwith
bounded functions, this means that {|sN |2} converges to |f |2 uniformly. So we
have

1

2π

∫ π

−π

|f(t)|2dt = lim
N→∞

1

2π

∫ π

−π

|sN(t)|2dt = lim
N→∞

1

2π
||sN ||2

By Proposition 2.14, we get
1

2π

∫ π

−π

|f(t)|2dt =
∞∑

n=−∞

|cn|2

completing the proof. ■

2.7. Fejer’s Theorem. Note that Theorem 2.19 refers only to C 1 functions. We
will now state some facts without proof which will generalise the situation to
continuous periodic functions.

Definition 2.10. Let {an}n≥0 be a sequence of complex numbers. Put

sn =
n∑

i=0

ai

so {sn}n≥0 is the sequence of partial sums. Denote

σn =
s0 + s1 + ...+ sn

n+ 1

and so {σn} is the sequence of arithmetic means of sn. If {σn} converges, then
the sequence {an} is said to be Cesaro Summable, and the limit σ = limσn is
called the Cesaro sum of {an}.

Proposition 2.20. If a series
∑

n≥0 an is convergent with value s, then the se-
quence {an} is Cesaro summable and it’s Cesaro sum is s.

Proposition 2.21. Suppose the sequence {an} is Cesaro summable with Ce-
saro sum σ. Also suppose that the sequence {nan} is bounded. Then the series∑

n≥0 an is convergent with sum σ.
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Theorem 2.22 (Fejer’s Theorem). Let f be a continuous periodic function on
R with period 2π. Let sN be defined as in (••). Let {σN} be the sequence of
arithmetic means of {sN}. Then σN → f uniformly over [−π, π], and hence on all
of R by the periodicity of f and σN .
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