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Problem 1. ZPP is the complexity class which contains all the languages L for
which there is a machine M that runs in expected polynomial time but never
makes a mistake on any input. Prove that ZPP = RP ∩ coRP.

Proof. Wewill first show that ZPP ⊆ RP∩coRP. Since ZPP is closed under com-
plementation (we can invert the output in constant time), it suffices to show that
ZPP ⊆ RP. Before we proceed, we revisit the Markov Inequality and look at a
special case of it:

LetX bea randomvariable such thatX ≥ 0with expectationE[X]. ThenMarkov
Inequality is

(0.1) Pr(X ≥ a) ≤ E[X]

a

If we substitute a = 3E[X] in the above inequality, then we get

(0.2) Pr(X ≥ E(x)) ≤ 1

3
.

Let L ∈ ZPP andM be a probabilistic Turing machine which decides L. By defi-
nition of ZPP, we know thatM runs in expected polynomial time, call it T (n). We
define a new probabilistic Turing machine as follows:

Algorithm 1M ′(x)

RunM(x) for time 3T (n), where n = |x|
ifM(x) halts in time 3T (n) then
return M(x)

else
return NO

end if

Note thatM ′ runs in expected polynomial time (from definition of ZPP). By (0.2),
the probability that M(x) runs for time more than 3T (n) is less than 1/3. Now
we have three possibilities:

(1) x ∈ L andM(x) halts in time 3T (n). ThenM(x) = YES.
(2) x ∈ L andM(x) does not halt in time 3T (n). ThenM(x) = NO. Probability

of this event occurring is less than 1/3.
(3) x /∈ L. Then no matter whenM(x) halts,M(x) = NO.
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Thus we have showed that L ∈ RP.

Now we will show that RP ∩ coRP ⊆ ZPP. Let L ∈ RP ∩ coRP. There is a prob-
abilistic Turing machine A running in polynomial time such that if x ∈ L, then A
outputs YES with probability atleast 2/3, otherwiseA outputs NOwith probabil-
ity 1. Similarly, there is a probabilistic Turing machine B running in polynomial
time such that if x /∈ L, thenB outputs NOwith probability atleast 2/3, otherwise
B outputs YES with probability 1.

Now we will define a probabilistic Turing machineM which on input x does the
following:

Algorithm 2M(x)
Run A(x) {Beginning of the iteration}
if A(x) == YES then
return YES

else
Run B(x)
if B(x) == NO then
return NO {End of the iteration}

else
Repeat this iteration

end if
end if

We will show that this Turing machine never makes mistake on any input:
(1) IfM outputs YES, then A(x) outputs YES, which implies that x ∈ L.
(2) IfM outputs NO, then B(x) outputs NO, which implies that x /∈ L.

Now we will show thatM runs in expected polynomial time. On some input x:
• If x ∈ L, then

Pr[M(x) halts after one iteration] = Pr[A(x) outputs YES] ≥ 2

3

• If x /∈ L, then

Pr[M(x) halts after one iteration] = Pr[B(x) outputs NO] ≥ 2

3

Let k denote the number of iterations required on some input x. Then by the
above observation, we can find E[k] recursively as follows:

E[k] = 1 + Pr[M(x) didn’t halt after one iteration] · E[k]

⇒ E[k] ≤ 3

2

Clearly, each iteration runs in polynomial time. ThusM runs in expected poly-
nomial time and never makesmistakes, and recognizes L, which in turn implies
that L ∈ ZPP.
Hence we have showed that ZPP = RP ∩ coRP. ■
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Problem2. B reduces toC under a randomized polynomial time reduction, de-
noted by B ≤r C , if there is a probabilistic TMM such that for all x,

P[C(M(x)) = B(x)] ≥ 2/3

Define
BP.NP := {L | L ≤r 3SAT}

Prove that BP.NP ⊆ NP/Poly.
Proof. Let L ∈ BP.NP. This means there exists a polynomial time reduction M
from L to 3SAT and a polynomial p : N → N such that for every x ∈ {0, 1}∗,

Prr∈{0,1}p(|x|) [L(x) = 3SAT (M(x, r))] > 1− 1

2|x|
,

(such a Turing machine exists by Error reduction using Chernoff Bounds). We
will show thatL ∈NP/poly by giving a family Cn of non-deterministic polynomial
sized circuits.

