COMPUTATIONAL COMPLEXITY HW-3

SIDDHANT CHAUDHARY, AMIK RAJ BEHERA
BMC201953, BMC201908

Problem 1. ZPP is the complexity class which contains all the languages L for which there is a machine M that runs in expected polynomial time but never makes a mistake on any input. Prove that $\mathbf{Z P P}=\mathbf{R P} \cap \mathbf{c o R P}$.

Proof. We will first show that $\mathbf{Z P P} \subseteq \mathbf{R P} \cap \mathbf{c o R P}$. Since ZPP is closed under complementation (we can invert the output in constant time), it suffices to show that $\mathbf{Z P P} \subseteq \mathbf{R P}$. Before we proceed, we revisit the Markov Inequality and look at a special case of it:

Let X be a random variable such that $X \geq 0$ with expectation $\mathbb{E}[X]$. Then Markov Inequality is

$$
\begin{equation*}
\operatorname{Pr}(X \geq a) \leq \frac{\mathbb{E}[X]}{a} \tag{0.1}
\end{equation*}
$$

If we substitute $a=3 \mathbb{E}[X]$ in the above inequality, then we get

$$
\begin{equation*}
\operatorname{Pr}(X \geq \mathbb{E}(x)) \leq \frac{1}{3} \tag{0.2}
\end{equation*}
$$

Let $L \in \mathbf{Z P P}$ and M be a probabilistic Turing machine which decides L. By definition of ZPP, we know that M runs in expected polynomial time, call it $T(n)$. We define a new probabilistic Turing machine as follows:

```
Algorithm 1 M'(x)
    Run M(x) for time 3T(n), where n=|x|
    if M(x) halts in time 3T(n) then
        return M(x)
    else
        return NO
    end if
```

Note that M^{\prime} runs in expected polynomial time (from definition of ZPP). By (0.2), the probability that $M(x)$ runs for time more than $3 T(n)$ is less than $1 / 3$. Now we have three possibilities:
(1) $x \in L$ and $M(x)$ halts in time $3 T(n)$. Then $M(x)=$ YES.
(2) $x \in L$ and $M(x)$ does not halt in time $3 T(n)$. Then $M(x)=$ NO. Probability of this event occurring is less than $1 / 3$.
(3) $x \notin L$. Then no matter when $M(x)$ halts, $M(x)=$ NO.

Thus we have showed that $L \in \mathbf{R P}$.
Now we will show that $\mathbf{R P} \cap \mathbf{c o R P} \subseteq \mathbf{Z P P}$. Let $L \in \mathbf{R P} \cap \mathbf{c o R P}$. There is a probabilistic Turing machine A running in polynomial time such that if $x \in L$, then A outputs YES with probability atleast $2 / 3$, otherwise A outputs NO with probability 1. Similarly, there is a probabilistic Turing machine B running in polynomial time such that if $x \notin L$, then B outputs NO with probability atleast $2 / 3$, otherwise B outputs YES with probability 1.

Now we will define a probabilistic Turing machine M which on input x does the following:

```
Algorithm 2 M(x)
    Run \(A(x)\) \{Beginning of the iteration\}
    if \(A(x)==\) YES then
        return YES
    else
        Run \(B(x)\)
        if \(B(x)==\mathrm{NO}\) then
            return NO \{End of the iteration\}
        else
            Repeat this iteration
        end if
    end if
```

We will show that this Turing machine never makes mistake on any input:
(1) If M outputs YES, then $A(x)$ outputs YES, which implies that $x \in L$.
(2) If M outputs NO, then $B(x)$ outputs NO, which implies that $x \notin L$.

Now we will show that M runs in expected polynomial time. On some input x :

- If $x \in L$, then

$$
\operatorname{Pr}[M(x) \text { halts after one iteration }]=\operatorname{Pr}[A(x) \text { outputs } \mathrm{YES}] \geq \frac{2}{3}
$$

- If $x \notin L$, then

$$
\operatorname{Pr}[M(x) \text { halts after one iteration }]=\operatorname{Pr}[B(x) \text { outputs } \mathrm{NO}] \geq \frac{2}{3}
$$

Let k denote the number of iterations required on some input x. Then by the above observation, we can find $\mathbb{E}[k]$ recursively as follows:

$$
\begin{array}{r}
\mathbb{E}[k]=1+\operatorname{Pr}[M(x) \text { didn't halt after one iteration }] \cdot \mathbb{E}[k] \\
\Rightarrow \mathbb{E}[k] \leq \frac{3}{2}
\end{array}
$$

Clearly, each iteration runs in polynomial time. Thus M runs in expected polynomial time and never makes mistakes, and recognizes L, which in turn implies that $L \in \mathbf{Z P P}$.
Hence we have showed that $\mathbf{Z P P}=\mathbf{R P} \cap \mathbf{c o R P}$.

