
COMPUTATIONAL COMPLEXITY HW-2

SIDDHANT CHAUDHARY, AMIK RAJ BEHERA
BMC201953 , BMC201908

Problem 1. In class, we defined the polynomial heirarchy using quantifiers. A
language L is in Σp

2 if there exists a polynomial time TM M and a polynomial q
such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|)M(x, u1, u2) = 1

Show that Σp
2 = NPNP.

Solution. We know that SAT is an NP-complete problem, and hence NPSAT =
NPNP. So, it is enough to show that

Σp
2 = NPSAT

and infact this is what we will show.
First, suppose L ∈ Σp

2. By definition, there is a polynomial time TM M and a
polynomial q such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|)M(x, u1, u2) = 1

Consider the language L′ defined as
⟨x, u1⟩ ∈ L′ ⇐⇒ u1 ∈ {0, 1}q|x| and ∀u2 ∈ {0, 1}q|x|M(x, u1, u2) = 1

Now, look at the statement
∀u2 ∈ {0, 1}q|x|M(x, u1, u2) = 1

This is clearly a statement in co-NP. Since SAT is NP-complete, the truth of
this statement can be determined by oracle access to SAT. This means that the
membership in the language L′ can be solved by oracle access to SAT. Also,
observe that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q|x| such that ⟨x, u1⟩ ∈ L1

Now, consider the following non-deterministic algorithm.
(1) On inputx, non-determinisically generatea stringu1 such thatu1 ∈ {0, 1}q|x|.
(2) Using the oracle SAT, determine whether ⟨x, u1⟩ ∈ L′ or not. Return the

corresponding answer.
Clearly, this is a non-deterministic polynomial time algorithm that accepts the
language L. So, it follows that L ∈ NPSAT, and hence Σp

2 ⊆ NPSAT.
Conversely, supposeL ∈ NPSAT. Supposewe have a polynomial time NDTMM

that has oracle access to SAT and which accepts the language L. Suppose x is
the input toM . Being non-deterministic,M will make some choices in its com-
putation, and suppose the choices itmakes are encoded by bits c1, ..., cm ∈ {0, 1}.
Also during its computation,M will query the oracle several times, and the or-
acle returns a bit, i.e either 0 or 1 for each query. Suppose in the computation
for x, the machine gets answers a1, ..., ak, where each ak ∈ {0, 1}. Suppose for

Date: March 10 2021.
1

2 SIDDHANT CHAUDHARY, AMIK RAJ BEHERA BMC201953 , BMC201908

1 ≤ i ≤ k, the boolean formula φi represents the ith query that M asks the
oracle. Then, observe that x ∈ L if and only if the following conditions are true:

(1) M reaches theaccepting state qaccept on inputxusing the choices c1, ..., cm.
(2) Each ai is a correct answer to some query. This can be made formal as

follows:

ai = 1 ⇐⇒ ∃ assignment ui for φi such that φi(ui) = 1

ai = 0 ⇐⇒ ∀ assignments vi of φi, φi(vi) = 0

All of this can be written as follows:

x ∈ L ⇐⇒ ∃c1, ..., cm, a1, ..., ak, u1, ..., uk∀v1, ..., vk
M accepts x on making choices c1, ..., cm and getting answers a1, ..., ak and
for each 1 ≤ i ≤ k if ai = 1 then φi(ui) = 1 and if ai = 0 then φi(vi) = 0

Clearly, this is a statement representing a language in Σp
2, i.e L ∈ Σp

2 and hence
NPSAT ⊆ Σp

2. This shows that NPSAT = Σp
2, and completes the proof of the claim.

■

Problem 2. Show that SPACE(n) ̸= NP.

Solution. We will prove it by contradiction. Assume that SPACE(n) = NP. From
Space Hierarchy Theorem, we know that SPACE(n) ⊊ SPACE(n2). Thus there
exists a languageA ∈ SPACE(n2) and /∈ SPACE(n). LetM be the Turing machine
which decides A in O(n2) space. Define A-PAD as follows:

A-PAD = {x#1|x|2 | x ∈ A}.

