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Problem 1. Prove that any finite set of strings belongs to DTIME(n).
Solution. SupposeL is any finite set of strings. The basic idea of our polynomial
time TMwill be to enumerate each string of L andwrite it on its tape, and check
whether the given input is equal to one of those strings. So, make a TMM that
does the following.

(1) On input x, enumerate each string ofL andwrite each string on the tape.
(2) Checkwhether x is equal to one of the stringswritten on the tape. Accept

if x is equal to one of the strings, otherwise reject.
Step (1) takes constant time, because enumerating a (fixed) number of strings
on the tape takes constant time. Step (2) takes time O(n) (where n = |x|), be-
cause we just need to scan the input to check equality with one of the strings.
So, this machine is a DTM that runs in time O(n), and hence L ∈ DTIME(n). ■
Problem 2. Prove that if there is a polynomial time algorithm that converts a
CNF formula to a DNF formula preserving the satisfiability, then P = NP.
Solution. First, supposewe have a DNF formula ϕ. We claim that ϕ is satisfiable
if and only if each clause of ϕ does not contain both x and ¬x, where x is some
variable. To show this, observe that ϕ is satisfiable if and only if atleast one
clause of ϕ is satisfiable (because ϕ is an OR of ANDs). Now, take any clause C
of ϕ. We have

C = k1 ∧ k2 ∧ · · · ∧ km
where each ki is a literal andm ∈ N is an integer. Now, by assigning each literal
k1, ..., km a value of 1, we can satisfy C , and this works if and only if C does not
contain both x and ¬x for some variable x. This proves our claim.
So, to check whether a formula ϕ in DNF is satisfiable or not, we only need

to check the existence of x and ¬x inside a clause for some variable x. This
can clearly be done in linear time. This means that DNF is in P. But, this means
that CNF-SAT is in P, and hence this implies that P = NP, because CNF-SAT is
NP-complete. This completes our proof. ■
Problem 3. Show that if P = NP, then every language A ∈ P such that A ̸= ϕ
and A ̸= Σ∗ is NP-complete. Explain why ϕ and Σ∗ can never be NP-complete.
Solution. Suppose P = NP, and let A ∈ P such that A ̸= ϕ and A ̸= Σ∗. Clearly,
we see that A ∈ NP. Now, let x, y ∈ Σ∗ be such that x ∈ A and y /∈ A, and fix
these x, y. Let B ∈ NP, which means that B ∈ P. Define a map f : Σ∗ → Σ∗ as
follows.

f(s) =

{
x , if s ∈ B

y , otherwise
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Clearly, this is a Karp-reduction from B to A. f is also polynomial time com-
putable, and the TM to compute f works as follows:

(1) On input s, use the polynomial time TM for B to check whether s ∈ B or
s /∈ B. If s ∈ B, output the word x on the output tape. If s /∈ B, output the
word y on the output tape.

Clearly, the running time of the above TM is polynomial, and hence f is polyno-
mially computable. So, it follows that B ≤P A, and hence A is NP-complete.
Now, we show that ϕ and Σ∗ can never be NP-complete. Consider the lan-

guage ϕ, and the proof for Σ∗ is similar. Suppose ϕ is NP-complete. This would
mean that all problems A ∈ NP are polynomial Karp-reducible to ϕ, i.e there is
some polynomially computable function f : Σ∗ → Σ∗ such that

x ∈ A ⇐⇒ f(x) ∈ ϕ , ∀x ∈ Σ∗

However, this implies that A = ϕ. However, we know that there are non-empty
languages that are inNP, for instance,wecan takeanyfinite language. A similar
reason shows why Σ∗ cannot be NP-complete. This completes the proof. ■

Problem 4. Let S = {ψ |ψ is Satisfiable 3CNF formula}. Suppose we have a
deterministic poly-time Turing machine MS for deciding S. Describe a deter-
ministic poly-time Turing machineM that given a 3CNF formula ϕ can write the
satisfying assignment for ϕ on its output tape (usingMS).