Problem 2. B reduces to C under a randomized polynomial time reduction, denoted by $B \leq_{r} C$, if there is a probabilistic TM M such that for all x,

$$
\mathbb{P}[C(M(x))=B(x)] \geq 2 / 3
$$

Define

$$
\text { BP.NP }:=\left\{L \mid L \leq_{r} 3 \text { SAT }\right\}
$$

Prove that BP.NP \subseteq NP/Poly.
Proof. Let $L \in$ BP.NP. This means there exists a polynomial time reduction M from L to $3 S A T$ and a polynomial $p: \mathbb{N} \rightarrow \mathbb{N}$ such that for every $x \in\{0,1\}^{*}$,

$$
\operatorname{Pr}_{r \in\{0,1\}^{p(|x|)}}[L(x)=3 S A T(M(x, r))]>1-\frac{1}{2^{|x|}},
$$

(such a Turing machine exists by Error reduction using Chernoff Bounds). We will show that $L \in \mathbf{N P} /$ poly by giving a family \mathcal{C}_{n} of non-deterministic polynomial sized circuits.

Let $x \in\{0,1\}^{*}$ with $|x|=n$. For a given x, we say a sequence of choices for M is "good" if $3 S A T(M(x, r))=L(x)$, "bad" otherwise. While running M with input x, there are in total $2^{p(n)}$ possible sequences of choices for M. From definition of BP.NP, there are strictly less than $2^{p(n)-n}$ sequence of "bad" choices. Summing over all $x \in\{0,1\}^{n}$, there are strictly less than $2^{p(n)}$ sequence of "bad" choices.

This means, there exists a sequence of "good" choice, of length $p(n)$, call it as α_{n}, such that for all $x \in\{0,1\}^{n}, 3 S A T\left(M\left(x, \alpha_{n}\right)\right)=L(x)$.

Then \mathcal{C}_{n} is described as follows: It has input x of length n, and a witness y. $C_{n}(x, y)$ computes whether the witness y satisfies the $3 S A T$ instance $M\left(x, \alpha_{n}\right)$. Since α_{n} fixed for every x of length n, we hard-wire α_{n} in our circuit C_{n}. Clearly, we get

$$
x \in L \Leftrightarrow M\left(x, \alpha_{n}\right) \in 3 S A T \Leftrightarrow \exists y C_{n}(x, y)=1 .
$$

Computing $M\left(x, \alpha_{n}\right)$ is of polynomial size since M is a polynomial time reduction. Also verifying whether y is a satisfying assignment of $M\left(x, \alpha_{n}\right)$ or not can be done in polynomial size. Thus C_{n} is a family of non-deterministic polynomial sized circuits, which implies $L \in \mathbf{N P} /$ poly. Hence BP.NP \subseteq NP/poly.

Problem 3. Prove that there exists a perfectly complete AM $[O(1)]$ protocol for proving a lower bound on set size.
Proof. Suppose we have a family $\mathcal{H}_{m, k}$ of pairwise independent hash functions. We can construct such a family as shown in the next problem.

We will prove the claim in two steps. First, we will show that there is an $\mathbf{A M}[O(1)]$ protocol for proving a lower bound on set size which has exponentially small error probability (which is essentially just using the Chernoff Bound, as we will show). After doing this, we exhibit a perfectly complete AM $[O(1)]$ protocol for set lower-bound.

So, let $S \subseteq\{0,1\}^{m}$ be a set such that any $x \in S$ has an efficient (polynomial sized) proof of membership in S. Let K be a fixed number. Recall that the

Goldwasser-Sipser protocol was the AM $(O(1))$ protocol for set lower-bound that we covered in class. Now, consider the following protocol.
(1) The verifier V randomly picks n pairs $\left(h_{i}, y_{i}\right)$ where $h_{i} \in \mathcal{H}_{m, k}$ and $y_{i} \in$ $\{0,1\}^{k}$ for each i and sends these n pairs to the prover P.
(2) P produces $x_{i} \in S$ such that $h_{i}\left(x_{i}\right)=y_{i}$ for each i and sends the same to V, along with a proof of membership of x_{i} in S.
(3) V accepts if there are more than $n / 2$ indices i such that the proof of membership of x_{i} in S is valid and $h_{i}\left(x_{i}\right)=y_{i}$.
We now prove that this is the required protocol for set lower-bound with exponentially small error probability. Let X_{i} be the random variable

