COMPUTATIONAL COMPLEXITY HW-1

SIDDHANT CHAUDHARY, AMIK RAJ BEHERA

BMC201953, BMC201908

Problem 1. Prove that any finite set of strings belongs to DTIME (n).
Solution. Suppose L is any finite set of strings. The basic idea of our polynomial time TM will be to enumerate each string of L and write it on its tape, and check whether the given input is equal to one of those strings. So, make a TM M that does the following.
(1) On input x, enumerate each string of L and write each string on the tape.
(2) Check whether x is equal to one of the strings written on the tape. Accept if x is equal to one of the strings, otherwise reject.
Step (1) takes constant time, because enumerating a (fixed) number of strings on the tape takes constant time. Step (2) takes time $O(n)$ (where $n=|x|$), because we just need to scan the input to check equality with one of the strings. So, this machine is a DTM that runs in time $O(n)$, and hence $L \in \operatorname{DTIME}(n)$.

Problem 2. Prove that if there is a polynomial time algorithm that converts a CNF formula to a DNF formula preserving the satisfiability, then $\mathbf{P}=\mathbf{N} \mathbf{P}$.
Solution. First, suppose we have a DNF formula ϕ. We claim that ϕ is satisfiable if and only if each clause of ϕ does not contain both x and $\neg x$, where x is some variable. To show this, observe that ϕ is satisfiable if and only if atleast one clause of ϕ is satisfiable (because ϕ is an OR of ANDs). Now, take any clause C of ϕ. We have

$$
C=k_{1} \wedge k_{2} \wedge \cdots \wedge k_{m}
$$

where each k_{i} is a literal and $m \in \mathbb{N}$ is an integer. Now, by assigning each literal k_{1}, \ldots, k_{m} a value of 1 , we can satisfy C, and this works if and only if C does not contain both x and $\neg x$ for some variable x. This proves our claim.

So, to check whether a formula ϕ in DNF is satisfiable or not, we only need to check the existence of x and $\neg x$ inside a clause for some variable x. This can clearly be done in linear time. This means that DNF is in \mathbf{P}. But, this means that CNF-SAT is in \mathbf{P}, and hence this implies that $\mathbf{P}=\mathbf{N P}$, because CNF-SAT is NP-complete. This completes our proof.

Problem 3. Show that if $\mathbf{P}=\mathbf{N} \mathbf{P}$, then every language $A \in \mathbf{P}$ such that $A \neq \phi$ and $A \neq \Sigma^{*}$ is NP-complete. Explain why ϕ and Σ^{*} can never be NP-complete.
Solution. Suppose $\mathbf{P}=\mathbf{N} \mathbf{P}$, and let $A \in \mathbf{P}$ such that $A \neq \phi$ and $A \neq \Sigma^{*}$. Clearly, we see that $A \in \mathbf{N P}$. Now, let $x, y \in \Sigma^{*}$ be such that $x \in A$ and $y \notin A$, and fix these x, y. Let $B \in \mathbf{N P}$, which means that $B \in \mathbf{P}$. Define a map $f: \Sigma^{*} \rightarrow \Sigma^{*}$ as follows.

$$
f(s)= \begin{cases}x & , \text { if } s \in B \\ y & , \text { otherwise }\end{cases}
$$

Clearly, this is a Karp-reduction from B to A. f is also polynomial time computable, and the TM to compute f works as follows:
(1) On input s, use the polynomial time TM for B to check whether $s \in B$ or $s \notin B$. If $s \in B$, output the word x on the output tape. If $s \notin B$, output the word y on the output tape.
Clearly, the running time of the above TM is polynomial, and hence f is polynomially computable. So, it follows that $B \leq_{P} A$, and hence A is NP-complete.

