
COMPLEXITY THEORY

SIDDHANT CHAUDHARY

These are my course notes for the course COMPLEXITY THEORY that I under-
took in my fourth semester. Check References for the reference books that I
used in this course.

Contents

1. An Informal Introduction . 2
2. Basic Complexity Classes . 3
2.1. An Important Note. 3
2.2. Running Times . 3
2.3. Poly-time Reducibility and NP-Completeness . 4
2.4. The Cook-Levin Theorem . 5
2.5. Space Complexity . 5
2.6. PSPACE Completeness . 7
2.7. Sublinear Spaces . 8
2.8. NL vs co-NL . 9

3. Intractability . 10
3.1. Hierarchy Theorems . 10
3.2. The Polynomial Time Hierarchy . 12
3.3. Oracle Computations . 13
3.4. Circuit Complexity . 14

4. Modern Complexity . 16
4.1. Randomized Complexity . 16
4.2. Algebraic Circuits . 16
4.3. Polynomial Identity Testing . 17
4.4. Bipartite Matching . 18
4.5. Error Reduction and Adelman’s Theorem. 19
4.6. A better bound on BPP . 19
4.7. Chernoff Bound and More on Randomized Algorithms 21
4.8. Randomized Space Bounded Computation . 22
4.9. Interactive Proofs . 23
4.10. Public coins and the class AM . 24
4.11. Pairwise Independent Hash Family . 25
4.12. GS Set Lowerbound Protocol . 26
4.13. Graph Non-Isomorphism is in AM . 27
4.14. Permanent of a Matrix . 28
4.15. PCPs . 29

References . 29

Date: January 2021.
1

2 SIDDHANT CHAUDHARY

1. An Informal Introduction

This will be a very informal introduction to some ideas in Complexity Theory.
We will assume some basic knowledge of algorithms and asymptotic notations.
Informally, we define the class P to be the class of all problems that can be
solved in polynomial time. Also, we define NP to be the class of problems which
have a simple and efficient certificate for a yes instance (we will define these
more precisely). As it will turn out (and as it is intuitively clear), we have that
P ⊆ NP. One of the currentmillenium problems is the questionwhether P = NP.
Let’s look at some examples.

Example 1.1 (Graph Coloring). Let G be any undirected graph, and consider
the k-coloring problem of determining whether G is k-colorable or not. When
k = 2, i.e the problem of 2-coloring is clearly in P, because this is equivalent to
checking whether the graph is bipartite. However, it is known that the prob-
lem of 3-coloring is NP-complete (whatever this means). Using this fact, we can
show that k-coloring is NP-complete for k ≥ 3, and this can be shown using a
reduction. Suppose we are given a graph G, and we want to see whether this
graph is k-colorable. Then, add a new vertex to G, and connect it to all other
vertices of G. If the new graph is called G′, then the problem is equivalent to
asking whether G′ is k + 1-colorable. So, if we assume that k-colorability is
NP-complete, then k + 1-colorability will also turn out to be NP-complete.
Example1.2 (BooleanSatisfiability). In this problem,weaskwhetheraboolean
formula ϕ in k-CNF is satisfiable (if you don’t know what a boolean formula is
or what CNF is, look it up), i.e whether there is an assignment to the variables
in the formula which makes the formula TRUE. We first claim that 2-SAT is in P.
To prove this, suppose we have some boolean ϕ formula in 2-CNF. An example
of such a formula is

(x1 ∨ ¬x2) ∧ (x3 ∨ x1) ∧ (x2 ∨ ¬x4)

where the total number of variables is 4. So, suppose there are n variables in
the formula ϕ, and let the variables be x1, ..., xn. Let (l1 ∨ l2) be any clause in the
formula ϕ, where l1, l2 are literals (i.e l1, l2 are either xi or ¬xi). Then, we have
the following two sided implication.

(l1 ∨ l2) ⇐⇒ (¬l1 =⇒ l2) ∧ (¬l2 =⇒ l1)

So, we make a graph G as follows: the nodes of G are all possible literals, i.e
the nodes of G are {x1, x2, ..., xn,¬x1,¬x2, ...,¬xn}. Further, if (l1 ∨ l2) is a clause
in ϕ, then there are directed edges (¬l1, l2) and (¬l2, l1) inG. This graph is called
the implication graph of ϕ. We claim that

ϕ is satisfiable ⇐⇒ there is no pair of paths xi → ¬xi and ¬xi → xi in G

If we are able to prove the above claim, then it is clear that 2-SAT is a problem in
P. So, let us now prove the claim. First, suppose there is a pair of paths xi → ¬xi

and ¬xi → xi in G. Then, we see that ϕ cannot be satisfied; if, for the sake
of contradiction, ϕ was satisfiable, then it would give us a pair of implications
xi =⇒ ¬xi and ¬xi =⇒ xi, and hence any value given to xi will lead to a
contradiction. This shows the forward direction. Conversely, suppose there is
no pair of such paths, and we will show that ϕ is satisfiable.
It turns out that 3-SAT is NP-complete.