We will now show that A-PAD ∈ SPACE(n) by the following algorithm:

Algorithm 1 CHECK:A-PAD(w)
Find the first occurrence of # and mark it as P
Denote the string upto P as x
RunM(x) {Runs in O(|x|2) space}
ifM(x) == True then
if String after P has exactly |x|2 1’s == True then
Accept w {Runs in O(|x|2) space}

else
Reject w

end if
else
Reject w

end if

Thus we have shown that A-PAD ∈ SPACE(n), and by our assumption, this im-
plies that A-PAD ∈ NP. It is easy to see that we can reduce A to A-PAD in poly-
nomial time. Thus A ∈ NP. Again by our assumption, A ∈ SPACE(n), which is
a contradiction because we specifically chose A to not lie in SPACE(n). Hence
our assumption that SPACE(n) = NP is false.

■

COMPUTATIONAL COMPLEXITY HW-2 3

Problem 3. Show that if a sparse language is NP-complete, then P = NP.

Solution. We first define LSAT.

⟨ϕ, x⟩ ∈ LSAT if ϕ is a Boolean formula in n variables, x ∈ {0, 1}n and there is a
satisfying assignment of ϕ which is lexicographically at most x.

We can reduce SAT to LSAT as follows: SAT(ϕ) is True if and only LSAT(⟨ϕ, 1n⟩)
is True, where ϕ is a Boolean formula on n variables. Since we know that SAT
is NP-complete, we conclude that LSAT is NP-complete. Let A be a sparse lan-
guage which is NP-complete. The by definition of NP-completeness, we get a
polynomial time reduction f from LSAT to A. It means that ⟨ϕ, x⟩ ∈ LSAT if and
only if f(⟨ϕ, x⟩) ∈ A.

Since f is a polynomial time algorithm, the output of f is also polynomially
bounded i.e. there exists a polynomial p such that on input x, |f(x)| ≤ p(x). By
definition of sparse language, there exists a polynomial q such that |A∩{0, 1}n| ≤
q(n). Given a Boolean formula ϕwith n variables, letM = q(p(|ϕ|+ n)). M upper
bounds the number of elements inAwith length p(|ϕ|+n), which implies thatM
upper bounds the number of elements in A such that f(⟨ϕ, x⟩) ∈ A. Note thatM
is poly(|ϕ|+ n).

Now we will describe a polynomial time algorithm for solving SAT.
(1) Let ϕ be the input to SAT and let α be the lexicographically smallest sat-

isfying assignment of ϕ. Our goal is to determine α.
(2) ChooseM + 1 evenly spaced assignments y1, . . . , yM+1, arranged in lexi-

cographically ascending order.
(3) Compute f(⟨ϕ, y1⟩), . . . , f(⟨ϕ, yM+1⟩).
(4) Now there are two cases based on the above computed outputs:

(a) f(⟨ϕ, yi⟩) = f(⟨ϕ, yj⟩), for some 1 ≤ i < j ≤ M + 1. If f(⟨ϕ, yi⟩) ∈ A,
this means that α ≤ yi, yj . In other words, α /∈ (yi+1, . . . , yj). Else
f(⟨ϕ, yi⟩) /∈ A, which means that α > yi, yj . In this case also, α /∈
(yi+1, . . . , yj). In either of the case, we have removed approximately
1/M possibilities for α from the assignment space (i.e. all possible
assignments for ϕ).

(b) All f(⟨ϕ, yi⟩) are distinct. Since all |f(⟨ϕ, yi⟩)|’s are bounded by length
p(|ϕ| + n), it means that there is atleast one f(⟨ϕ, yk⟩) /∈ A. In other
words, α > yk ≥ y1 ⇒ α /∈ (0, . . . , y1). Again, we have removed ap-
proximately 1/M possibilities for α from the assignment space.

(5) Repeating from Step 2 again (excluding the removed assignments from
Step 4.a and 4.b), for O(nm) times.

(6) We will be left with poly(n) of assignments. Now we can check one by
one whether α is contained in these polynomial number of possibilities.

(7) If we find α, then we return saying that ϕ has a satisfying assignment,
otherwise ϕ has no satisfying assignment.

