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1. Lecture 1

1.1. Proof of Proposition 1.1. In this exercise, we will show that any open subset
of C is connected if and only if it is path connected. So, let A ⊆ C be any open subset,
and first suppose that A is path connected. We claim that A is connected; for the
sake of contradiction, suppose A is not connected, that is A = U t V where U, V are
non-empty disjoint open subsets of A. Let x ∈ U and y ∈ V , and let f : [0, 1] → A
be a path in A from x to y. Consider the open subsets f−1(U) and f−1(V ) of [0, 1].
Clearly, these intervals are disjoint and their union is [0, 1]. But, this contradicts the
connectedness of [0, 1]. So, it follows that A is indeed connected (note that in any
path-connected topological space is connected by the same argument).

Conversely, suppose A is open and connected. Recall that in any connected space,
the only sets which are both open and closed are ϕ and A. So, let a ∈ A be any
point. Let A1 be the set of all points of A which are connected via paths to a, and
let A′

1 be its complement in A. Clearly, A1 6= ϕ (because a ∈ A1). We will show that
A1 is both open and closed, and it will follow that A1 = A, which will show that A
is path-connected. It is easy to show that A1 is open; take any point x ∈ A1, i.e a
is connected to x by a path. Since A is open, there is a ball centered at x which is
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completely contained inside A. Clearly, any point x′ in this ball can be connected to
a via a path, by concatenating the path from a to x and the linear path from x to x′.
So, A1 is an open set. To show that A1 is closed, we can very similarly show that A′

1

is open. This completes the proof.

1.2. Exercise (1). The proof of the fact that any connected open subset of Rn is
path-connected is given in section 1.1 above. We will show that the topologists sine
curve, i.e the closure of {(

x, sin 1

x

)
| x ∈ (0, 1)

}
inside R2 is connected but not path-connected. Observe that the above set is the
image of (0, 1) under the continuous map

x 7→
(
x, sin 1

x

)
and hence this set is connected. Because closures of connected sets are connected, it
follows that the topologists sine curve is also connected. Now, we will show that this
curve is not path-connected. Need to complete this!

1.3. Exercise (2). Let n be any positive integer. We will show that Rn is complete.
To show this, use two facts.

(1) The norms || · ||∞ and || · ||2 on Rn are equivalent (or just use the more stronger
fact that all norms in Rn are equivalent).

(2) Now just use the fact that R is complete.

1.4. Exercise (3). This problem is trivial once we know the fact that the map t 7→
(cos t, sin t) is bijective from [0, 2π) onto the unit circle S1.

1.5. Exercise (4). Consider the equation zn = zn. If z = r(cos θ + i sin θ), this
equation in polar coordinates corresponds to

rn(cos nθ + sin nθ) = rn(cos nθ − sin nθ)

Solving this, we get
2isin nθ = 0

and from here the values of θ can be computed.

2. Lecture 2

2.1. Simpler proof of Theorem 2.8. Let U ⊆ C be a domain, and let f : U → C be
a function. Let c = a+ bi ∈ U , and write f = u+ iv, where u and v are real functions
on U . Then f is differentiable at c if and only if u, v are differentiable at (a, b)
(as functions from U → R) and their partial derivatives satisfy the Cauchy-Riemann
equations

∂u

∂x
(a, b) =

∂v

∂y
(a, b) and ∂u

∂y
(a, b) = −∂v

∂x
(a, b)

Further, when this happens, it is true that

f ′(c) =
∂u

∂x
(a, b) + i

∂v

∂x
(a, b) =

∂v

∂y
(a, b)− i

∂u

∂y
(a, b)
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Proof. First, suppose f is (complex) differentiable at c. To show that u, v are differ-
entiable as functions from U → R, it is enough to show that f is real differentiable as
a function U → R2. First, let h ∈ R. Then, we have the following chain of equations.

f ′(c) = lim
h→0

f(h+ c)− f(c)

h

= lim
h→0

u(h+ c) + iv(h+ c)− u(c)− iv(c)

h

From here, separate the real and imaginary parts to get the following.

f ′(c) = lim
h→0

u(h+ c)− u(c)

h
+ i lim

h→0

v(h+ c)− v(c)

h

= lim
h→0

u(a+ h, b)− u(a, b)

h
+ i lim

h→0

v(a+ h, b)− v(a, b)

h

and this implies that both ∂u
∂x

and ∂v
∂x

exist at the point (a, b), and we immediately see
that

f ′(c) =
∂u

∂x
(a, b) + i

∂v

∂x
(a, b)

Next, we can replace h by ih in the above equations, and we will obtain that both ∂u
∂y

and ∂v
∂y

exist at the point (a, b), and that

f ′(c) =
∂v

∂y
(a, b)− i

∂u

∂y
(a, b)

From the last two equations, we obtain the Cauchy-Riemann equations. It remains to
show that f is real differentiable at (a, b). But we have the derivative with us! It is
simply

f ′(a, b) =


∂u

∂x
(a, b)

∂u

∂y
(a, b)

∂v

∂x
(a, b)

∂v

∂y
(a, b)