$$
X_{i}= \begin{cases}1 & \text { if } h_{i}\left(x_{i}\right)=y_{i} \text { for some } i \\ 0 & \text { otherwise }\end{cases}
$$

and put

$$
X=\frac{1}{n} \sum_{i=1}^{n} X_{i}
$$

We need to handle the following cases.
(1) Suppose $|S| \geq K$. Then since the Goldwasser-Sipser protocol belongs to $\mathbf{A M}[2]$, we see that $X_{i}=1$ with probability $\geq 2 / 3$. So,

$$
\mathbb{E}[X] \geq \frac{1}{n} \cdot n \frac{2}{3}=\frac{2}{3}
$$

So by the Chernoff Bound, we see that

$$
\mathbb{P}\left[X \leq \frac{1}{2}\right]=\mathbb{P}\left[X-\frac{2}{3} \leq \frac{-1}{6}\right] \leq \mathbb{P}\left[|X-\mathbb{E}[X]| \geq \frac{1}{6}\right] \leq e^{-n / c}
$$

where c is positive constant $\left(c=-(1 / 4)^{2} / 4\right)$. This means that

$$
\mathbb{P}\left[X>\frac{1}{2}\right] \geq 1-e^{-n / c}
$$

(2) Next, suppose $|S| \leq \frac{K}{2}$. In this case, again since the Goldwasser-Sipser protocol belongs to AM[2], we see that $X_{i}=1$ with probability atmost $1 / 3$. So,

$$
\mathbb{E}[x] \leq \frac{1}{n} \cdot n \frac{1}{3}=\frac{1}{3}
$$

Hence

$$
\mathbb{P}\left[X>\frac{1}{2}\right] \leq \mathbb{P}\left[X>\frac{1}{3}+\frac{1}{12}\right] \leq \mathbb{P}\left[|X-\mathbb{E}[X]|>\frac{1}{12}\right] \leq e^{-n / c^{\prime}}
$$

where c^{\prime} is some positive constant.
So, in both cases we see that the error probability is exponentially small. Hence, there is an AM[2] protocol for set lower-bound with exponentially small error probability.

Now, consider the following AM $[O(1)]$ protocol for set lower-bound. Again, suppose the input set is S and the number K is fixed. We will use the ideas in the Sipser-Gacs Theorem extensively.
(1) Let S^{\prime} be the set of all sequences $\left(h_{1}, y_{1}\right), \ldots,\left(h_{n}, y_{n}\right)$ such that $h_{i} \in \mathcal{H}_{m, k}$ and $y_{i} \in\{0,1\}^{k}$ for each i, and such that there are atleast $n / 2$ indices i for which there exists $x_{i} \in S$ such that $h_{i}\left(x_{i}\right)=y_{i}$. The verifier V sends the description of such a set S^{\prime} to P (here the sequence $\left(h_{1}, y_{1}\right), \ldots,\left(h_{n}, y_{n}\right)$ acts as the random string which V generates and sends to P). Suppose the length of such a random string is bounded above by l. Note that if $|S| \geq K$, then as in our previous exponentially small error protocol, we see that

$$
\left|S^{\prime}\right| \geq\left(1-\frac{1}{2^{n}}\right) 2^{l}
$$

and if $|S| \leq K / 2$, then

$$
|S| \leq \frac{1}{2^{2}} 2^{l}
$$

(2) Let $k=\frac{l}{n}+1$ (just like in Sipser-Gacs). P then produces $u_{1}, \ldots, u_{k} \in\{0,1\}^{l}$ and sends it to V.
(3) V produces $r_{0} \in\{0,1\}^{l}$ and sends it to P.
(4) P proves $r_{0} \in \bigcup_{i=1}^{k}\left(S^{\prime}+u_{i}\right)$ where the + operator represents translating the set S^{\prime}. If $r_{0}+u_{i} \in S^{\prime}$ for some i, then V accepts, otherwise it rejects.

Again, note that if $|S| \geq K$, then $\left|S^{\prime}\right| \geq\left(1-\frac{1}{2^{n}}\right) 2^{l}$ (because of the exponentially low error). Then using the probabilistic method just like in the proof of Sipser-Gacs, it can be shown that there exist u_{1}, \ldots, u_{k} such that

$$
\bigcup_{i=1}^{k} S^{\prime}+u_{i}=\{0,1\}^{l}
$$

and hence this means that there is a strategy for P to convince the verifier, implying that V accepts with probability 1.
Similarly, if $|S| \leq K / 2$, then $\left|S^{\prime}\right| \leq \frac{2^{l}}{2^{n}}$, and hence

$$
\mathbb{P}[V \text { accepts }]=\mathbb{P}_{r_{0} \in\{0,1\}^{l}}\left[r_{0} \in \bigcup_{i=1}^{k} S^{\prime}+u_{i}\right] \leq k \frac{1}{2^{l}} \cdot \frac{2^{l}}{2^{n}}=\frac{l+n}{n 2^{n}}
$$

which is exponentially small. So, this is the required perfectly complete protocol.