Sowe have described a polynomial time algorithm solving SAT. Since SAT isNP-
complete, this concludes that P = NP. ■

Problem 4. Prove the following:

4 SIDDHANT CHAUDHARY, AMIK RAJ BEHERA BMC201953 , BMC201908

(1) RP and BPP are closed under union and intersection.
Solution. Let L1 and L2 be two languages in RP and letM1 andM2 be the
probabilistic Turing machines respectively.
(a) RP is closed under union: Let L = L1 ∪ L2. The following UNION-RP

will decide L:

Algorithm 2 UNION-RP(x)
Flip a fair coin
if Heads appears then
return M1(x)

else
return M2(x)

end if

It is clear to see that UNION-RP is a probabilistic TuringMachine and
runs in polynomial time.
If x ∈ L, then Pr[UNION-RP accepts x] ≥ 1

2
· 2
3
+

1

2
· 2
3
=

2

3
.

If x /∈ L, then Pr[UNION-RP accepts x] ≥ 1

2
· 0 + 1

2
· 0 = 0.

Thus L ∈ RP.
(b) RP is closed under intersection: Let L = L1 ∩ L2. The following

INTERSECT-RP will decide L:

Algorithm 3 INTERSECT-RP(x)
RunM1(x)
ifM1(x) == True then
RunM2(x)
ifM2(x) == True then
return Accept

else
return Reject

end if
else
return Reject

end if

It is clear to see that INTERSECT-RP is a probabilistic Turing Ma-
chine and runs in polynomial time.
If x ∈ L, then Pr[INTERSECT-RP accepts x] ≥ 2

3
· 2
3
=

4

9
. Note that

any constant greater than0willwork forPr[INTERSECT-RP accepts x],
since by error reduction (i.e. running severalM1 andM2’s simulta-
neously and taking the majority’s result) the probability can be in-
creased to atleast 1

2
.

COMPUTATIONAL COMPLEXITY HW-2 5

If x /∈ L, then Pr[INTERSECT-RP accepts x] ≥ 2

3
· 0 + 0 = 0. x is

rejected when either x /∈ L2 or x /∈ L1.

Thus L ∈ RP.
Let L1 and L2 be two languages in BPP and letM1 andM2 be the prob-

abilistic Turing machines respectively.
(a) BPP is closed under union: LetL = L1∪L2. The following UNION-BPP

will decide L:

Algorithm 4 UNION-BPP(x)
Flip a fair coin
if Heads appears then
return M1(x)

else
return M2(x)

end if

It is clear to see that UNION-BPP is a probabilistic Turing Machine
and runs in polynomial time.
If x ∈ L, then Pr[UNION-BPP accepts x] ≥ 1

2
· 2
3
+

1

2
· 2
3
=

2

3
.

If x /∈ L, then Pr[UNION-BPP rejects x] ≥ 1

2
· 2
3
+

1

2
· 2
3
=

2

3
.

Thus L ∈ BPP.
(b) BPP is closed under intersection: Let L = L1 ∩L2. We showed above

that BPP is closed under union and in Problem 4.b, we showed that
BPP is closed under complement. Since

L = (Lc
1 ∪ Lc

2)
c,

it follows that BPP is closed under intersection.
■

(2) BPP is closed under complement. Is RP closed under complement?
Solution. Let L ∈ BPP and let M be the probabilistic Turing machine
which decides L. Then COMPLEMENT-BPP decides Lc:

Algorithm 5 COMPLEMENT-BPP(x)
RunM(x)
return Negation ofM(x)

It is clear to see that COMPLEMENT-BPP is a probabilistic Turing Ma-
chine and runs in polynomial time.
If x ∈ Lc ⇒ x /∈ L, thenPr[COMPLEMENT-BPP accepts x] ≥ 1

2
· 2
3
+
1

2
· 2
3
=

2

3
.

6 SIDDHANT CHAUDHARY, AMIK RAJ BEHERA BMC201953 , BMC201908

If x /∈ Lc ⇒ x ∈ L, then Pr[COMPLEMENT-BPP rejects x] ≥ 1

2
· 2
3
+
1

2
· 2
3
=

2

3
.

Thus Lc ∈ BPP.

Complement ofRP is coRP, and it strongly believed thatRP ̸= coRP. Thus
RP is believed not to be closed under complement. ■

(3) There is a decidable language that is in P/poly but not in P.

Solution. Wewill describe a decidable language in P/poly and not in P in
the following steps:

Step 1: FromTimeHierarchyTheorem,weknow thatDTIME(2nk
) ⊂ DTIME(22n).

Let A ∈ DTIME(22n) and /∈ DTIME(2nk
).