COMPLEXITY THEORY 3

Example 1.3. (Subset Sum) In this problem, we are given a set S = {x1, ..., xn}
of positive integers, and we are given another positive integer t. The question
is whether there is a subset of A ⊆ S such that the sum of elements in A is
equal to t. This problem clearly is in NP, because for every yes instance, the
certificate is simply the subset whose sum is t. It turns out that this problem is
NP-complete.

2. Basic Complexity Classes

2.1. AnImportantNote. In this section and further sections, wewill be assum-
ing the knowledge of some concepts in TOC, like Turing Machines. I have made
separate notes for that material.

2.2. Running Times. We already know what Turing Machines are, and what
their computational power is. Roughly a TuringMachine is equivalent to amod-
ern day computer, in the sense that it hasmemory and it has the ability to carry
out algorithms. We also know that there are two kinds of TMs: deterministic
and non-deterministic, and the difference between the two lies in the ability of
making choices. However, as far as computational power is concerned, the two
of them are equivalent, i.e every non-deterministic TM is equivalent to a deter-
ministic one. Wewill now see how to define the notion of running time using this
model. This will be what most of this section will focus on.

Definition 2.1. LetM be any deterministic TM, and let f : N → N be a function.
We say thatM is an f(n)-timemachine ifM halts on all its inputs and f(n) is the
maximum number of steps thatM uses on any input of size n. The class of all
languages which are decidable by anO(f(n))-time deterministic TM is denoted
by DTIME(f(n)).

We can also define a notion of running time on a non-deterministic TM, and we
now do this.

Definition 2.2. Let N be any non-deterministic TM, and let f : N → N be any
function. N is said to be a decider if it halts on all its computation branches.
If N is a decider, then N is said to be an f(n)-time machine if f(n) is the maxi-
mum number of steps that N takes on any computation branch of any input of
size n. The class of all languages that can be decided by an O(f(n))-time non-
deterministic TM is denoted by NTIME(f(n)).

Theorem2.1. Let t : N → Nbeany function, where t(n) ≥ n. Then every t(n) time
non-deterministic single-tape TM is equivalent to a 2O(t(n)) time deterministic
single-tape TM.

Proof. Supposewearegivena t(n)-timenon-deterministic single tapeTM. Then,
weknowhow toconvert this to adeterministic TM:we just traverse thebranches
of the computation tree ofN in BFS order. Now, any branch of the computation
tree of an input of size n has height atmost t(n). If b is the maximum number of
choices that the transition function of N provides, then there are atmost bt(n)
leaves in the computation tree. Now, it takes time O(t(n)) to travel from the
root to a leaf. So, traveling all the leaves takes time O(t(n)bt(n)) = 2O(t(n)). This
completes the proof. ■

4 SIDDHANT CHAUDHARY

Definition 2.3. Define the class P to be the set of all languages that are decid-
able in polynomial time by a deterministic single-tape TM. In other words,

P =
⋃
k∈N

DTIME(nk)

Definition 2.4. A verifier for a language A is a deterministic TM V such that

A = {w | V accepts ⟨w, c⟩ for some string c}

Averifier is said to be ofpolynomial time if it runs in polynomial time in the length
ofw. A languageA is said to be polynomially verifiable if it has a polynomial time
verifier. The class of polynomially verifiable languages is denoted by NP.

Remark 2.1.1. The string c above is also known as a certificate. Note that if A
is in NP, then every certificate c for some w ∈ A must have polynomial length
(polynomial in the length of w) because a polynomial time verifier cannot even
scan an input of length that is not polynomial.

Theorem2.2. A language is inNP if andonly if it is decidedby somenon-deterministic
polynomial time TM.

Proof. First, suppose a languageL is inNP. We give a non-deterministic polyno-
mial time TM that decides the language. Suppose V is a polynomial time verifier
for L that runs in time O(nk). Make a new non-determinstic machineM as fol-
lows.