Solution. Let ϕ = ϕ(x1, . . . , xn). The following algorithm describes a determin-
istic poly-time Turing machineM which will write the satisfying assignment for
ϕ (if ϕ is a satisfying assignment) on it’s output tape:

Algorithm 1WRITE-SATISFYING-ASSIGNMENT (ϕ)
RunMS on ϕ
if ϕ is a satisfying assignment then

for i ∈ [1 . . . n] do
Assign xi = 1 and then runMs on ϕ
ifMS returns true then
Write 1 on ith cell of the output tape and assign xi = 1 permanently

else
Write 0 on ith cell of the output tape and assign xi = 0 permanently

end if
end for

else
No satisfying assignment

end if

The above algorithm will terminate because there are exactly n iterations of
the for loop, and in each iteration, MS is being called, which is a terminating
algorithm. It is deterministic becauseMS is deterministic. Clearly, this is a poly-
time algorithm since it invokesMS exactly n times, andMS itself is a poly-time
algorithm. ■
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Problem 5. A language L is said to be a unary language if L ⊆ {1}∗. Prove that
if all unary languages in NP are also in P, then EXP = NEXP.
Proof. Suppose all unary languages in NP are also in P. Now, let L ∈ NEXP,
and let N be an O(2nc

) time NDTM deciding L, where c is some positive integer.
Without loss of generality, suppose on input x, themachineN halts in 2|x|c steps.
Now, consider the language

L′ := {1x10y | x ∈ L, y ≥ 2|x|
c}

(here 1x10
y
= 1m, where m is the integer whose binary representation is x10y)

and clearly, L′ is a unary language. Observe that

x ∈ L ⇐⇒ 1x10
2|x|

c

∈ L′(∗)
and we will be using this equivalence below.
We now show that L′ is inNP. To see this, consider the following algorithm for

L′:
(1) On input 1m, first check whetherm = x10y for some x ∈ {0, 1}∗ and some

y. If not, then simply reject.
(2) Ifm is of the formm = x10y, then run the NDTMN on x for atmost y steps.

If N halts within this time, then return N ’s answer, otherwise reject.
Clearly, this algorithm is a polynomial time algorithm, because step (2) runs for
atmost y steps, and y is part of our input. Hence we see that L′ ∈ NP. But by
our assumption, we know that L′ ∈ P, i.e there is some DTM M deciding L′ in
polynomial time.
So, we can give a O(2nc

) time DTMM ′ for the language L. The algorithm is as
follows.

(1) On input x, generate the string x102|x|
c

. This takes time O(2|x|c). Write it
somewhere onM ’s tape.

(2) Now, run the machineM on the input 1x102
|x|c

, and returnM ’s answer.
Observe that step (2) runs in polynomial time on the length |x|+1+2|x|

c , which is
exponential in |x|. Hence, it follows thatM ′ is a O(2nc

) time DTM, and the equiv-
alence in (∗) shows that M ′ accepts the language L. So we have shown that
NEXP ⊆ EXP, and hence this shows that EXP = NEXP, and this completes our
proof. ■
Problem 6. Prove or disprove: A language L is NP-complete iff Lc is coNP-
complete.
Solution. We first show that if L is NP-complete, then Lc is coNP-complete as
follows:

(1) L ∈ NP⇒ Lc ∈ coNP.
(2) For all A ∈ NP, let fA be the reduction of A to L.
(3)

x ∈ A⇔ f(x) ∈ L

⇒ x /∈ A⇔ f(x) /∈ L

⇒ x ∈ Ac ⇔ f(x) ∈ Lc

Thus for all Ac ∈ coNP, Ac ≤ Lc. Hence Lc is coNP-complete.
Now we show that if Lc is coNP-complete, then L is NP-complete as follows:
(1) Lc ∈ coNP⇒ L ∈ NP.
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(2) For all Ac ∈ coNP, let fAc be the reduction of Ac to Lc.
(3)

x ∈ Ac ⇔ f(x) ∈ Lc

⇒ x /∈ Ac ⇔ f(x) /∈ Lc

⇒ x ∈ A⇔ f(x) ∈ L

Thus for all A ∈ NP, A ≤ L. Hence L is NP-complete. ■

Problem 7. Prove or disprove the following statements:
(1) If L1, L2 ∈ NP , then L1 ∪ L2 ∈ NP and L1 ∩ L2 ∈ NP.

Solution. Let B1(x,w) be the verifier which checks whether x is a yes-
instance of L1 with certificate w, and similarly let B1(x,w) be the verifier
which checks whether x is a yes-instance of L1 with certificate w. Now
we define a verifier B3(x,w) for L1 ∪ L2 as follows:

B3(x,w) = B1(x,w) ∨B2(x,w).

Note that B3 is in P because both B1 and B2 are in P. Since B3(x,w) is a
yes-instance if and only if atleast one of the B1(x,w) or B2(x,w) is a yes-
instance. In other words, x is a yes-instance of L1 ∪ L2 if and only if it is
a yes-instance of atleast one of L1 and L2.
Similarly, we define a verifier B3(x,w) for L1 ∩ L2 as follows:

B3(x,w) = B1(x,w) ∧B2(x,w).