Step 2: A is decidable because it is in DTIME(22n). LetMA be a deterministic
Turing machine which decides A, and runs in O(22

n
) time and not in

O(2n
k
) time.

Step 3: Define the unary language UA of A as follows:

1n ∈ UA ⇔ (n)2 ∈ A, where (n)2 represents the binary representation of n.

Step 4: UA is decidable because A is decidable.
Step 5: UA is in DTIME(2n

k
): On input 1n, we can convert n to (n)2, where (n)2

takes log n space. NowMA((n)2) runs in O(22
log n

) = O(2n
k
) time.

Step 6: UA is not in P: Assume on contrary that UA ∈ P. Then there exists a
deterministic polynomial time Turing machineM ′ which decides UA.
Let x = (n)2 be input toMA i.e. we want to decide whether x = (n)2 ∈
A. It is equivalent to deciding whether 1n ∈ UA, which we can do by
running M ′(1n) in O(2|x|

k
) time, since |1n| = 2|x|. This means we can

decide A in DTIME(2nk
), which is a contradiction.

Step 7: UA ∈ P/poly: Since every unary language is in P/poly.
Thereforewe have showed thatUA is a decidable language in P/poly but
not in P. ■

(4) If NP = PSAT then NP = co-NP.

Solution. LetL ∈NP. Fromhypothesis,L ∈ PSAT. Thismeans there exists
a polynomial time Turing machine M with oracle SAT which decides L.
LetM ′ be as follows: On input x, runM(x) and return the complement of
M(x). It’s clear that M ′ decides Lc and it follows that Lc ∈ PSAT. Again,
from hypothesis, Lc ∈NP. By definition, L ∈ coNP. Therefore, NP⊆ coNP.
Analogously, we can prove that coNP ⊆ NP. Hence NP = coNP. ■

(5) If NP ⊆ BPP then NP = RP.

Solution. We will first show that RP ⊆ NP. Let L ∈ RP and let M be the
probabilistic TuringmachinewhichdecidesL. Construct anon-deterministic
Turing machineM ′ as follows:

On input x,M ′ guesses a computation path. Now there are two cases:

COMPUTATIONAL COMPLEXITY HW-2 7

(a) x ∈ L: By definition of RP, 2/3rd of the computation paths ofM(x)will
accept. M ′(x) accepts sinceM ′(x) requires only one accepting path
to accept.

(b) x /∈ L: By definition of RP, none of the computation paths ofM(x)will
accept. M ′(x) rejects, sinceM ′(x) requires all paths to be rejecting
paths.

Therefore,M ′ decides L. This shows that RP ⊆ NP.

Since RP is closed under poly-time reductions, to show that NP ⊆ RP, it
suffices to show that SAT ∈ RP. By assumption, SAT ∈ BPP. LetM ∈ BPP
be a probabilistic Turing machine which decides SAT. By error reduc-
tion (i.e. running several M ’s simultaneously and taking the majority’s
result), we can assume thatM gives the correct output with probability
atleast 1

2k
, where k is the size of the input (size of Boolean formula). Let ϕ

be a Boolean formula of n variables, {x1, . . . , xn}. The following algorithm
will show that SAT ∈ RP:

Algorithm 6 SAT-RP(ϕ)
RunM(ϕ)
ifM accepts then
for i in range {1, . . . , n} do
Assign xi = 1
RunM(ϕ)
ifM accepts then
Assign xi = 1 permanently from now onwards i.e. in the further itera-
tions of this for loop

else
Assign xi = 0 permanently from now onwards i.e. in the further itera-
tions of this for loop

end if
end for
Check whether the assigned values actually satisfies ϕ
if the assignment satisfies ϕ then
return Accept ϕ

else
return Reject ϕ

end if
else
return Reject ϕ

end if

Now we will show that SAT-RP is in RP:
(a) Suppose ϕ is satisfiable: We will show that SAT-RP rejects ϕ with

probability at most 1/2. To reject ϕ, either SAT-RP would have to
return “reject” for a variable assignment which is a part of satis-
fying assignment or reject in the beginning only. Thus there are at

8 SIDDHANT CHAUDHARY, AMIK RAJ BEHERA BMC201953 , BMC201908

most (n + 1) calls to M , which means the probability of rejection is
n+ 1

2|ϕ|
<

1

2
, since n+ 1 < |ϕ|.