(1) On input w, non-deterministically create a string c of size atmost nk.
(2) Run the verifier V on ⟨w, c⟩. Accept if V accepts, and otherwise reject.

Conversely, suppose a language L is decided by a non-deterministic TMN . We
can construct a polynomial time verifier V as follows: on input ⟨w, c⟩, simu-
late the machine V on w by taking c as a reference for which non-deterministic
choice to make. If V accepts on this branch of the computation tree, then ac-
cept; otherwise reject. ■

Corollary 2.2.1. NP =
⋃

k∈N NTIME(nk).

Proof. This easily follows from the definition and the above theorem. ■

2.3. Poly-time Reducibility and NP-Completeness. Let us begin with a quick
definition.

Definition 2.5. A function Σ∗ → Σ∗ is said to be polynomial time computable if
there is some deterministic polynomial time TMM that halts with just f(w) on
its tape on any input w.

Definition 2.6. Let A,B be any two languages. We say thatA is polynomial time
reducible or Karp-reducible toB, written A ≤P B, if there is some polynomially
computable function f : Σ∗ → Σ∗ such that

x ∈ A ⇐⇒ f(x) ∈ B

Definition 2.7. A language B is said to be NP-complete if B is in NP and every
language A in NP is polynomially reducible to B.

COMPLEXITY THEORY 5

2.4. The Cook-Levin Theorem.
Theorem 2.3 (Cook-Levin Theorem). SAT is NP-Complete.
Proof. My favorite proof of this is in Theorem 7.37 in [2]. ■
Exercise 2.1. Show that SAT ≤P 3-SAT. From this, conclude that 3-SAT is NP-
complete.
Solution. First, we will show that every boolean expression can be written in
conjunctive normal form. Then, weshow that every formula inCNF is equivalent
to a formula in 3-CNF. This will be our strategy. Complete this proof.
Theorem 2.4. Consider the problem CLIQUE given by

CLIQUE = {⟨G, k⟩ | G has a clique of size atleast k}
Then 3SAT ≤P CLIQUE. So, it follows that CLIQUE is NP-complete.
Proof. Let ϕ be a boolean formula in 3-CNF, and suppose it has k-clauses, i.e

ϕ = C1 ∧ C2 ∧ ... ∧ Ck

where each clause Ci contains three literals. Now, we make a graph G as fol-
lows: for each literal inside each clause, make a vertex in the graph. So, there
are 3k vertices inG. Let x, y be any two literals in distinct clausesCx andCy. We
connect x and y with an edge if x and y are not conflicting, i.e if x ̸= ¬y. So, we
claim that ϕ is satisfiable if and only if G has a clique of size atleast k. To show
this, first suppose that ϕ is satisfiable, and let l1, l2, ..., lk be the literals which
have an assigned value of 1 in the clauses C1, C2..., Ck. Then, the set {l1, l2, ..., lk}
forms a clique of size k in G. Conversely, suppose G has a clique of size atleast
k. So, by assigning a value of 1 to each of the literals belonging to the clique, we
see that ϕ is satisfied, because every clause will have alteast one literal which
is assigned 1, and there are no conflicts. This completes the proof. ■
2.5. SpaceComplexity. In this section, we will look at another important mea-
sure of complexity of algorithms.
Definition 2.8. Let f : N → N be a function, and let M be a deterministic TM
that halts on all inputs. We say thatM has space complexity f(n) if f(n) is the
maximum number of tape cells thatM scans on an input of length n. IfM is a
non-deterministic TM, we say that M has space complexity f(n) if f(n) is the
maximum number of tape cells thatM scans on any branch of its computation
on any input of size n.
Definition 2.9. Let f : N → N be any function. The class of languages decidable
by a deterministic TM of space complexity O(f(n)) is denoted by SPACE(f(n)),
and the class of languages decidable by a non-deterministic TM of space com-
plexity O(f(n)) is denoted by NSPACE(f(n)). The class PSPACE is defined as

PSPACE =
⋃
k∈N

SPACE(nk)

Theorem2.5 (Savitch’sTheorem). Let f : N → N bea functionwith f(n) ≥ log n.
Then

NSPACE(f(n)) ⊆ SPACE(f 2(n))

or in simple words, every non-deterministic TM with space complexity O(f(n))
is equivalent to a deterministic TM with space complexity O(f 2(n)).