 = λ

Checking this is a simple calculation. Suppose h = (h1, h2) ∈ R2, or we can write
h = h1 + ih2 ∈ C. Then using the Cauchy-Riemann equations, we have

limh→0
||f(c+ h)− f(c)− λ(h)||

||h||
= lim

h→0

∣∣∣∣f(c+ h)− f(h)− λ(h)

h

∣∣∣∣
= lim

h→0

∣∣∣∣∣∣
f(c+ h)− f(c)−

(
∂u
∂x
(a, b)h1 +

∂u
∂y
(a, b)h2,

∂v
∂x
(a, b)h1 +

∂v
∂y
(a, b)h2

)
h

∣∣∣∣∣∣
= lim

h→0

∣∣∣∣∣f(c+ h)− f(c)−
(
∂u
∂x
(a, b)h1 − ∂v

∂x
(a, b)h2,

∂v
∂x
(a, b)h1 +

∂u
∂x
(a, b)h2

)
h

∣∣∣∣∣
= lim

h→0

∣∣∣∣∣f(c+ h)− f(c)− (h1 + ih2)
(
∂u
∂x
(a, b) + i∂u

∂v
(a, b)

)
h

∣∣∣∣∣
= lim

h→0

∣∣∣∣f(c+ h)− f(c)− hf ′(c)

h

∣∣∣∣
= 0

and this shows that f is real differentiable at (a, b), and so are u, v.
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Conversely, if u, v are real differentiable at (a, b), then so is f . In addition, suppose
u, v satisfy the Cauchy-Riemann equations. So, all that needs to be shown is that f
is complex differentiable at c. But this can easily be checked as above by putting

f ′(c) =
∂u

∂x
(a, b) + i

∂v

∂x
(a, b)

This completes the proof. ■

2.2. Exercise (1). (Very Boring) Here, we will prove the rules of differentiation for
complex functions. So let c ∈ C, and f, g functions defined in a neighborhood of c and
differentiable at c, h a function defined on a neighborhood of f(c) and differentiable
at f(c), and α ∈ C. Then we have the following.

(1) (f + αg)′(c) = f ′(c) + αg′(c).

Proof. This is an easy computation. We have the following chain of equations.

(f + αg′)(c) = lim
h→0

(f + αg)(c+ h)− (f + αg)(c)

h

= lim
h→0

f(c+ h)− f(c) + αg(c+ h)− αg(c)

h
= f ′(c) + αg′(c)

■

(2) (fg)′(c) = f ′(c)g(c) + f(c)g′(c).

Proof. This one has a neat trick. We do it as follows.

(fg)′(c) = lim
h→0

(fg)(c+ h)− (fg)(c)

h

= lim
h→0

f(c+ h)g(c+ h)− f(c)g(c)

h

= lim
h→0

f(c+ h)g(c+ h) + f(c)g(c+ h)− f(c)g(c+ h)− f(c)g(c)

h

= lim
h→0

[f(c+ h)− f(c)]g(c+ h)

h
+ lim

h→0

[g(c+ h)− g(c)]f(c)

h
= f ′(c)g(c) + f(c)g′(c)

■

(3) (h ◦ f)′(c) = h′(f(c))f ′(c). To be completed.
(4)

(
1
f

)′
(c) = − f(c)

f(c)2
if f(c1) 6= 0 for every c1 in a neighborhood of c. To be

completed.

2.3. Exercise (2). Let

f(z) =

{
z5|z|−4, z 6= 0

0, z = 0
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We now determine R(f) and I(f) as functions of real variables x and y, where z =
x+ iy. The following computation is straightforward.

z5

|z|4
=

(x+ iy)5

(x2 + y2)2

= x5 +

(
5

1

)
x4(iy) +

(
5

2

)
x3(iy)2 +

(
5

3

)
x2(iy)3 +

(
5

4

)
x(iy)4 +

(
5

5

)
(iy)5

=
x5 + 5x4(iy) + 10x3(iy)2 + 10x2(iy)3 + 5x(iy)4 + (iy)5

(x2 + y2)2

=
x5 − 10x3y2 + 5xy4

(x2 + y2)2
+ i

(5x4y − 10x2y3 + y5)

(x2 + y2)2

and hence we see that

R(f)(x, y) =
x5 − 10x3y2 + 5xy4

(x2 + y2)2
, I(f)(x, y) =

5x4y − 10x2y3 + y5

(x2 + y2)2

Next, we show that R(f) and I(f) satisfy the Cauchy-Riemann equations at z = 0.
But this is clear by the following.

∂R(f)(0, 0)

∂x
= 1

∂R(f)(0, 0)

∂y
= 0

∂I(f)(0, 0)

∂x
= 0

∂I(f)(0, 0)

∂y
= 1

Finally, we show that f ′(0) does not exist. Let r ∈ R, and first let h = r. Then, we
see that

lim
h→0

f(h)

h
= lim

r→0

f(r)

r
= lim

r→0

r

r
= 1

Next, put h = (1 + i)r. So we have

lim
h→0

f(h)

h
= lim

h→0

f((1 + i)r)

(1 + i)r
= lim

r→0

−4r5 − i4r5

4|r|4r(1 + i)
= lim

r→0

−r4

|r4|
= −1

and hence it follows that f ′(0) does not exist.