(b) Suppose ϕ is not satisfiable: In this case, it is clear from the algo-
rithm that SAT-RP rejects ϕ with probability 1.

Hence SAT in RP. ■
(6) BPP ⊆ P/poly.

Solution. Let L ∈ BPP. This means there exists a polynomial time Turing
machine M and a polynomial p : N → N such that for every x ∈ {0, 1}∗,
Prr∈{0,1}p(|x|) [M(x, r) = L(x)] ≥ 1 − 1

2|x|
(such a Turing machine exists by

Error reduction). We will show that L ∈ P/poly by giving a family Cn of
polynomial sized circuits.

Letx ∈ {0, 1}∗with |x| = n. For agivenx, we saya sequenceof choices for
M is “good” ifM(x, r) = L(x), “bad” otherwise. While runningM with in-
put x, there are in total 2p(n) possible sequences of choices forM . From
definition of BPP, there are strictly less than 2p(n)−n sequence of “bad”
choices. Summing over all x ∈ {0, 1}n, there are strictly less than 2p(n)

sequence of “bad” choices.

This means, there exists a sequence of “good” choice, of length p(n). Call
this sequence of “good” choice as αn. Thus for all x ∈ {0, 1}n,M(x, αn) =
L(x). Then Cn is described as follows: On input xwhere |x| = n, we simu-
lateM(x, αn) i.e. αn is hard-wired in the circuit. Clearly this is a polyno-
mial sized circuit. Thuswehave a family {Cn} of polynomial sized circuits
deciding L. Hence L ∈ P/poly. ■

Problem 5. Show the following.
(1) Prove that in the certificatedefinitionofNL (section4.4 .1 ofArora-Barak)

if we allow the verifier machine to move its head back and forth on the
certificate, then the class being defined changes to NP.

(2) Show that the following language is NL-complete.
{⟨G⟩ | G is a strongly connected digraph}

Solution. Let us prove part (1) first. So suppose in our certificate definition
of NL, we allow the verifier machine to move its head back and forth on the
certificate. Nowwe know that 3SAT is anNP-complete problem. So, it is enough
to show that 3SAT is acceptable by amachinewhichworks as per this definition
(because if this is true, then givena languageL ∈ NP, our certificate for an input
x will simply be the formula ϕ that x is mapped to by the polynomial time Karp
reduction from L to 3SAT).
Consider the following machineM that fits in our modified certificate defini-

tion of NL that accepts the language 3SAT.
(1) Suppose the input is ϕ, where ϕ is a formula in 3-CNF, and suppose ϕ

contains k clauses. The certificate u for ϕ will simply be an assignment
of values for each variable in the k clauses. If there are k clauses, then
note that |u| = 3k, since each clause contains three variables.

COMPUTATIONAL COMPLEXITY HW-2 9

(2) M scans u from left to right, and it puts three bits of u on its work tape
at a time (clearly, this takes logarithmic space, because we are putting
exactly three bits at a time). For the current three bits written on the
work tape,M checks whether this assignment of values to the variables
in the corresponding clause makes that clause 1 or 0. If the clause is 0,
then we reject. If all of u is checked and and each clause is 1, then we
move to step (3).

(3) In step (3), M checks whether u is a valid assignment for ϕ, i.e if each
clause has the same value assigned to the same variable. To check this,
M will move left and right on its certificate tape (and this is where the
modification in the definition comes to play), and clearly this is done in
polynomial time. If the assignment is valid, then accept. Otherwise re-
ject.

It is easy to see that M is a polynomial time TM that takes log-space, and it
fits with our modified certificate definition of NL. This shows that the modified
definition is a definition for NP.
Now, we will prove part (2). Define the language

STRONGLY-CONNECTED := {⟨G⟩ | G is a strongly connected digraph}

We have already proven in class that PATH is an NL-complete problem. So, to
show that STRONGLY-CONNECTED is NL-complete, we will show that PATH is
log-space reducible to STRONGLY-CONNECTED.
But first, let us show that STRONGLY-CONNECTED is in NL. Since NL = co-NL

(whichwas proven in class), it is enough to show that STRONGLY-CONNECTED ∈
NL. We do this as follows.

(1) Suppose the input is ⟨G⟩. Non-deterministically select two nodes a, b of
G.