Now, we show that ϕ and Σ^{*} can never be NP-complete. Consider the language ϕ, and the proof for Σ^{*} is similar. Suppose ϕ is NP-complete. This would mean that all problems $A \in \mathbf{N P}$ are polynomial Karp-reducible to ϕ, i.e there is some polynomially computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that

$$
x \in A \Longleftrightarrow f(x) \in \phi \quad, \quad \forall x \in \Sigma^{*}
$$

However, this implies that $A=\phi$. However, we know that there are non-empty languages that are in NP, for instance, we can take any finite language. A similar reason shows why Σ^{*} cannot be NP-complete. This completes the proof.

Problem 4. Let $S=\{\psi \mid \psi$ is Satisfiable 3CNF formula $\}$. Suppose we have a deterministic poly-time Turing machine M_{S} for deciding S. Describe a deterministic poly-time Turing machine M that given a 3CNF formula ϕ can write the satisfying assignment for ϕ on its output tape (using M_{S}).

Solution. Let $\phi=\phi\left(x_{1}, \ldots, x_{n}\right)$. The following algorithm describes a deterministic poly-time Turing machine M which will write the satisfying assignment for ϕ (if ϕ is a satisfying assignment) on it's output tape:

```
Algorithm 1 WRITE-SATISFYING-ASSIGNMENT ( \(\phi\) )
    Run \(M_{S}\) on \(\phi\)
    if \(\phi\) is a satisfying assignment then
        for \(i \in[1 \ldots n]\) do
            Assign \(x_{i}=1\) and then run \(M_{s}\) on \(\phi\)
            if \(M_{S}\) returns true then
                Write 1 on \(i^{\text {th }}\) cell of the output tape and assign \(x_{i}=1\) permanently
            else
                Write 0 on \(i^{\text {th }}\) cell of the output tape and assign \(x_{i}=0\) permanently
            end if
        end for
    else
        No satisfying assignment
    end if
```

The above algorithm will terminate because there are exactly n iterations of the for loop, and in each iteration, M_{S} is being called, which is a terminating algorithm. It is deterministic because M_{S} is deterministic. Clearly, this is a polytime algorithm since it invokes M_{S} exactly n times, and M_{S} itself is a poly-time algorithm.

Problem 5. A language L is said to be a unary language if $L \subseteq\{1\}^{*}$. Prove that if all unary languages in NP are also in \mathbf{P}, then EXP $=\mathbf{N E X P}$.
Proof. Suppose all unary languages in NP are also in \mathbf{P}. Now, let $L \in$ NEXP, and let N be an $O\left(2^{n^{c}}\right)$ time NDTM deciding L, where c is some positive integer. Without loss of generality, suppose on input x, the machine N halts in $2^{|x|^{c}}$ steps. Now, consider the language

$$
L^{\prime}:=\left\{1^{x 10^{y}} \mid x \in L, y \geq 2^{|x|^{c}}\right\}
$$

(here $1^{x 10^{y}}=1^{m}$, where m is the integer whose binary representation is $x 10^{y}$) and clearly, L^{\prime} is a unary language. Observe that

$$
\begin{equation*}
x \in L \Longleftrightarrow 1^{x 10^{2|x|^{c}}} \in L^{\prime} \tag{*}
\end{equation*}
$$

and we will be using this equivalence below.
We now show that L^{\prime} is in NP. To see this, consider the following algorithm for L^{\prime} :
(1) On input 1^{m}, first check whether $m=x 10^{y}$ for some $x \in\{0,1\}^{*}$ and some y. If not, then simply reject.
(2) If m is of the form $m=x 10^{y}$, then run the NDTM N on x for atmost y steps. If N halts within this time, then return N 's answer, otherwise reject.
Clearly, this algorithm is a polynomial time algorithm, because step (2) runs for atmost y steps, and y is part of our input. Hence we see that $L^{\prime} \in \mathbf{N P}$. But by our assumption, we know that $L^{\prime} \in \mathbf{P}$, i.e there is some DTM M deciding L^{\prime} in polynomial time.