Let x ∈ {0, 1}∗ with |x| = n. For a given x, we say a sequence of choices for
M is “good” if 3SAT (M(x, r)) = L(x), “bad” otherwise. While running M with
input x, there are in total 2p(n) possible sequences of choices forM . From def-
inition of BP.NP, there are strictly less than 2p(n)−n sequence of “bad” choices.
Summing over all x ∈ {0, 1}n, there are strictly less than 2p(n) sequence of “bad”
choices.

This means, there exists a sequence of “good” choice, of length p(n), call it as
αn, such that for all x ∈ {0, 1}n, 3SAT (M(x, αn)) = L(x).

Then Cn is described as follows: It has input x of length n, and a witness y.
Cn(x, y) computes whether the witness y satisfies the 3SAT instanceM(x, αn).
Since αn fixed for every x of length n, we hard-wire αn in our circuit Cn. Clearly,
we get

x ∈ L ⇔ M(x, αn) ∈ 3SAT ⇔ ∃y Cn(x, y) = 1.

ComputingM(x, αn) is of polynomial size sinceM is a polynomial time reduction.
Also verifying whether y is a satisfying assignment of M(x, αn) or not can be
done in polynomial size. Thus Cn is a family of non-deterministic polynomial
sized circuits, which implies L ∈ NP/poly. Hence BP.NP ⊆ NP/poly. ■
Problem 3. Prove that there exists a perfectly complete AM[O(1)] protocol for
proving a lower bound on set size.
Proof. Suppose we have a familyHm,k of pairwise independent hash functions.
We can construct such a family as shown in the next problem.
We will prove the claim in two steps. First, we will show that there is an

AM[O(1)] protocol for proving a lower bound on set size which has exponen-
tially small error probability (which is essentially just using the ChernoffBound,
aswewill show). After doing this, we exhibit a perfectly completeAM[O(1)] pro-
tocol for set lower-bound.
So, let S ⊆ {0, 1}m be a set such that any x ∈ S has an efficient (polyno-

mial sized) proof of membership in S. Let K be a fixed number. Recall that the
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Goldwasser-Sipser protocol was the AM(O(1)) protocol for set lower-bound
that we covered in class. Now, consider the following protocol.

(1) The verifier V randomly picks n pairs (hi, yi) where hi ∈ Hm,k and yi ∈
{0, 1}k for each i and sends these n pairs to the prover P .

(2) P produces xi ∈ S such that hi(xi) = yi for each i and sends the same to
V , along with a proof of membership of xi in S.

(3) V accepts if there are more than n/2 indices i such that the proof of
membership of xi in S is valid and hi(xi) = yi.

We now prove that this is the required protocol for set lower-bound with expo-
nentially small error probability. Let Xi be the random variable

Xi =

{
1 if hi(xi) = yi for some i

0 otherwise

and put

X =
1

n

n∑
i=1

Xi

We need to handle the following cases.
(1) Suppose |S| ≥ K . Then since the Goldwasser-Sipser protocol belongs

to AM[2], we see thatXi = 1 with probability ≥ 2/3. So,

E[X] ≥ 1

n
· n2

3
=

2

3

So by the Chernoff Bound, we see that

P
[
X ≤ 1

2

]
= P

[
X − 2

3
≤ −1

6

]
≤ P

[
|X − E[X]| ≥ 1

6

]
≤ e−n/c

where c is positive constant (c = −(1/4)2/4). This means that

P
[
X >

1

2

]
≥ 1− e−n/c

(2) Next, suppose |S| ≤ K

2
. In this case, again since the Goldwasser-Sipser

protocol belongs to AM[2], we see that Xi = 1 with probability atmost
1/3. So,

E[x] ≤ 1

n
· n1

3
=

1

3
Hence

P
[
X >

1

2

]
≤ P

[
X >

1

3
+

1

12

]
≤ P

[
|X − E[X]| > 1

12

]
≤ e−n/c′

where c′ is some positive constant.
So, in both caseswe see that the error probability is exponentially small. Hence,
there is an AM[2] protocol for set lower-bound with exponentially small error
probability.
Now, consider the following AM[O(1)] protocol for set lower-bound. Again,

suppose the input set is S and the number K is fixed. We will use the ideas in
the Sipser-Gacs Theorem extensively.
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(1) Let S ′ be the set of all sequences (h1, y1), ..., (hn, yn) such that hi ∈ Hm,k