(2) Use the log-space algorithm for PATH on the input ⟨G, a, b⟩. If this algo-
rithm rejects, then accept, because in that case G is not strongly con-
nected. Otherwise reject.

Clearly, the above algorithm is a non-deterministic log space algorithm that
correctly accepts STRONGLY-CONNECTED, and hence STRONGLY-CONNECTED
is in NL.
Finally, let us log-space reduce PATH to STRONGLY-CONNECTED. The reduc-

tion is quite simple, and works as follows:
(1) Supposewe have the input ⟨G, s, t⟩ to PATH. If the input is not of this form,

then we just map the input string to a garbage string that does not lie in
STRONGLY-CONNECTED.

(2) Copy all of G on the output tape. Clearly, this takes log-space, because
we need to store one-bit at a time.

(3) Run a for loop from i = 1 to i = |V |, where |V | is the number of vertices in
G. For each i, write an edge from i to s on the output tape, and write an
edge from t to i on the output tape. Again, this takes log-space, because
we only need to store the value of the counter i.

We claim that this is the required reduction. Observe that if there is a path from
s to t inG, then the resultant graph is strongly connected: if i, j are two distinct
vertices, then paths from i to j and j to i respectively are i → s → t → j and
j → s → t → i respectively. Similarly, if there is no path in G from s to t, then

10 SIDDHANT CHAUDHARY, AMIK RAJ BEHERA BMC201953 , BMC201908

the resultant graphwill not be strongly connected either. This is because there
will be no s to t path in the resultant graph, since the only edges we are adding
are into s and out of t, so it cannot make any new s to t paths. ■

Problem 6. Let us define Majn : {0, 1}n → {0, 1} as

Majn(x1, ..., xn) =

{
1 , if Σixi ≥ n/2

0 , otherwise

Prove that Majn can be computed by a circuit of size O(n).

Solution. ■

Problem 7. Let’s say a language L ⊆ {0, 1}∗ is in P/poly if there exists a poly-
nomial p : N → N, a sequence of strings {αn}n∈N with αn ∈ {0, 1}p(n), and a
deterministic polynomial time TMM such that for every x ∈ {0, 1}n

x ∈ L ⇐⇒ M(x, αn) = 1

Let us call αn to be the advice string for all x of length n. Note that the advice
string is not similar to awitness or certificate as used in the definition ofNP. For
example, all unary languages, even UHALT which is undecidable, are in P/poly
because the advice string can be a single bit that tells us if the given unary
string is in UHALT or not.

A set S ⊆ Σ∗ is said to be sparse if there exists a polynomial p : N → N such
that for each n ∈ N, the number of strings of length n in S is bounded by p(n).
In other words, |S=n| ≤ p(n), where S=n ⊆ S contains all strings in S that are of
length n.

(1) Give the definition of P/poly as given in the class using polynomial size
circuit families. Briefly describe how does this definition and the one
given using advice string define the same class.

Solution. Definition: P/poly is the class of languages that are decidable
by polynomial-sized circuit families. In other words, let {Cn} be a circuit
family, where each Cn has polynomial size (w.r.t. n i.e. the number of in-
puts). P/poly is the class of languages that are decidable by {Cn}.

Now we will show that the two definitions define the same class.

Let L be a language decided by {Cn}. For any input of size n, there ex-
ists Cn of polynomial size (w.r.t. n), such that it decides the input. Let αn

be the description of Cn. αn is of polynomial size. Describe Turing ma-
chine M as follows: On any input x of length n, simulate x on αn. M is
a deterministic polynomial Turing machine because it simulates Cn. The
advice string is αn.
LetL′ bea languagedecidedbyaTuringmachineM ′ andadvice stringα′

n.
Describe C ′

n as follows: As the advice string α′
n is fixed, C ′

n is a Boolean
circuit that simulates M ′, with α′

n hard-wired into the circuit. Since M ′

is a polynomial Turing machine and α′
n is also polynomial, C ′

n is also of
polynomial size.

Hence we have showed that both the definitions are equivalent. ■

COMPUTATIONAL COMPLEXITY HW-2 11

(2) Given k ∈ N sparse sets S1, ..., Sk, show that there exists a sparse set S
and a deterministic polynomial time TMM with oracle access to S such
that given an input ⟨x, i⟩ the TMM will accept it if and only if x ∈ Si. Define
the set S (note that it need not be computable), and give the description
ofM with oracle S. Note that a TMM with oracle access to S can query
whether s ∈ S and get the correct answer in return in constant time.