2.4. Exercise (3). We define

fz =
1

2
(fx − ify)

fz =
1

2
(fx + ify)

(a) Let us treat z and z as the independent coordinates. Then, our composite mapping
is

(z, z) 7→
(
z + z

2
,
z − z

2i

)
7→ f

(
z + z

2
,
z − z

2i

)
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So, using the chain rule of differentiation, we see that[
fz fz

]
=

[
fx fy

] [ 1
2

1
2

1
2i

−1
2i

]
and hence the above equation agrees with our definitions.

(b) If f is differentiable at a point c, then we know from Theorem 2.8 that f ′(c) =
ux(c) + ivx(c). Now, from the Cauchy-Riemann equations, we see that

ux(c) + ivx(c) =
1

2
[ux(c) + vy(c) + i(vx(c)− uy(c))] =

1

2
[fx(c)− ify(c)] = fz(c)

and hence f ′(c) = fz(c). Similarly, the Cauchy Riemann equations will simplify to
give fz(c) = 0.

2.5. Exercise (4). Let f = zmzn with m,n ≥ 0. We show that

fz = mzm−1zn , fz = nzmzn−1

Complete this using polar coordinates

2.6. Exercise (5). Consider the function

f(x+ yi) =


xy2(x+ yi)

x2 + y4
, (x, y) 6= (0, 0)

0 , (x, y) = (0, 0)

We show that f is not differentiable at the origin. Writing f = u+ vi, we see that

u(x, y) =


x2y2

x2 + y4
, (x, y) 6= (0, 0)

0 , (x, y) = (0, 0)

and that

v(x, y) =


xy3

x2 + y4
, (x, y) 6= (0, 0)

0 , (x, y) = (0, 0)

For f to be differentiable at 0, both u, v must be differentiable at (0, 0) and they must
satisfy the Cauchy-Riemann equations. Observe that

∂u

∂x
(0, 0) =

∂v

∂x
(0, 0) =

∂u

∂y
(0, 0) =

∂v

∂y
(0, 0) = 0

and so if u, v are differentiable at 0, their derivatives must be 0. This implies that

lim
(x,y)→(0,0)

|v(x, y)|√
x2 + y2

= 0

Now, consider the curve x = y2. Taking the above limit over this curve, we see that

lim
y→0

|y5|
2y4

√
y4 + y2

= lim
y→0

|y5|
2|y5|

√
y2 + 1

6= 0

and this is a contradiction. So, it follows that v is not differentiable, i.e f is not
complex differentiable at 0.
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2.7. Exercise (6). Let f(z) be a function defined in a neighborhood of c ∈ C. We
show that f(z) is differentiable at c if and only if f(z) is differentiable at c.

First, suppose f(z) is differentiable at the point c. Clearly, we see that f(z) is
defined in a neighborhood of c. Put g(z) = f(z). This is to say that g(z) is defined in
a neighborhood of c. We claim that

g′(c) = f ′(c)

This is just a straightforward computation. We have the following.

lim
h→0

g(c+ h)− g(c)

h
= lim

h→0

f(c+ h)− f(c)

h

= lim
h→0

f(c+ h)− f(c)

h

= lim
h→0

f(c+ h)− f(c)

h

= lim
h→0

(
f(c+ h)− f(c)

h

)
= f ′(c)

and in the last step above, we have interchanged the conjugation operator with the
limit, because conjugation is continuous. The converse is similarly proven.

2.8. Exercise (7). Here we will find the Cauchy-Riemann equations in polar coordi-
nates. If f is some complex function, we write

f = u+ iv

We define a map g by g = f ◦ γ, where γ : C → C is the map
γ(r, θ) = (r cos θ, r sin θ)

By the chain rule, we see that∂u

∂r

∂u

∂θ
∂v

∂r

∂v

∂θ

 =


∂u

∂x

∂u

∂y
∂v

∂x

∂v

∂y

[
cos θ −r sin θ
sin θ r cos θ

]

So, this corresponds to the four equations
∂u

∂r
=

∂u

∂x
cos θ + ∂u

∂y
sin θ

∂u

∂θ
= −∂u

∂x
rsin θ +

∂u

∂y
rcos θ

∂v

∂r
=

∂v

∂x
cos θ + ∂v

∂y
sin θ

∂v

∂θ
= −∂v

∂x
rsin θ +

∂v

∂y
rcos θ

and so the Cauchy-Riemann equations in polar coordinates are

r
∂u

∂r
=

∂v

∂θ
, r

∂v

∂r
= −∂u

∂θ
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3. Lecture 3

3.1. Exercise (6). Here we will look at two important limits.
(1) The first limit is limn→∞ n

1
n = 1. For many amazing proofs, check out this

link.
(2) The second limit is limn→∞

(
n
k

) 1
n = 1 for every k ∈ N. Observe that(

n

k

) 1
n

=
n

1
n (n− 1)

1
n ...(n− (k − 1))

1
n

(k!)
1
n

Using the limit in (1), and the fact that n
√
k! → 1 as n → ∞, the claim follows.