Note that B3 is in P because both B1 and B2 are in P. Since B3(x,w)
is a yes-instance if and only if both of the B1(x,w) or B2(x,w) are yes-
instances. In other words, x is a yes-instance of L1 ∩ L2 if and only if it
is the yes-instance for both L1 and L2. Hence we have showed that both
L1 ∪ L2 and L1 ∩ L2 are in NP. ■

(2) Let L be an NP-complete problem. If L ∈ NP and Lc ∈ NP, then NP =
co-NP.

Solution. Since Lc ∈ NP, this means that L ∈ coNP and therefore, L ∈
NP ∩ coNP. Similarly, Lc ∈ NP ∩ coNP. From Problem 6, we get that Lc

is coNP-complete. This means that for all A ∈ coNP, there is a poly-time
reduction from A to Lc, but Lc ∈ NP. Thus for all A ∈ coNP, we have A ∈
NP. Therefore, coNP⊆NP. Similarly, we can show thatNP⊆ coNP. Hence
NP = coNP. ■

(3) P ⊆ NP ∩ coNP

Solution. We already know that P ⊆ NP. Now let L ∈ P. Then we can de-
cide whether x /∈ L simply by running x on L and in poly-time we will get
to know whether x /∈ L. Thus L ∈ coNP. This leads to P ⊆ coNP. Hence
we get that P ⊆ NP ∩ coNP. ■
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Problem 8.1. For any function f(n) ≥ log n, show that
NSPACE(f(n)) = coNSPACE(f(n))

Proof. LetM be a non-deterministic Turing Machine which solves problems in
NSPACE(f(n)) is O(f(n)) space. Let G = (V,E) be the configuration graph ofM
on inputw, with |V | = 2O(f(n)). To show thatNSPACE(f(n))= coNSPACE(f(n)), we
have to show that ifL ∈NSPACE(f(n)), thenLc ∈NSPACE(f(n)). L ∈NSPACE(f(n)),
means there exists a path from s ∈ V to t ∈ V , where s is the initial configura-
tion and t is the accepting configuration. On the other hand, Lc ∈ NSPACE(f(n))
means: it can be verified that there exists no path from s to t in O(f(n)) space.
Let countk denotes the number of vertices which have a path from s of length at
most k. Note that count1 = deg(s) + 1. We can compute counti+1 from counti by
guessing a vertex u, and guessing a path from s to u of length at most i. If there
exists a path from s to u of length at most i, we count all the neighbours of u as
vertices who have a path from s of length at most i+1. This sub-routine can be
done using log(2O(f(n))) = O(f(n)) space, because we only need to keep track
of two vertices at one time and then we can re-use the space (the same idea
which we used in proving NL = coNL). Nowwe define an algorithm to determine
whether a vertex v has a path from s of length at most k:

Algorithm 2 REACH-IN-k(G, s, v, k)
for each u ∈ V − v do
bool = Guess whether there is a path from s to u of length at most k
countcheck = countcheck + bool {bool = 0 when false and 1 when true}
if bool = true then
Guess a path from s to u of length at most k
if the path doesn’t reach u then

return reject
end if

end if
end for
if countcheck = count then

return reject
end if
if countcheck = count - 1 then
Guess a path from s to v
if a path of length at most k exists then

return accept
end if

else
return reject

end if

Again, note that this algorithm can decide whether v is reachable from s in at
most k steps by using O(f(n)) space. Now we can check whether there exists
any path from s to t as follows:
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Algorithm 3 REACHABILITY-OF-t
for i in range |V | do
Bool = REACH-IN-k(G, s, v, i)
if Bool = true then
reject

else
accept

end if
end for

Thus we have showed that we Lc ∈ NSPACE(f(n)), which implies that L ∈
coNSPACE(f(n)). Thus NSPACE(f(n)) = coNSPACE(f(n)). ■

Problem 8.2. Is EXPEXP = EXP? Justify your answer.
Solution. No, the given inequality is not true, and we now show this. First, ob-
serve that

2n
clog n = o

(
22

nc
)

Now, we know that EXP is the class of all those problems that are solvable in
O(2n

c
) time for some constant c. By the Time-HierarchyTheorem, there is some

problem inDTIME
(
22

nc
)
that is not inEXP. Wewill nowshow thatDTIME

(
22

nc
)
⊆

EXPEXP, and this will show that EXPEXP ̸= EXP.
So, take any problem L ∈ DTIME

(
22

nc
)
for some constant c, and letM be an

O
(
22

nc
)
time DTM deciding L. Define the language

L′ := {x102|x|
c

| x ∈ L}
Now, observe that L′ ∈ DTIME(2nc

), because the following algorithm decides
the language L′:

(1) On input y, check if y is of the form y = x102
|x|c . If not, then simply reject.