6 SIDDHANT CHAUDHARY

Proof. Let N be a non-deterministic TM that uses O(f(n)) space and decides a
language L. We will construct a deterministic TM M that decides L and uses
O(f 2(n)) space.
The idea is to explore the computation tree of N in a clever way. If we se-

quentially traverse all the branches in the computation tree of an input of size
n, then we need to keep track of all of the choices we made to move on to the
next branch, and each choice requires O(f(n)) space to store. Storing all the
choices will then require 2O(f(n)) space, which we don’t want.
Instead, we do the following. First, we modify the TM N so that whenever

N accepts, it clears its tape contents and moves its head to the extreme left
and enters a new accept state qaccept, and let us call this accepting configura-
tion caccept. Let cstart be the starting configuration of N on an input word w. We
devise an algorithm REACH that takes as input three parameters: c1, c2 and t,
where c1,c2 are any two configurations of N of size O(f(n)), and t is an integer.
Moreover, REACH(c1, c2, t)will return 1 if the configuration c2 is reachable from
c1 within t steps, and otherwise it returns 0. The algorithm for REACH is simple.

REACH (c1 , c2 , t):
if t = 1, test directly whether c1 = c2 or whether c1 can reach

c2 in one step using the transition function of N.
if either is true

return 1
else

return 0
else

for each configuration c of N using space f(n)
k1 = REACH(c1 , c , t/2)
k2 = REACH(c , c2 , t/2)
return k1 and k2 //logical and

Now, we can define our machineM as follows. LetN be the maximum number
of configurations of N of length f(n), so we clearly see that N = 2O(f(n)) (this
is where we are using the fact that f(n) ≥ log n), and N clearly depends upon
N . So, our machine M operates as follows: on input w, output the result of
REACH(cstart, caccept,N). Now, let us verify thatM really runs in O(f 2(n)) time.
To compute REACH(c1, c2, t),M needs to store the configurations c1, c2 and the

number t on a function stack (note that the function is recursive). The num-
ber t is atmost N , and so t can be stored in log N = O(f(n)) bits. Since the
configurations are of size atmost f(n), they can be stored in O(f(n)) space as
well. So, all these three parameters can be stored in O(f(n)) space. Now,
here is an important point: a call to REACH uses to further calls to REACH.
So even though REACH is of exponential time, the same space can be used to
solve the two subcalls (and this is the important difference between space and
time; space can be reused). Each call to REACH halves t, and hence there are
log t = O(log N) = O(f(n)) total calls to REACH. So, the total space used byM
is O(f(n)) ·O(f(n)) = O(f 2(n)). ■
Remark 2.5.1. This proof is essentially the idea in the proof of Savitch’s Theo-
rem8.5 in [2], and as mentioned in the book, there is a small glitch in this proof.
In particular, before M runs, it needs to know the value of N , i.e it needs to
know the value of f(n) (becauseN = 2O(f(n))). But this can actually be remedied

COMPLEXITY THEORY 7

in a simple way: just makeM iterate over all possible values f(n) ∈ {1, 2, 3...}.
For every i, check whether any configuration of length atleast f(n) = i is even
reachable or not. If not, then M just simply rejects. Otherwise continue the
loop.

Corollary 2.5.1. NPSPACE =
⋃

k∈N NSPACE(nk) =
⋃

k∈N SPACE(nk) = PSPACE

Proof. This easily follows from Savitch’s Theorem 2.5. ■

Definition 2.10. We define the class EXPTIME as

EXPTIME =
⋃
k∈N

DTIME(2nk

)

Proposition 2.6. The following inclusion between complexity classes holds.

P ⊆ NP ⊆ PSPACE ⊆ EXPTIME

Proof. The inclusion P ⊆ NP is already proven. Moreover, we know by Corol-
lary2.2.1 that any language inNP is decidable byapolynomial-timenon-deterministic
TM. Now, any polynomial-time TMcan only access polynomiallymany tape cells
on an input, and hence it follows that NP ⊆ NPSPACE and hence by Corol-
lary 2.5.1 we see that NP ⊆ NPSPACE. Finally, take any language in PSPACE
decided in space O(f(n)). So, the total number of possible configurations are
O(f(n))2O(f(n)), since the number of tape cells being used is O(f(n)). Now, any
TM that halts cannot repeat a configuration. So, the running time of this TM
must be O(f(n))2O(f(n)) = 2O(f(n)) and hence it follows that PSPACE ⊆ EXPTIME.
This completes our proof. ■

Remark2.6.1. It actually turns out thatP ̸= EXPTIME, and hence atleast one of
the inclusions P ⊆ NP, NP ⊆ PSPACE and PSPACE ⊆ EXPTIMEmust be strict.