3.2. Exercise (8). It is clear that C{z} is a subring of C[[z]], because sums and
products of convergent power series are themselves convergent power series. We will
now show that if a0 6= 0, then the inverse of

∑
anz

n in C[[z]] belongs to C{z}. To be
completed.

4. Lecture 4

4.1. Fact used in Proposition 4.4. In the proof of Proposition 4.4 of the notes,
the following fact has been used: if

∞∑
i=0

∞∑
j=0

aij

is an absolutely convergent double series of complex numbers, then
∞∑
i=0

∞∑
j=0

aij =
∞∑
j=0

∞∑
i=0

aji

4.2. Exercise (1). Let U be a domain, c0 ∈ C and τ : U → C be the map c 7→ c+ c0.
Clearly, τ is a continuous map, begin a translation. It also has a two sided inverse,
namely the map τ−1 given by c 7→ c − c0, and being a translation τ−1 is also a
continuous map. Clearly, τ is a homeomorphism; hence, Im(τ) is an open connected
set, i.e Im(τ) is a domain in C.

Suppose x0 ∈ U is a point such that a map f : U → C is differentiable at x0. We
show that f ◦ τ−1 is differentiable at the point τ(x) ∈ τ(U). But this is obvious by
the chain rule, since τ−1 is differentiable at each point in τ(U).

Next, suppose f : U → C is analytic on U . We show that f ◦ τ−1 is analytic on
Im(τ). To show this, let c ∈ Im(τ). Consider the point τ−1(c). We know that there is
some ϵ > 0 such that Bτ−1(c),ϵ ⊆ U and

f(z) =
∑
n∈N

an(z − τ−1(c))n(∗)

for all z ∈ Bτ−1(c),ϵ. Observe that
τ(Bτ−1(c),ϵ) = B(c, ϵ) ⊆ Im(τ)

So, if z ∈ B(c, ϵ), then (∗) implies that

f ◦ τ−1(z) =
∑
n∈N

an(τ
−1(z)− τ−1(c))n =

∑
n∈N

an(z − c)n

and this proves that f ◦ τ−1 is analytic on Im(τ).

https://math.stackexchange.com/questions/28348/proof-of-lim-n-to-infty-sqrtnn-1
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4.3. Exercise (2). We can also prove the same when τ is just a scaling map, i.e
ζ 7→ c0ζ for some c0 6= 0. The proof is easy. The statement about f ◦ τ being
holomorphic is again follows by the chain rule. So, we will only prove the statement
about analyticity.

So, suppose f : U → C is analytic on U . Let c ∈ Im(τ). Consider the point
τ−1(c) ∈ U . We know that there is some ϵ > 0 such that Bτ−1(c),ϵ ⊆ U and that for
any z ∈ Bτ−1(c),ϵ

f(z) =
∑
n∈N

an(z − τ−1(c))n(†)

Observe that
τ(Bτ−1(c),ϵ) = B(c, c0ϵ) ⊆ Im(τ)

So, if z ∈ B(c, c0ϵ), then (†) implies that

f ◦ τ−1(z) =
∑
n∈N

an(τ
−1(z)− τ−1(c))n =

∑
n∈N

an
c0

(z − c)n

and hence it follows that f ◦ τ−1 is analytic on Im(τ).

4.4. Exercise (3). Let f : U → C be an analytic function on a domain U such that
f (k)(z) = 0 for every z ∈ U . Let c ∈ U be any point. We know that locally around c,
f can be written as a power series, that is

f(z) =
∑
n∈N

an(z − c)n

for all z in a ball centered at c. Now, restrict f to this ball. We know that f is
infinitely differentiable, and the coefficients ak are given by

am = m!f (m)(c)

Since fk = 0, it follows that f is a polynomial of degree atmost k − 1 in this ball.
Let this polynomial be p. So, we have shown that f ≡ p on a non-empty open set
contained in U . So, it follows that f − p is identically zero on a non-empty open set
contained in U . However, by Proposition 4.6 in the main notes, we know that the
zeroes of f − p in U will be isolated if f − p is not identically zero, since f − p is
analytic on U . So, it follows that f − p is identically zero on U , i.e f is a polynomial
of degree atmost k − 1. This completes our proof.

4.5. Exercise (4). This is an alternative proof of the fact that the zeroes of an ana-
lytic function that is not identically zero are isolated.

4.6. Exercise (5). To be completed.

5. Lecture 5

5.1. Exercise (1). Points number (1) and (2), i.e the power series expansions of sin
and cos are clear by the power series expansion of ez.

The formula eiz = cos z + i sin z is also clear from the definition of these functions.
The rest of the properties are also easy to see from the definitions.
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5.2. Exercise (4). Here we expand 1/z as a power series around z = 1, and we
compute its radius of convergence. So suppose

1

z
=

∑
n∈N

an(z − 1)n

in some neighborhood of 1. We see that

an =

(
1

z

)(n)

(1)
1

n!
= (−1)n

and hence we see that
1

z
=

∑
n∈N

(−1)n(z − 1)n

Clearly, the radius of convergence of this series is 1.