So, we can give a $O\left(2^{n^{c}}\right)$ time DTM M^{\prime} for the language L. The algorithm is as follows.
(1) On input x, generate the string $x 10^{2^{|x|^{c}}}$. This takes time $O\left(2^{|x|^{c}}\right)$. Write it somewhere on M's tape.
(2) Now, run the machine M on the input $1^{x 10^{\left.2 x\right|^{c}}}$, and return M 's answer. Observe that step (2) runs in polynomial time on the length $|x|+1+2^{|x|^{c}}$, which is exponential in $|x|$. Hence, it follows that M^{\prime} is a $O\left(2^{n^{c}}\right)$ time DTM, and the equivalence in $(*)$ shows that M^{\prime} accepts the language L. So we have shown that NEXP \subseteq EXP, and hence this shows that EXP $=$ NEXP, and this completes our proof.

Problem 6. Prove or disprove: A language L is NP-complete iff L^{c} is coNPcomplete.

Solution. We first show that if L is NP-complete, then L^{c} is coNP-complete as follows:
(1) $L \in \mathbf{N} \mathbf{P} \Rightarrow L^{c} \in \mathbf{c o N P}$.
(2) For all $A \in \mathbf{N P}$, let f_{A} be the reduction of A to L.
(3)

$$
\begin{gathered}
x \in A \Leftrightarrow f(x) \in L \\
\Rightarrow x \notin A \Leftrightarrow f(x) \notin L \\
\Rightarrow x \in A^{c} \Leftrightarrow f(x) \in L^{c}
\end{gathered}
$$

Thus for all $A^{c} \in \mathbf{c o N P}, A^{c} \leq L^{c}$. Hence L^{c} is coNP-complete.
Now we show that if L^{c} is coNP-complete, then L is NP-complete as follows:
(1) $L^{c} \in \mathbf{c o N P} \Rightarrow L \in \mathbf{N} \mathbf{P}$.
(2) For all $A^{c} \in \mathbf{c o N P}$, let $f_{A^{c}}$ be the reduction of A^{c} to L^{c}.
(3)

$$
\begin{gathered}
x \in A^{c} \Leftrightarrow f(x) \in L^{c} \\
\Rightarrow x \notin A^{c} \Leftrightarrow f(x) \notin L^{c} \\
\Rightarrow x \in A \Leftrightarrow f(x) \in L
\end{gathered}
$$

Thus for all $A \in \mathbf{N} \mathbf{P}, A \leq L$. Hence L is $\mathbf{N P}$-complete.

Problem 7. Prove or disprove the following statements:
(1) If $L_{1}, L_{2} \in \mathbf{N P}$, then $L_{1} \cup L_{2} \in \mathbf{N P}$ and $L_{1} \cap L_{2} \in \mathbf{N P}$.

Solution. Let $B_{1}(x, w)$ be the verifier which checks whether x is a yesinstance of L_{1} with certificate w, and similarly let $B_{1}(x, w)$ be the verifier which checks whether x is a yes-instance of L_{1} with certificate w. Now we define a verifier $B_{3}(x, w)$ for $L_{1} \cup L_{2}$ as follows:

$$
B_{3}(x, w)=B_{1}(x, w) \vee B_{2}(x, w)
$$

Note that B_{3} is in \mathbf{P} because both B_{1} and B_{2} are in \mathbf{P}. Since $B_{3}(x, w)$ is a yes-instance if and only if atleast one of the $B_{1}(x, w)$ or $B_{2}(x, w)$ is a yesinstance. In other words, x is a yes-instance of $L_{1} \cup L_{2}$ if and only if it is a yes-instance of atleast one of L_{1} and L_{2}.