2.6. PSPACE Completeness. Just like NP-complete problems, we can define
the notion of PSPACE-completeness.

Definition 2.11. A language L is PSPACE-complete if L is in PSPACE and every
A in PSPACE is polynomial time reducible to L. If L satisfies only the second
condition, then it is said to be PSPACE-hard.

Now, we will be introducing our first PSPACE-complete problem. The problem
deals with quantified boolean formulae. In particular, we will be dealing with
fully quantified boolean formulae in prenex normal form. An example of such a
formula is

ϕ = ∀x∃y[(x ∨ y) ∧ (¬x ∨ ¬y)]

It is easy to see that a fully quantified formula in prenex normal form is either
true or false. We define the language

TQBF = {⟨ϕ⟩ | ϕ is a true fully quantified boolean formula}

Theorem 2.7. TQBF is PSPACE-complete.

Proof. The proof that we covered in class was the proof of Theorem 8.9 in [2].
■

8 SIDDHANT CHAUDHARY

2.7. SublinearSpaces. In this section,wewill lookat complexity classeswhere
the space requirement is sublinear, i.e the space used is less than linear. For
this to work, we will be considering TMs which have a separate input tape and
a separate work tape, and only the work tape will contribute to the space com-
plexity.

Definition 2.12. The class of languages decidable by deterministic TMs in log-
arithmic space is denoted by L, i.e

L = SPACE(log n)

Similarly, the class of languages decidable by non-deterministic TMs in loga-
rithmic space is denoted by NL, i.e

NL = NSPACE(log n)

Now, we have to define the notion of an NL-complete problem, but to do that we
have to define a notion of reduction.

Definition2.13. A log-space transducer is a TM that has a read-only input tape,
a read-write work tape and a write-only output tape. The work tape can use
only O(log n) cells. A function f : Σ∗ → Σ∗ is said to be log space computable if
there is some log space transducerM which writes just f(w) on its output tape
on input w. A language A is said to be log space reducible to B, written A ≤L B,
if there is some log space computable function f such that x ∈ A ⇐⇒ f(x) ∈ B.

Proposition 2.8. If B ∈ L and A ≤L B, then A ∈ L.
Proof. (This is loosely the argument in the proof of Theorem 8.23 in [2]) In this
proof, we can’t apply the simple idea of polynomial time reductions, i.e given
x ∈ A, we can’t just compute f(x) and run the machine for B on f(x), and this
is because the input f(x) to B may have more than logarithmic length. Instead,
the trick is to compute f(x) bit-by-bit, and we now describe it.
LetMA,MB be log space machines for A,B respectively, and let T be the log

space transducer for the reduction from A to B. Let x be an input given to A.
As usual, the idea is to runMB on input f(x), but with limited space. To do this,
everytime MB requires the ith bit of f(x), we run T on the input x and return
the ith bit from the output tape, and give it to the machine MB . Note that this
procedure is very inefficient, because every timeMB moves its input head, we
have to recompute f(w) from scratch. However, the advantage of this is thatwe
only need to store a single bit of f(w) at a point, and hence the machine takes
logarithmic space. This is the effect of trading time for space. ■
Definition 2.14. A language B is said to be NL-complete if B ∈ NL and every
A ∈ NL is log space reducible to B.

Now consider the following language.
PATH := {⟨G, s, t⟩ | G is a directed graph that has a directed path from s to t}

Theorem 2.9. The language PATH as defined above is NL-complete.
Proof. First, we need to show that PATH is in NL. Here is a non-deterministic
log space TM for PATH: on input ⟨G, s, t⟩, the TM starts with the node s on its
work tape. At each point, it non-deterministically guesses the next vertex in the
required path, and writes that vertex on its work tape. The machine runs for

COMPLEXITY THEORY 9

|V | steps, where |V | is the number of vertices inG. If the vertex t is encountered
within |V | steps, the machine accepts, otherwise it rejects. Clearly, at any point
of time, we only need to store the current vertex, and if there are |V | vertices,
this requires log |V | space on the work tape. So, this machine is the required
log space machine for PATH.
We will now show that every A ∈ NL is log space reducible to PATH. Let M

be any non-deterministic log space TM for A, and let w be any input toM . So,
the work tape of M takes c log n space for some constant c, where n is the in-
put length. Consider the configuration graph G ofM on the input w; this is the
graph whose vertices are all possible configurations of M of size c log |w| on
the input w, and there is a directed edge between two configurations c1, c2 ifM
can reach the configuration c2 from c1 in one step. Let cstart be the starting con-
figuration, and let caccept be the accepting configuration for w, and we assume
without loss of generality that caccept is unique (if not,M can be made to have a
unique accepting configuration). So, the reduction is simply mapping the word
w to ⟨G, cstart, caccept⟩. It remains to show that this is infact a log space reduction.
Note that the vertices of G can be computed in log space, because each ver-