5.3. Exercise (6). Let U be a domain not containing 0 and let f, g be branches of
the logarithm on U . Consider the function

h(z) :=
f(z)− g(z)

2πi

on U . We have
e2πih(z) = ef(z)−g(z) = 1

because f, g are branches of the logarithm. This means that h(z) ∈ Z for all z ∈ U .
Since h is continuous, it follows that h(z) = n for some n ∈ Z. This implies that

f(z)− g(z) = 2nπi

i.e any two branches of the logarithm differ by an interger multiple of 2πi. Conversely,
if f(z)− g(z) = 2πi, it is clear that f is a branch of a logarithm if and only if g is.

5.4. Exercise (7). Let U be a domain not containing 0 and let f be a branch of the
logarithm on U . We show that f is holomorphic on U .

First, suppose c ∈ U \(−∞, 0]. Take a ball Bc,R which does not intersect (−∞, 0]; on
this neighborhood, f(z) differs from Log(z) by a holomorphic function (in particular,
any two branches of the logarithm differ by an integer multiple of 2πi), and hence f(z)
is also holomorphic at c. Moreover, it is clear that f ′(z) = 1/z on U \ (−∞, 0].

Next, suppose c ∈ U ∩ (−∞, 0]. The idea is to rotate the domain where Log(z) is
differentiable by an appropriate angle θ. For any angle θ, note that the function

Log(eiθz)− iθ

is holomorphic on C \ K, where K is the negative x-axis (−∞, 0] rotated counter-
clockwise by the angle θ. So, let θ 6= 2kπ by any angle. Choose Bϵ,c such that
Bc,ϵ ⊆ U \K (possible because U is open). Then, again, f(z) and Log(eiθz)− iθ differ
by a multiple of 2πi, and hence f is differentiable at c. Again, we have

f ′(c) = (Log(eiθz)− iθ)′z=c =
1

z

and this proves the claim.
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6. Lecture 6

6.1. Exercise (1). Here we show that
∫
γ
f(z)dz is independent of the choice of the

partition. But this is really easy, and I’ll just give a proof sketch. Suppose

P := a = t0 < t1 < ... < tn = b

is a partition of [a, b]. Now let P ′ be any refinement of this partition. We show that
the integral

∫
γ
f(z)dz taken with respect to P is equal to the one taken with respect

to the refinement P ′. But this is trivial, by the additivity of integrals. Then, given
two partitions P1 and P2 of [a, b], the claim follows by taking their common refinement
and using Lemma 6.4.

6.2. Exercise 3. Let U be a domain. We will show that between any two points of
U , there is a piecewise-linear path between them.

Let a0 ∈ U be any point. We show that the set

S := {a ∈ U | There is a piecewise-linear path between a and a0}

Clearly, S is non-empty, because a0 ∈ S. We show that S is both open and closed in
U , and this will show that S = U , which will complete our proof.

Suppose a ∈ S. Take a ball Ba,ϵ such that Ba,ϵ ⊆ U (possible because U is open).
Since a ∈ S, there is a piecewise-linear path from a0 to a. If ζ ∈ Ba,ϵ, we can extend
this piecewise-linear path to a path from a0 → ζ, by simply concatenating the line
segment from a to ζ to our path. This shows that ζ ∈ S, i.e S is open.

To show that S is closed, let p ∈ U be a limit point of S. Again, take a ball Bp,ϵ such
that Bp,ϵ ⊆ U . Now, S ∩Bp,ϵ 6= ϕ since p is a limit point of S. Again, by concatening
a piecewise-linear path with a straight line, we otain that p ∈ S, showing that S is
closed in U . This completes our proof.

7. Lecture 7

7.1. Exercise (1). Here we show that γ2 is not a reparametrization of γ, where γ, γ2
are as in Example 7.2. As mentioned in the example, the intuitive idea is that γ
goes around the circle once, while γ2 revolves around the circle twice. We use this idea
to distinguish between the two maps.

For the sake of contradiction, suppose γ2 is a reparametrisation of γ, i.e

γ2 = γ ◦ τ

where τ : [0, 2] → [0, 1] is a non-decreasing piecewise differentiable surjective map. It
is easy to see that γ−1

2 (1, 0) = {0, 1, 2}. We will show that (γ ◦ τ)−1(1, 0) cannot be
this set, and that will be our contradiction. Note that

(γ ◦ τ)−1(1, 0) = τ−1(γ−1(1, 0))

Now we know that γ−1(1, 0) = {0, 1}. Because τ is a non-decreasing surjective map,
it is clear that τ(0) = 0 and τ(2) = 1, i.e {0, 2} ⊆ τ−1({0, 1}). Now, we also have
that τ(1) ∈ {0, 1}. If τ(1) = 0, then it follows that τ [0, 1] = 0, which contradicts the
fact that τ−1{0, 1} = {0, 1, 2}. Similarly, a contradiction is obtained if τ(1) = 1. This
proves the claim.
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8. Lecture 8

8.1. Exercise (1). Let f : [a, b] → C be a function. We show that∣∣∣∣∫ b

a

fdt
∣∣∣∣ ≤ ∫ b

a

|f |dt

To see this, let θ = arg ∫ b

a
fdt. Observe that

e−iθ

∫ b

a

fdt =
∫ b

a

e−iθfdt

an this implies that

Re
[
e−iθ

∫ b

a

fdt
]
=

∫ b

a

Re[e−iθf ]dt ≤
∫ b

a

|f |dt

Also, the extreme left hand side in the above equation is just

Re
[
e−iθ

∫ b

a

fdt
]
=

∣∣∣∣∫ b

a

fdt
∣∣∣∣

and this completes the proof.