Similarly, we define a verifier $B_{3}(x, w)$ for $L_{1} \cap L_{2}$ as follows:

$$
B_{3}(x, w)=B_{1}(x, w) \wedge B_{2}(x, w) .
$$

Note that B_{3} is in \mathbf{P} because both B_{1} and B_{2} are in \mathbf{P}. Since $B_{3}(x, w)$ is a yes-instance if and only if both of the $B_{1}(x, w)$ or $B_{2}(x, w)$ are yesinstances. In other words, x is a yes-instance of $L_{1} \cap L_{2}$ if and only if it is the yes-instance for both L_{1} and L_{2}. Hence we have showed that both $L_{1} \cup L_{2}$ and $L_{1} \cap L_{2}$ are in NP.
(2) Let L be an $\mathbf{N} \mathbf{P}$-complete problem. If $L \in \mathbf{N} \mathbf{P}$ and $L^{c} \in \mathbf{N} \mathbf{P}$, then $\mathbf{N} \mathbf{P}=$ co-NP.

Solution. Since $L^{c} \in \mathbf{N P}$, this means that $L \in \mathbf{c o N P}$ and therefore, $L \in$ $\mathbf{N P} \cap \mathbf{c o N P}$. Similarly, $L^{c} \in \mathbf{N P} \cap \mathbf{c o N P}$. From Problem 6, we get that L^{c} is coNP-complete. This means that for all $A \in \mathbf{c o N P}$, there is a poly-time reduction from A to L^{c}, but $L^{c} \in \mathbf{N P}$. Thus for all $A \in \mathbf{c o N P}$, we have $A \in$ $\mathbf{N P}$. Therefore, coNP $\subseteq \mathbf{N P}$. Similarly, we can show that $\mathbf{N P} \subseteq \mathbf{c o N P}$. Hence NP = coNP.
(3)
$\mathbf{P} \subseteq \mathbf{N P} \cap \mathbf{c o N P}$
Solution. We already know that $\mathbf{P} \subseteq \mathbf{N P}$. Now let $L \in \mathbf{P}$. Then we can decide whether $x \notin L$ simply by running x on L and in poly-time we will get to know whether $x \notin L$. Thus $L \in \mathbf{c o N P}$. This leads to $\mathbf{P} \subseteq$ coNP. Hence we get that $\mathbf{P} \subseteq \mathbf{N} \mathbf{P} \cap \mathbf{c o N P}$.

Problem 8.1. For any function $f(n) \geq \log n$, show that

$$
\operatorname{NSPACE}(f(n))=\mathbf{c o N S P A C E}(f(n))
$$

Proof. Let M be a non-deterministic Turing Machine which solves problems in NSPACE $(f(n))$ is $O(f(n))$ space. Let $G=(V, E)$ be the configuration graph of M on input w, with $|V|=2^{O(f(n))}$. To show that NSPACE $(f(n))=\operatorname{coNSPACE}(f(n))$, we have to show that if $L \in \operatorname{NSPACE}(f(n))$, then $L^{c} \in \operatorname{NSPACE}(f(n)) . L \in \operatorname{NSPACE}(f(n))$, means there exists a path from $s \in V$ to $t \in V$, where s is the initial configuration and t is the accepting configuration. On the other hand, $L^{c} \in \operatorname{NSPACE}(f(n))$ means: it can be verified that there exists no path from s to t in $O(f(n))$ space. Let count $_{k}$ denotes the number of vertices which have a path from s of length at
most k. Note that count $_{1}=\operatorname{deg}(s)+1$. We can compute count ${ }_{i+1}$ from count ${ }_{i}$ by guessing a vertex u, and guessing a path from s to u of length at most i. If there exists a path from s to u of length at most i, we count all the neighbours of u as vertices who have a path from s of length at most $i+1$. This sub-routine can be done using $\log \left(2^{O(f(n))}\right)=O(f(n))$ space, because we only need to keep track of two vertices at one time and then we can re-use the space (the same idea which we used in proving NL = coNL). Now we define an algorithm to determine whether a vertex v has a path from s of length at most k :

```
Algorithm 2 REACH-IN-k \((G, s, v, k)\)
    for each \(u \in V-v\) do
        bool \(=\) Guess whether there is a path from \(s\) to \(u\) of length at most \(k\)
        countcheck \(=\) countcheck + bool \(\{\) bool \(=0\) when false and 1 when true \(\}\)
        if bool = true then
            Guess a path from \(s\) to \(u\) of length at most \(k\)
            if the path doesn't reach \(u\) then
                return reject
            end if
        end if
    end for
    if countcheck = count then
        return reject
    end if
    if countcheck \(=\) count -1 then
        Guess a path from \(s\) to \(v\)
        if a path of length at most \(k\) exists then
            return accept
        end if
    else
        return reject
    end if
```