tex is a configuration which has length atmost c log |w|. So the log space trans-
ducer can simply list all possible strings of length c log |w| sequentially, and
check which ones are valid configurations, and the valid ones can be put on
the output tape. Edges are also easy to list: the transducer simply lists all pairs
(c1, c2) of valid configurations, and the pair is put on the output tape if c2 can be
reached from c1 in one step. This completes our proof. ■

2.8. NL vs co-NL. In this section, we will prove a surprising result about the
class NL.
Theorem 2.10 (Immerman–Szelepcsényi Theorem). NL = co-NL.
Proof. From Theorem 2.9 we know that the problem PATH is NL-complete. So,
it is enough to show that the problem PATH is in NL, because every problem in
co-NL is log space reducible to PATH.
So we need to give an algorithm that accepts input ⟨G, s, t⟩ if and only if there

is no s to t path in G. We will do this in two steps:
(1) We will first give a non-deterministic log space algorithm that, on input

⟨G, s, t⟩, computes the number of vertices of G that are reachable from
s. Call this number c.

(2) Next, we will give a non-deterministic log space algorithm that solves
PATH on the input ⟨G, s, t, c⟩, i.e we pass an additional parameter c to the
algorithm.

Clearly, combining these twoalgorithmswill give us the required log space pro-
cedure to solve PATH.
First, we give the procedure for (2), assuming we have solved (1). On input

⟨G, s, t, c⟩, we iterate over all vertices of G. At each step of the iteration, we
only need to remember a vertex ofG, and that takesO(log (|V |)) space. We also
maintain a counter ccounter that is initially 0. Let vcurr be the current vertex in the
iteration. Then, we non-deterministically guess whether the vcurr is reachable
from s or not. If the non-deterministic guess is a no, we move on to the next
vertex. If the non-deterministic guess is a yes, then we non-deterministically
try to obtain a path from s to vcurr (just as in the proof of Theorem 2.9), and

10 SIDDHANT CHAUDHARY

this takes timeO(log |V |). If this non-deterministic process does not give a path
from s to vcurr, then we reject. If the procedure gives us a path from s to vcurr,
we increment ccounter by 1, and move on to the next vertex. Also, if at any stage,
the machine exhibits a path from s to t, then the machine rejects. Finally, after
iterating through all vertices, the machine checks whether ccounter = c. If not,
then the machine rejects, otherwise the machine accepts.
Clearly, the above procedure only accepts if t is not reachable from s. We

tweak our machine so that it accepts inputs ⟨G, s, t, c⟩ which are not valid en-
codings (remember that we have to decide the language PATH; in particular,
there will be inputs which are not valid encodings). Also, this procedure only
needs to store the values of ccounter and vcurr and possibly some loop variables,
and hence it requires only logarithmic space. So, this gives us a procedure for
(2), assuming that we have solved (1).
Next, we will show how to solve (1). We will give a non-deterministic algo-

rithm, one of whose branches computes the value of c correctly, and all other
branches reject.
Let the input be ⟨G, s, t⟩. For each 0 ≤ i ≤ m, denote the set of all vertices of

G reachable from s within i steps by Ai, i.e Ai = {s}. Clearly, Am is the set of
all vertices reachable from s. Let ci = |Ai|, so that c0 = 1. We will give a non-
deterministic procedure that calculates Ai+1 from Ai, and running this proce-
durem− 1 times will give us the value cm = c.
So suppose we know ci, and wewant to calculate ci+1. We put ci+1 = 0 initially.

We iterate through all the vertices ofG, and this forms our outer loop. Suppose
vcurr is the current vertex in this loop. Next, we form an inner loop to iterate
through all the vertices ofG, and let ucurr be the current vertex in the inner loop.
We non-deterministically guess whether ucurr ∈ Ai or not. If the guess is a no,
then we simply move to the next vertex in the inner loop. If the guess is a yes,
then we non-deterministically try to obtain a path of length atmost i from s to
ucurr. If we don’t get such a path, we reject. If we do get such a path, then we
check whether (ucurr, vcurr) is an edge in G. If it is an edge, we increment ci+1 by
1 (because in this case vi ∈ Ai+1). Through the inner loop, we also keep a count
of the number of vertices found in Ai. If this count is not equal to ci, we reject,
because not all vertices inAi have been found. Then, we go on to the next vertex
in the outer loop.
Clearly, only a few variables need to be stored in the above procedure, and

hence it takesO(log n) time. So this is the required procedure for (1), and hence
this completes our proof. ■
Remark2.10.1. The ideas here are loosely the contents of Theorem8.27 of [2].