8.2. Exercise (2). Here we complete the assertion (2) ⇐⇒ (3) of Proposition 8.4.
Throughout this proof, U is a domain and f : U → C is a continuous function.

First, suppose there is some function F : U → C such that for all piecewise-
differentiable paths γ : [a, b] → U it is true that∫

γ

f(z)dz = F (γ(b))− F (γ(a))

If γ is a piecewise-differentiable closed path in U , the right hand side in the above
equality becomes 0, and we get that∫

γ

f(z)dz = 0

which proves the forward direction.
Conversely, suppose for every piecewise-differentiable closed path γ in U , it is true

that ∫
γ

f(z)dz = 0

Fix a point a0 ∈ U . Now, for any point a ∈ U , we know that there is a piecewise-
differentiable path γa in U from a0 to a. Define the map F : U → C by

F (a) =

∫
γa

f(z)dz

First, we need to show that F is well-defined, i.e the choice of the path γa does not
matter. γa and γ′

a are two piecewise-differentiable paths from a0 to a. So, observe that
the path γa − γ′

a is a path from a0 to itself. By our hypothesis, we know that∫
γa−γ′

a

f(z)dz =

∫
γa

f(z)dz −
∫
γ′
a

f(z)dz = 0

and this implies that ∫
γa

f(z)dz =

∫
γ′
a

f(z)dz
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and this proves the well-definedness of F . Next, we claim that if γ : [a, b] → U is any
piecewise-differntiable path in U then∫

γ

f(z)dz = F (γ(b))− F (γ(a))

To see this, let γa and γb be piecewise-differentiable paths in U from a0 to γ(a) and a0
to γ(b) respectively. Then, observe that

γa + γ − γb

is a path from a0 to a0. So, we see that∫
γa+γ−γb

f(z)dz =

∫
γa

f(z)dz +
∫
γ

f(z)dz −
∫
γb

f(z)dz = 0

and this implies that ∫
γ

f(z)dz = F (γ(b))− F (γ(a))

and this completes the proof.

8.3. Exercise (3). Let r be a positive real number, and let γ : [0, 2π] → C be the
path given by t 7→ reit. We show that∫

γ

1

z
dz = 2πi

But this is clear, because ∫
γ

1

z
dz =

∫ 2π

0

1

reit
ireitdt = 2πi

Now, let γ be a piecewise-differentiable closed path that avoids some ray in C (by a
ray we mean the set {reiα | r ∈ R , r ≥ 0} for some α). Then∫

γ

1

z
dz = 0

This is because the function 1/z has a primitive on C−{reiα | r ∈ R , r ≥ 0} obtained
by rotating the domain where Log(z) is differentiable, just like we did in Exercise
(7) of Lecture 5.

9. Lecture 10

9.1. Exercise (1). In this exercise, we show that it can be assumed that U is centered
at 0, where U is as in the statement of Theorem 10.1. So, let c be the centre of U .
Let τ : U → C be the map z 7→ z − c, and let U1 = Im(τ). Then it is clear that τ is
a homeomorphism between U and U1. Let f1 = f ◦ τ−1 and let γ1 = τ ◦ γ. Then we
will show that ∫

γ

f(z)dz =

∫
γ1

f1(z)dz

Suppose the path γ is defined on the interval [a, b]. Let a = t0 < t1 < ... < tk = b be
a good partition for γ. It is clear that this is a good partition for γ1 as well, because
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τ is a holomorphic function on C, and hence we can use the chain rule. Now, observe
that ∫

γ1

f1(z)dz =
k−1∑
i=0

∫ ti+1

ti

f1(γ1(t))γ
′
1(t)dt

=
k−1∑
i=0

∫ ti+1

ti

f(τ−1(γ1(t)))τ
′(γ(t))γ′(t)dt

=
k−1∑
i=0

∫ ti+1

ti

f(γ(t))γ′(t)dt

=

∫
γ

f(z)dz

and this completes the proof.
9.2. Exercise (3). Let U be a domain containing B0,1 and let γ : [0, 1] → C be the
path given by t 7→ e2πit. In this exercise, we will compute∫

γ

1

z − 1
2

dz

(a) Let 0 < r � 1 and σ : [0, 1] → C be the closed path t 7→ 1
2
+ re2πit. Since r � 1,

we can assume that B 1
2
,r ⊆ B0,1. Now, we have∫
σ

1

z − 1
2

dz =

∫ 1

0

1
1
2
+ r e2πit − 1

2

σ′(t)dt

=

∫ 1

0

1

re2πit
2πir e2πit dt

= 2πi

(b) Let 0 < ϵ � 1. Consider the following picture.
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The path γ is the circle in green; the path σ is the smaller circle in blue; the points
p, q, a and b are as marked in the figure. The path γ1 is the path from p to q following
the green circle counter clockwise. The path σ1 is the path from a to b following
the blue circle counter-clockwise. τ1 and τ2 are the paths from a to p and b to q
respectively, which are both parallel to the real axis.