(2) If y is of the form y = x102
|x|c , then run the machine M on the input x.

ReturnM ’s answer.
Observe that the above algorithm runs in time 2|y|

c , because |x| = O(log|y|). So,
we have reduced the problem L to a problem in EXP, namely L′. So, it follows
thatL ∈ EXPEXP, becausewe can pad the input exponentially, and call the oracle
for L′ to decide the language L. This completes the proof. ■

Problem 9. Σ2SAT is the following decision problem: Given a CNF formula ϕ,
decide whether ψ = ∃x ∀y ϕ(x, y) = 1 is true. Show that if P=NP, then Σ2SAT ∈ P.
Solution. Firstly, we will show that Σ2SAT ∈ Σp

2. In other words, we will show
that
ϕ is in Σ2SAT⇔ ∃x, ∀ y : (ϕ, x, y) is a yes-instance of B,
whereB is a decision problem in P regarding (ϕ, x, y), and where |x|+ |y|+ |ϕ| =
poly(|ϕ|).

Clearly |x|+|y|+|ϕ| = poly(|ϕ|) because x and y are the inputs to ϕ. B is a verifier
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which takes argument (ϕ, x, y) such that |x| + |y| = no. of variables in ϕ. On the
argument (ϕ, x, y), B verifies whether ϕ(x, y) is satisfiable or not, which takes
poly-time in regards to |ϕ|. This implies that B runs in poly-time in regards to
|x|+ |y|+ |ϕ|. Therefore, B is in P. Thus we have showed that Σ2SAT ∈ Σp

2.

If P = NP, then it was proven in the class that polynomial hierarchy collapses to
P, and hence Σp

2 = P, which means that Σ2SAT is in P. ■

Problem10. Recall the definition of a log-space transducer. A log-space trans-
ducerM , which is a TuringMachine, is said to compute a log-space computable
function f : Σ∗ → Σ∗ if on runningM on inputw ∈ Σ∗, it writes f(w) on the output
tape.
LetM1 andM2 be two log-space transducers computing the log-space com-

putable functions f1 and f2. Show that there exists a log-space transducerM
that computes the function f : Σ∗ → Σ∗ such that ∀w ∈ Σ∗, we have f(w) =
f1(f2(w)). In other words, show that the composition of two log-space com-
putable functions is log-space computable.

Solution. First, we make the following observation: there is some polynomial q
such that for all w ∈ Σ∗, we have

|f2(w)| = q(|w|)

i.e the length of f2(w) is some polynomial of the length of w. This is true be-
cause f2 is a polynomial-time machine; if we have an input w, then there are |w|
possibilities for the position of the input head, and there are O(2log|w|) = O(|w|)
possible work tape configurations (because M2 uses only logarithmic space).
So, the total number of configurations isO(|w|2), which is polynomial in |w|. The
machine M2 cannot repeat any configurations, and hence M2 runs in polyno-
mial time. This immediately implies that the length of f2(w) is polynomial in the
length of w, and that proves our claim.
Now, our log-space transducer for the composition f1◦f2will work as follows:

suppose our input is w ∈ Σ∗. We use the transducerM2 to generate the string
f2(w). Then, we pass the input f2(w) to the transducerM1 to generate the string
f1(f2(w)). But there is a catch: since we are only allowed O(log|w|) space, we
cannot store the string f2(w). However, note thatM1 does not need all of f2(w)
to operate, it only needs one bit at a time.
So, we make a tranducerM which works as follows.
(1) On input w, run the transducerM1 on the string f2(w); keep track ofM1’s

input tape head, and each time the transducer M1 needs the ith bit of
f2(w), run the transducer M2 on w and generate the ith bit of f2(w) and
pass it toM1, ignoring the rest of the bits generated. The output will be
the output generated byM1 on the string f2(w).

We now show that M uses only logarithmic space. To see this, observe that
the only space that we need to account for is the space that M1 uses on the
string f2(w), since we are generated f2(w) bit-by-bit. We know that on input
f2(w),M1 uses O(log|f2(w)|) space. But, as in the previous paragraph, we know
that |f2(w)| = q(|w|) for some polynomial q, and this means that

O(log|f2(w)|) = O(log(q(|w|))) = O(log|w|)
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and hence the overall space used is logarithmic. So, it follows that the compo-
sition of two log-space computable functions is log-space computable, and this
completes our proof. ■
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