3. Intractability

In this section we will see some problems which are solvable in principle, but
they require a lot of space and time, which makes them practically impossible
to solve. This is the notion of intractability.

3.1. HierarchyTheorems. Let usfirst beginwith thenotionof spaceconstructabil-
ity.

Definition 3.1. Let f : N → N be a function, where f(n) is atleast O(log n). f(n)
is said to be space constructible if the function that maps the string 1n to the

COMPLEXITY THEORY 11

binary representation of f(n) is computable in O(f(n)) space. In simple words,
f(n) is space constructible if there is anO(f(n)) space TM that haltswith output
equal to the binary representation of f(n) on input 1n.
Theorem 3.1 (Space Hierarchy Theorem). For any space constructible func-
tion f : N → N, a language A exists that is decidable in O(f(n)) space but not in
o(f(n)) space.
Proof. (The proof is based on the ideas in Theorem 9.3 of [2]) The idea is to
make a TM that runs in O(f(n)) space and is different from every TM that runs
in o(f(n)) space. We will accomplish this by using a diagonalisation argument,
something very similar to what is used in proving that the halting problem is
undecidable.
We make a TMD as follows: D takes as input all strings x of the form ⟨M⟩10∗,

where ⟨M⟩ is the encoding of some TM. If the input x is not of this form, then our
machine D will simply reject. So, we assume that x is of the given form. So on
input x = ⟨M⟩10k,D simulates the machineM on the the same input x = ⟨M⟩10k
within the space bound f(n) (this is where we use space constructability of f).
IfM accepts x within this space bound, then D rejects. IfM rejects within this
space bound, then D accepts. If M does not halt within this space bound, D
simply accepts.
It is clear from this description that D runs in space O(f(n)). Next, we need

to show that D is not equivalent to any TM that runs in space o(f(n)). LetM be
any TM that runs in space o(f(n)), and let n0 be so large so thatM runs within
f(n) space on all inputs of size n ≥ n0. Consider the string ⟨M⟩10n0 . Clearly, D
differs in its behavior fromM on input ⟨M⟩10n0 . This completes the proof. ■
Remark 3.1.1. There is a technical glitch in the above proof. It is possible that
when D simulatesM ,M may go in an infinite loop within space f(n). Now, any
machine that halts within f(n) space must run for time atmost 2f(n). So, we
configure D so that it runs for time atmost 2f(n).
Corollary 3.1.1. For any two functions f1, f2 : N → Nwhere f1(n) is o(f2(n)) and
f2 is space constructible, SPACE(f1(n)) ⊊ SPACE(f2(n)). In simple words, if we
are allowed more time, then we can decide more problems.
Proof. This is immediate from the Space Hierarchy Theorem 3.1. ■
Example 3.1. It can be shown that the function nc is space constructible for
every c ∈ Q+. This immediately tells us that if 0 ≤ c1 < c2 are two real numbers,
then SPACE(nc1) ⊊ SPACE(nc2).
Example 3.2. Using Corollary 3.1.1, we can show that NL ⊊ PSPACE. By Sav-
itch’s Theorem 2.5, we know that NL ⊆ SPACE(log 2(n)). Since log 2(n) = o(n),
Corollary 3.1.1 immediately implies that SPACE(log 2n) ⊊ SPACE(n), and hence
it follows that NL ⊊ SPACE(n) ⊊ PSPACE.
Definition 3.2. A function t : N → N such that t(n) is atleast O(nlog n) is said to
be time-constructible if the function mapping 1n to the binary representation of
t(n) is computable in time O(t(n)).
Theorem 3.2 (Time Hierarchy Theorem, Deterministic Version). For any time
constructible function t : N → N there exists a language A that is decidable in
time O(t(n)) but is not decidable in time o(t(n)/log t(n)).