Let Γ be the piecewise-differentiable closed path given by
Γ = γ1 − τ2 − σ1 + τ1

We show that ∫
Γ

1

z − 1
2

dz = 0(9.1)

Observe that Γ ⊆ U \
{

1
2
+ r | r ∈ R, r ≥ 0

}
, and we know that there is a branch of the

logarithm on an open subset of C minus a ray in C, as in Exercise (7) of Lecture 5.
So, it follows that the integrand in (9.1) has a primitive on U \

{
1
2
+ r | r ∈ R, r ≥ 0

}
,

and hence the given integral is zero.

(c) This part is really easy. Will complete it soon.

(d) This follows by taking limits as ϵ → 0 in equation (9.1).

(e) Note that there is nothing special about the point 1
2

here; we can repeat the same
exact argument for any other point in B0,1 by taking a suitable disk around the point
that is contained in B0,1 and then define similar paths as above.

10. Lecture 13

10.1. Exercise (1). We have to show that f(U)∩(−∞, 0] = ϕ. The function we have
is f : C− {ζ ′} → C given by

f(z) =
z − ζ

z − ζ ′

and U is the complement of the line segment between ζ and ζ ′. Geometrically, this is
clear: either the imaginary part of f(z) is non-zero, in which case there is nothing to
prove. If the imaginary part of f(z) is zero, then

z − ζ = r(z − ζ ′)
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for some r ∈ R. Thinking of this in vectors, the vectors z − ζ and z − ζ ′ must have
the same direction, because the point does not lie on the segment between ζ and ζ ′.

10.2. Exercise (2). Let γ : [a, b] → C be a piecewise-differentiable closed path. We
show that n(ζ, γ) = 0 for all ζ ∈ C with |ζ| � 0. First, we know that if ζ ∈ C \ Im(γ),
then ∫

γ

1

z − ζ
dz = n(ζ, γ) · 2πi

Now, if |ζ| � 0, then the quantity
1

z − ζ

can be made arbitrarily small, where z ∈ Im(γ). This means that for ζ � 0, we have∣∣∣∣ 1

2πi

∫
γ

1

z − ζ
dz

∣∣∣∣ = |n(ζ, γ)| < ϵ

where ϵ > 0 is any real number. Since n(ζ, γ) is an integer, this implies that

n(ζ, γ) = 0

for such ζ. This completes the proof.

11. Lecture 14

11.1. Exercise (2). Let U be a domain and let γ be a piecewise-differentiable path
in U . Let fn be a sequence of continuous functions on U converging uniformly to f .
The claim is that

lim
n

∫
γ

fn(z)dz =

∫
γ

f(z)dz

This is a standard analysis statement about uniform convergence.

12. Leture 15

12.1. Exercise (1). Uniqueness of f̃ is trivial, because on U ′, f̃ restricts to f . From
there, use the fact that f̃ is continuous.

12.2. Exercise (2). Here, we show that the kth order derivative of (z − c)kg(z) at
z = c is k!g(c). By the general Leibniz formula, we have for any k ≥ 0,

[(z − c)k+1g(z)](k+1)(c) =
k+1∑
i=0

(
k + 1

i

)
((z − c)k+1)(k+1−i)(c)g(i)(c)

=
k+1∑
i=0

(
k + 1

i

)
(k + 1)!

(i)!
(z − c)i(c)g(i)(c)

= (k + 1)!g(c)
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12.3. Exercise (3). Suppose ζ2 ∈ Bc,R is fixed. By definition,

G(ζ1, ζ2) =

∫
γ

1

(z − ζ1)(z − ζ2)
dz

where γ is the path given by ∂Bc,R. Clearly, function h : Im(γ) → C given by

h(z) =
1

(z − ζ2)

is continuous. Also, note that

G(ζ1, ζ2) =

∫
γ

h(z)

(z − ζ1)
dz

Lemma 14.2 then implies that G(ζ1, ζ2) as a function of ζ1 is a holomorphic function.

12.4. Exercise (4). Let f : U \ {c} → C be a non-zero holomorphic function for
which c is a removable singularity, where U is an open neighborhood of c. We know
that f can be extended to a holomorphic function f̃ on U . Now, f̃ being holomorphic
on U is also analytic. Since f̃ is non-zero (because f is non-zero), not all f (k)(c) are
zero for k ∈ N. So, let k ∈ N be the smallest integer such that f (k)(c) 6= 0. By
Theorem 15.3 applied to n = k + 1, we see that

f(z) =
f (k)(c)

k!
(z − c)k + (z − c)k+1fk+1(z)

for z ∈ U , where fk+1 is a holomorphic function on U . So,

f(z) = (z − c)k
(
f (k)(c)

k!
+ (z − c)fk+1(z)

)
and the parenthesis computed at z = c is non-zero. This proves the claim.