Again, note that this algorithm can decide whether v is reachable from s in at most k steps by using $O(f(n))$ space. Now we can check whether there exists any path from s to t as follows:

```
Algorithm 3 REACHABILITY-OF-t
    for i in range \(|V|\) do
        Bool \(=\) REACH-IN-k \((G, s, v, i)\)
        if \(\mathrm{Bool}=\) true then
            reject
        else
            accept
        end if
    end for
```

Thus we have showed that we $L^{c} \in \operatorname{NSPACE}(f(n))$, which implies that $L \in$ $\operatorname{coNSPACE}(f(n))$. Thus $\operatorname{NSPACE}(f(n))=\operatorname{coNSPACE}(f(n))$.

Problem 8.2. Is EXP ${ }^{\text {EXP }}=$ EXP? Justify your answer.
Solution. No, the given inequality is not true, and we now show this. First, observe that

$$
2^{n^{c}} \log n=o\left(2^{2^{n^{c}}}\right)
$$

Now, we know that EXP is the class of all those problems that are solvable in $O\left(2^{n^{c}}\right)$ time for some constant c. By the Time-Hierarchy Theorem, there is some problem in DTIME $\left(2^{2^{n^{c}}}\right)$ that is not in EXP. We will now show that DTIME $\left(2^{2^{n^{c}}}\right) \subseteq$ EXP ${ }^{\text {EXP }}$, and this will show that EXP ${ }^{\text {EXP }} \neq \mathbf{E X P}$.

So, take any problem $L \in \operatorname{DTIME}\left(2^{2^{n^{c}}}\right)$ for some constant c, and let M be an $O\left(2^{2^{n^{c}}}\right)$ time DTM deciding L. Define the language

$$
L^{\prime}:=\left\{x 10^{2^{|x|^{c}}} \mid x \in L\right\}
$$

Now, observe that $L^{\prime} \in \mathbf{D T I M E}\left(2^{n^{c}}\right)$, because the following algorithm decides the language L^{\prime} :
(1) On input y, check if y is of the form $y=x 10^{2|x|^{c}}$. If not, then simply reject.
(2) If y is of the form $y=x 10^{2^{|x|^{c}}}$, then run the machine M on the input x. Return M's answer.
Observe that the above algorithm runs in time $2^{|y|^{c}}$, because $|x|=O(\log |y|)$. So, we have reduced the problem L to a problem in EXP, namely L^{\prime}. So, it follows that $L \in \mathbf{E X P}^{\mathbf{E X P}}$, because we can pad the input exponentially, and call the oracle for L^{\prime} to decide the language L. This completes the proof.

Problem 9. Σ_{2} SAT is the following decision problem: Given a CNF formula ϕ, decide whether $\psi=\exists x \forall y \phi(x, y)=1$ is true. Show that if $\mathbf{P}=\mathbf{N P}$, then Σ_{2} SAT $\in \mathbf{P}$.

Solution. Firstly, we will show that $\Sigma_{2} \mathrm{SAT} \in \Sigma_{2}^{p}$. In other words, we will show that
ϕ is in Σ_{2} SAT $\Leftrightarrow \exists x, \forall y:(\phi, x, y)$ is a yes-instance of B,
where B is a decision problem in \mathbf{P} regarding (ϕ, x, y), and where $|x|+|y|+|\phi|=$ $\operatorname{poly}(|\phi|)$.