Solution. We define our set S as
S := {x01i | x ∈ Si for some 1 ≤ i ≤ k}

So, S is the string containing all strings xwhich belong to some Si, along
with the suffix 01i which represents the index i. We claim that S is a
sparse set. To show this, let n ∈ N be fixed such that n ≥ 2 (note that
S does not contain any string of size 0 or 1). We bound the number of
strings of size n in S. For each 1 ≤ i ≤ k, let pi be the polynomial that
bounds the number of strings of size n − i − 1 in the set Si. So, observe
that

|S=n| =
k∑

i=1

|S=n−i−1| ≤
k∑

i=1

pi(n− i− 1)

Clearly, the last sum is a polynomial in n (because k is fixed and does not
depend on n). So, it follows that S is a sparse set.
Now, the deterministic polynomial time TMM with oracle access to S

works as follows.
(a) On input ⟨x, i⟩, generate the string x01i. This clearly takes polynomial

time.
(b) Query the oracle S to check whether x01i ∈ S. Return the corre-

sponding answer.
Clearly, the TM M works operates in polynomial time and accepts the
required language. This completes the proof. ■

(3) Let us define a variant of P/poly called P/polydet with a constraint that
there should exist a polynomial time algorithm that can compute the
advice string for any length n ∈ N. In other words, there is a poly-
nomial time algorithm A such that αn = A(n). Is P = P/polydet? Is
NP = P/polydet? Justify.

Solution. This is relatively straightforward. We claim thatP/polydet = P.
It is clear that P ⊆ P/polydet, and so we only need to prove the reverse
inclusion. So, suppose L ∈ P/polydet, and let {αn} be the sequence of
advice strings. By definition, we know that there exists a polynomial time
TMM such that

x ∈ L ⇐⇒ M(x, α|x|) = 1

Also, we know that there is a polynomial time TM M ′ that can compute
the string αn from the input n. So, consider a polynomial time algorithm
for L that works as follows.
(a) On input x, first generate the string α|x| using the polynomial time TM

M ′. This clearly takes time polynomial in |x|.
(b) Run the machineM on the input ⟨x, α|x|⟩. Return the corresponding

answer. Again, this step takes time polynomial in |x|.

12 SIDDHANT CHAUDHARY, AMIK RAJ BEHERA BMC201953 , BMC201908

Clearly, the above polynomial time algorithm correctly decides the lan-
guage L, and hence this shows that L ∈ P, which means P/polydet ⊆ P.
So, it follows that P = P/polydet.
The question of determining whether NP = P/polydet is then the same

as determining whether P = NP. ■
(4) Let the language L ∈ P/poly. Show that there exists a sparse set SL and

a deterministic polynomial time TMM with oracle access to SL that can
decide the language L.
Solution. From Problem 7.1, we know that there exists a deterministic
Turing machineM ′ and a sequence of advice strings {αn} such that for
every x ∈ {0, 1}n:

x ∈ L ⇔ M ′(x, αn) = 1.

Define S as follows:
S = {1n#a | a is a prefix of αn, n ∈ N}.

For any n, there are clearly polynomial number of strings of length n
(there are |αn| prefixes of αn). Thus S is a sparse set. We now describe
MS as follows:
(a) Let input be x, with |x| = n.
(b) Initialise αn as empty string. Our goal is to find the advice string αn

by making polynomial number of queries to oracle S, determining
one bit at a time.

(c) Query oracle if 1n#0, 1n#1 ∈ S. The result will determine the first bit
of αn. Assume that we have found till now that 1n#b ∈ S i.e. in other
words b is a prefix of αn. Then query the oracle if 1n#b0, 1n#b1 ∈ S.
The result will determine the next bit of αn. Continue this until both
the queries result in false, indicating that we have reached the end
of the αn.

(d) So now we have determined the advice string αn. RunM ′(x, αn).
The above runs in polynomial time because: We made polynomial num-
ber of queries to S (each query takes constant time) and also M ′(x, αn)
runs in poly-time. It is also clear that it decides L. Thus L is decided by
MS , where S is a sparse set. ■

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5
	Problem 6
	Problem 7