Problem 4. Let $k \leq n$. Construct a family $\mathcal{H}_{n, k}$ of pairwise independent functions $\{0,1\}^{n} \rightarrow\{0,1\}^{k}$ as discussed in class.

Proof. Let $\mathrm{D}=\mathbb{F}_{2^{n}}$ and $\mathrm{R}=\mathbb{F}_{2^{k}}$. We describe a class of functions $h_{a, b}$ from D to R as follows:

$$
\mathcal{H}_{n, k}=\left\{h_{a, b}(x)=(a \cdot x+b) \bmod 2^{k} \mid a, b \in \mathbb{F}_{2^{n}}\right\}
$$

where the multiplication is defined in $\mathbb{F}_{2^{n}}$. Consider $x, x^{\prime} \in \mathbb{F}_{2^{n}}$ such that $x \neq x^{\prime}$ and $y, y^{\prime} \in \mathbb{F}_{2^{k}}$. Then we have

$$
\begin{aligned}
& \underset{h \in \mathcal{H}_{n, k}}{\operatorname{Pr}}\left[h(x)=y \wedge h\left(x^{\prime}\right)=y^{\prime}\right] \\
& =\underset{h \in \mathcal{H}}{\operatorname{Pr}} \operatorname{Pr}_{n}\left[(a \cdot x+b=y) \bmod 2^{k} \wedge\left(a \cdot x^{\prime}+b=y^{\prime}\right) \bmod 2^{k}\right] \\
& =\underset{h \in \mathcal{H}}{\operatorname{Pr}} \operatorname{Pr}_{k}\left[\left(a=\left(y-y^{\prime}\right) \cdot\left(x-x^{\prime}\right) \bmod 2^{k}\right) \wedge\left(b=y-a \cdot x \bmod 2^{k}\right)\right] \\
& =\frac{1}{2^{k}} \cdot \frac{1}{2^{k}}=\frac{1}{2^{2 k}} \\
& =\frac{1}{|\mathrm{R}|^{2}}
\end{aligned}
$$

Thus we have showed that $\mathcal{H}_{n, k}$ is a pairwise independent functions. It is also easy to see that each function of $\mathcal{H}_{n, k}$ is efficiently computable.
Problem 5. Prove that QUADEQ is NP-complete.
Proof. We will show that CIRCUIT - SAT is reducible to QUADEQ, which will imply that QUADEQ is NP-complete. Let's first revisit the definition of QUADEQ:

There is a system of m quadratic equations over \mathbb{F}_{2}, with variables x_{1}, \ldots, x_{n}. Each quadratic equation is of the form

$$
\sum_{i, j \in[n]} c_{i j} x_{i} x_{j}=b, \quad\left\{c_{i j} \mid i, j \in[n]\right\}, b \in \mathbb{F}_{2}
$$

We say that the system of m quadratic equations is in QUADEQ if there exists a satisfying assignment $\left\{x_{1}, \ldots, x_{n}\right\} \in\{0,1\}^{n}$.

We now give a polynomial time reduction from a circuit to set of quadratic equations. Let C be a circuit with n input variables. Let $\left\{x_{1}, \ldots, x_{n}\right\}$ represent the n input gates. We will define a set of equivalent quadratic equations for each of AND, OR and NOT gates using arithmetization as follows

Notation: If gate i has fan-in of 2, then gate j and gate k are the inputs, otherwise only gate j is the input. All the operations are in \mathbb{F}_{2}.

$$
x_{i}= \begin{cases}x_{j} x_{k} & \text { if } i \text { is an AND gate } \\ a_{j} x_{j}+a_{k} x_{k}-x_{j} x_{k} & \text { if } i \text { is an OR gate and } a_{j}, a_{k} \in \mathbb{F}_{2} \\ \left(1-x_{j}\right) & \text { if } i \text { is an NOT gate }\end{cases}
$$

Each of the above equation is a quadratic equation. For example, $x_{i}-x_{j} x_{k}=$ $0 \Rightarrow a_{i} x_{i}+x_{j} x_{k}=0$. a_{i} 's are variables in \mathbb{F}_{2}.
It is clearly evident that C is satisfiable if and only if the above set of equations is satisfiable. If C has m gates, then the above reduction takes poly (m) time. Thus the above reduction is in polynomial time. Hence QUADEQ is NP-complete.