Clearly $|x|+|y|+|\phi|=\operatorname{poly}(|\phi|)$ because x and y are the inputs to $\phi . B$ is a verifier
which takes argument (ϕ, x, y) such that $|x|+|y|=$ no. of variables in ϕ. On the argument $(\phi, x, y), B$ verifies whether $\phi(x, y)$ is satisfiable or not, which takes poly-time in regards to $|\phi|$. This implies that B runs in poly-time in regards to $|x|+|y|+|\phi|$. Therefore, B is in \mathbf{P}. Thus we have showed that Σ_{2} SAT $\in \Sigma_{2}^{p}$.

If $\mathbf{P}=\mathbf{N P}$, then it was proven in the class that polynomial hierarchy collapses to \mathbf{P}, and hence $\Sigma_{2}^{p}=\mathbf{P}$, which means that Σ_{2} SAT is in \mathbf{P}.

Problem 10. Recall the definition of a log-space transducer. A log-space transducer M, which is a Turing Machine, is said to compute a log-space computable function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ if on running M on input $w \in \Sigma^{*}$, it writes $f(w)$ on the output tape.

Let M_{1} and M_{2} be two log-space transducers computing the log-space computable functions f_{1} and f_{2}. Show that there exists a log-space transducer M that computes the function $f: \Sigma^{*} \rightarrow \Sigma^{*}$ such that $\forall w \in \Sigma^{*}$, we have $f(w)=$ $f_{1}\left(f_{2}(w)\right)$. In other words, show that the composition of two log-space computable functions is log-space computable.

Solution. First, we make the following observation: there is some polynomial q such that for all $w \in \Sigma^{*}$, we have

$$
\left|f_{2}(w)\right|=q(|w|)
$$

i.e the length of $f_{2}(w)$ is some polynomial of the length of w. This is true because f_{2} is a polynomial-time machine; if we have an input w, then there are $|w|$ possibilities for the position of the input head, and there are $O\left(2^{\log |w|}\right)=O(|w|)$ possible work tape configurations (because M_{2} uses only logarithmic space). So, the total number of configurations is $O\left(|w|^{2}\right)$, which is polynomial in $|w|$. The machine M_{2} cannot repeat any configurations, and hence M_{2} runs in polynomial time. This immediately implies that the length of $f_{2}(w)$ is polynomial in the length of w, and that proves our claim.

Now, our log-space transducer for the composition $f_{1} \circ f_{2}$ will work as follows: suppose our input is $w \in \Sigma^{*}$. We use the transducer M_{2} to generate the string $f_{2}(w)$. Then, we pass the input $f_{2}(w)$ to the transducer M_{1} to generate the string $f_{1}\left(f_{2}(w)\right)$. But there is a catch: since we are only allowed $O(\log |w|)$ space, we cannot store the string $f_{2}(w)$. However, note that M_{1} does not need all of $f_{2}(w)$ to operate, it only needs one bit at a time.

So, we make a tranducer M which works as follows.
(1) On input w, run the transducer M_{1} on the string $f_{2}(w)$; keep track of M_{1} 's input tape head, and each time the transducer M_{1} needs the $i^{\text {th }}$ bit of $f_{2}(w)$, run the transducer M_{2} on w and generate the $i^{\text {th }}$ bit of $f_{2}(w)$ and pass it to M_{1}, ignoring the rest of the bits generated. The output will be the output generated by M_{1} on the string $f_{2}(w)$.
We now show that M uses only logarithmic space. To see this, observe that the only space that we need to account for is the space that M_{1} uses on the string $f_{2}(w)$, since we are generated $f_{2}(w)$ bit-by-bit. We know that on input $f_{2}(w), M_{1}$ uses $O\left(\log \left|f_{2}(w)\right|\right)$ space. But, as in the previous paragraph, we know that $\left|f_{2}(w)\right|=q(|w|)$ for some polynomial q, and this means that

$$
O\left(\log \left|f_{2}(w)\right|\right)=O(\log (q(|w|)))=O(\log |w|)
$$

and hence the overall space used is logarithmic. So, it follows that the composition of two log-space computable functions is log-space computable, and this completes our proof.