and yi ∈ {0, 1}k for each i, and such that there are atleast n/2 indices i
for which there exists xi ∈ S such that hi(xi) = yi. The verifier V sends
the description of such a set S ′ toP (here the sequence (h1, y1), ..., (hn, yn)
acts as the random string which V generates and sends to P ). Suppose
the length of such a random string is bounded above by l. Note that if
|S| ≥ K , then as in our previous exponentially small error protocol, we
see that

|S ′| ≥
(
1− 1

2n

)
2l

and if |S| ≤ K/2, then

|S| ≤ 1

2n
2l

(2) Let k =
l

n
+1 (just like in Sipser-Gacs). P then produces u1, ..., uk ∈ {0, 1}l

and sends it to V .
(3) V produces r0 ∈ {0, 1}l and sends it to P .
(4) P proves r0 ∈

∪k
i=1(S

′+ui)where the+ operator represents translating
the set S ′. If r0 + ui ∈ S ′ for some i, then V accepts, otherwise it rejects.

Again, note that if |S| ≥ K , then |S ′| ≥ (1− 1

2n
)2l (because of the exponentially low

error). Then using the probabilisticmethod just like in the proof of Sipser-Gacs,
it can be shown that there exist u1, ..., uk such that

k∪
i=1

S ′ + ui = {0, 1}l

and hence this means that there is a strategy for P to convince the verifier,
implying that V accepts with probability 1.

Similarly, if |S| ≤ K/2, then |S ′| ≤ 2l

2n
, and hence

P[V accepts] = Pr0∈{0,1}l

[
r0 ∈

k∪
i=1

S ′ + ui

]
≤ k

1

2l
· 2

l

2n
=

l + n

n2n

which is exponentially small. So, this is the required perfectly complete proto-
col. ■

Problem 4. Let k ≤ n. Construct a family Hn,k of pairwise independent func-
tions {0, 1}n → {0, 1}k as discussed in class.

Proof. Let D = F2n and R = F2k . We describe a class of functions ha,b from D to
R as follows:

Hn,k = {ha,b(x) = (a · x+ b) mod 2k | a, b ∈ F2n},
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where the multiplication is defined in F2n . Consider x, x′ ∈ F2n such that x ̸= x′

and y, y′ ∈ F2k . Then we have
Pr

h∈Hn,k

[h(x) = y ∧ h(x′) = y′]

= Pr
h∈Hn,k

[(a · x+ b = y) mod 2k ∧ (a · x′ + b = y′) mod 2k]

= Pr
h∈Hn,k

[(a = (y − y′) · (x− x′) mod 2k) ∧ (b = y − a · x mod 2k)]

=
1

2k
· 1

2k
=

1

22k

=
1

|R|2

Thus we have showed that Hn,k is a pairwise independent functions. It is also
easy to see that each function ofHn,k is efficiently computable. ■
Problem 5. Prove that QUADEQ is NP-complete.
Proof. Wewill show that CIRCUIT− SAT is reducible to QUADEQ, which will im-
ply that QUADEQ is NP-complete. Let’s first revisit the definition of QUADEQ:

There is a system of m quadratic equations over F2, with variables x1, . . . , xn.
Each quadratic equation is of the form∑

i,j∈[n]

cijxixj = b, {cij | i, j ∈ [n]}, b ∈ F2

We say that the system ofm quadratic equations is in QUADEQ if there exists a
satisfying assignment {x1, . . . , xn} ∈ {0, 1}n.

Wenowgive apolynomial time reduction fromacircuit to set of quadratic equa-
tions. Let C be a circuit with n input variables. Let {x1, . . . , xn} represent the n
input gates. We will define a set of equivalent quadratic equations for each of
AND, OR and NOT gates using arithmetization as follows

Notation: If gate i has fan-in of 2, then gate j and gate k are the inputs, oth-
erwise only gate j is the input. All the operations are in F2.

xi =


xjxk if i is an AND gate
ajxj + akxk − xjxk if i is an OR gate and aj, ak ∈ F2

(1− xj) if i is an NOT gate

Each of the above equation is a quadratic equation. For example, xi − xjxk =
0 ⇒ aixi + xjxk = 0. ai’s are variables in F2.
It is clearly evident thatC is satisfiable if and only if the above set of equations is
satisfiable. IfC hasm gates, then the above reduction takes poly(m) time. Thus
the above reduction is in polynomial time. Hence QUADEQ is NP-complete. ■
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