12.5. Exercise (5). Let U be a domain and let f be a non-zero holomorphic function
on U . Since f is analytic on U , its zeroes are isolated. Let C be a compact subset of
U . We show that f has only finitely many zeros in C. For the sake of contradiction,
suppose f has infinitely many zeroes in C. Let {an} be a sequence of zeroes in C.
Then, this sequence has a convergent subsequence {ank

} in C, and note that since C
is compact, the limit also belongs to C. But this contradicts the fact that the zeroes
of f are isolated.

Next, suppose c ∈ U is a zero of f . Again, since the zeroes of f are isolated,
there is an open ball around c on which f is non-zero. Since f is analytic, it has a
Taylor expansion about the point c. So, it follows that there is some m > 0 such that
f (m)(c) 6= 0 (otherwise the Taylor expansion would imply that f is zero on around the
point). Choose the minimal such m. Then just like in the previous problem, we can
write

f(z) = (z − c)mf1(z)

for some holomorphic function f1 on U , such that f1(c) 6= 0. This m is called the order
of the zero c.

13. Lecture 16

13.1. Exercise (1). Let f(X) =
∑d

i=0 biX
i ∈ R[x] with bd > 0. Then observe that

lim
X→∞

f(X) = ∞

which can be obtained by factoring out the Xd term. This is what we wanted to show.
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13.2. Exercise (2). Consider the line x = 1 in the plane. Any z ∈ C on this line is
of the form z = 1 + ib, where b ∈ R. In that case, observe that

|ez| = |e1+ib| = |e| · |eib| = |e|

and this is the required counter example for Lemma 16.4.

14. Lecture 17

14.1. Exercise (1). This is part (3) of Proposition 17.4, and it easily follows from
part (1) of the same proposition.

14.2. Exercise (2). Here, we will give a proof of Proposition 17.5. Currently, there
is an error in Proposition 17.5 as it stands. I think it should be given that m ≤ 0. A
counterexample is the function f(z) = z with c = 0. So, I will give a proof assuming
m ≤ 0.

It is clear that (1) ⇐⇒ (2), because both conditions imply that c is a removable
singularity of f .

Now, let us show that (2) ⇐⇒ (3). Consider the holomorphic extension f̃ of f .
Clearly, c is a zero of f̃ , and hence has some order m > 0. So we can write

f̃(z) = (z − c)mf1(z)

where f1 is some holomorphic function on U such that f1(c) 6= 0. So, we see that
m− 1 ≥ 0, and also

f̃(z)

(z − c)m−1
= (z − c)f1(z)

which implies that
lim
z→c

|z − c|1−m|f(z)| = 0

Moreover, if n = m+ 1, then we see that

lim
z→c

|z − c|−n|f(z)| = ∞

and this proves the forward direction. To show that (3) =⇒ (2), observe that if such
an m ≤ 0 exists, then

lim
z→c

f(z) = 0

and this proves the equivalence.
Finally, let us show that (2) ⇐⇒ (4). If (2) is true, then put N to be the negative

of the order of c as a zero of the extension f̃ . It is clear that (4) =⇒ (2). This
completes the proof.

14.3. Exercise (3). Here, we will give a proof of Proposition 17.6.
The proof of this proposition is very similar to that of the proof given above of

Proposition 17.5; just consider the function 1/f , and repeat the steps.
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14.4. Exercise (4). Let U be a domain, c ∈ U and f holomorphic on U\{c}. Suppose
c is a pole of f . By Proposition 17.4 part (2), there is a positive integer N and a
neighborhood V of c in U such that

f(z) =
∞∑

k=−N

ak(z − c)k

on V \ {c}. Here a−N 6= 0. Let r > 0 such that Bc,r ⊆ V . Let γ : [0, 1] → V be the
path t 7→ c+ re2πit. By Exercise 2 of Lecture 14, we have∫

γ

f dz =
∞∑

k=−N

∫
γ

ak(z − c)k dz =

∫
γ

a−1

z − c
dz = a−12πi

and note that all other integrals have vanished because all the other (z − c)ks have
primitives on C \ {0}. This completes the proof.

15. Lecture 20

15.1. Exercise (1). The Jacobian of the map z → z is

J =

[
1 0
0 −1

]
Clearly, the above matrix is orthogonal with determinant −1. To, it preserves angles
but not orientation.
Exercise (3). Suppose f : U → C is conformal, and let p ∈ U . We know that
f ′(p) 6= 0. Now, recall that

Jf =

∂u

∂x

−∂v

∂x
∂v

∂x

∂u

∂x


and hence we see that

det(Jf) = ∂u

∂x

2

+
∂v

∂x

2

Since f ′(p) 6= 0, we see that det(Jf) > 0. In particular, Jf is invertible. So, one
can apply the inverse function theorem to f at the point p. It follows that f maps a
neighborhood of p homeomorphically onto its image.
15.2. Exercise (4). Let U ⊆ C be a domain, and let f be an injective holomorphic
function on U . We show that f is conformal on U , and it is enough to show that
f ′(z) 6= 0 for any z ∈ U . Consider reading this link for a proof.

https://math.stackexchange.com/questions/35304/proof-that-1-1-analytic-functions-have-nonzero-derivative?rq=1
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