12 SIDDHANT CHAUDHARY

Proof. (The idea is based on Theorem9.10 of [2]) The proof idea is very similar
to the proof of the Space Hierarchy Theorem 3.1. However, here there is a
factor of log t(n) because we need to make sure that our machine takes atmost
t(n) steps to run. This will be more clear in the following algorithm.
We make a TM D which does the following, and note that this is very similar

to what we did in the Space Hierarchy Theorem 3.1.
(1) Let the input be w, and let n = |w|.
(2) Since t is timeconstructible, compute t(n)andstore the value t(n)/log t(n)

in a binary counter. We will use this counter to capture the number of
steps; so, we decrement this counter before every step in (4) below. If
the counter reaches 0, then reject.

(3) If w is not of the form ⟨M⟩10∗, then simply reject.
(4) Ifw is of the form ⟨M⟩10k, simulateM onw. IfM accepts, then reject and

ifM rejects, then accept.
Note that at every step, the counter in point number (2) above is decremented.
Thecounterhas size t(n)/log t(n), andhence the spaceused to store this counter
is log (t(n)/log t(n)), and this is O(log t(n)). So, the cost of decrementing the
counter at every step is O(log t(n)), and hence the overall cost of decrement-
ing the counter until it is zero is O(log t(n))t(n)/log t(n) = O(t(n)). So, it follows
that our machine D runs in time O(t(n)). So suppose D runs in time ct(n) for
some constant c.
Next, we claim that the language decided by D cannot be decided by any TM

with runtime o(t(n)/log t(n)). For the sake of contradiction, suppose there is
some o(t(n)/log t(n)) time machine M such that L(M) = L(D). Let n0 ∈ N be
such that M takes less than ct(n0)/logt(n0) steps to run on an input of length
≥ n0. This means that if D runs on input ⟨M⟩10n0 , then the simulation ofM will
be complete. But this is a contradiction, because by our definition, the behavior
of D is different fromM on this input. ■
Theorem 3.3 (Time Hierarchy Theorem, Non-Deterministic Version). If f(n +
1) = o(g(n)) then NTIME(f(n)) ⊊ NTIME(g(n)).
Proof. This is given in Theorem3.3 of [1]. I may want to write the proof done in
class here, but I think its similar to proof in Borak’s book. ■
3.2. The Polynomial Time Hierarchy. In this section, we will review an impor-
tant class of problems, which extends the classes P and NP.
Definition 3.3. Let Σp

0 = P and Σp
1 = NP. The class Σp

2 is defined to be the set of
all languagesL forwhich there exists a polynomial time TMM and a polynomial
q(x) such that

x ∈ L ⇐⇒ ∃u ∈ {0, 1}q(|x|)∀v ∈ {0, 1}q(|x|)⟨x, u, v⟩ ∈ L(M)

Note the similarity of the definition ofΣp
2 with the definition ofNP. Here, we have

an extra ∀ quantifier. It is also clear that NP ⊆ Σp
2.

Definition 3.4. Define the class Πp
2 to be

Πp
2 := {L : L ∈ Σp

2}
Equivalently, we have the following definition: a language L is in Πp

2 if there ex-
ists a polynomial time TMM and a polynomial q(x) such that

x ∈ L ⇐⇒ ∀u ∈ {0, 1}q(|x|)∃v ∈ {0, 1}q(|x|)⟨x, u, v⟩ ∈ L(M)

COMPLEXITY THEORY 13

So, we have just flipped the two quantifiers here.

Definition 3.5. For every i ≥ 1, we say that a language L is in Σp
i if there is a

polynomial time TMM and a polynomial q(x) such that

x ∈ L ⇐⇒ ∃u1 ∈ {0, 1}q(|x|)∀u2 ∈ {0, 1}q(|x|)∃u3....Qiui ∈ {0, 1}q(|x|)⟨x, u1, u2, ..., ui⟩ ∈ L(M)

where Qi is the quantifier ∃ if i is odd, and it is ∀ if i is even.
Similarly, we can define the class Πp

2 as the set of all languages L such that
there exists a polynomial time TMM and a polynomial q(x) such that

x ∈ L ⇐⇒ ∀u1 ∈ {0, 1}q(|x|)∃u2 ∈ {0, 1}q(|x|)∀u3....Qiui ∈ {0, 1}q(|x|)⟨x, u1, u2, ..., ui⟩ ∈ L(M)

where Qi is the quantifier ∀ if i is odd, and it is ∃ if i is even.

Remark 3.3.1. Note that Σp
1 = NP and Πp

1 = coNP. More generally, we have
Πp

i = coΣp
i . Also note that Σ

p
i ⊆ Πp

i+1.

Definition 3.6. The polynomial hierarchy is defined as
PH :=

⋃
i

Σp
i

Proposition 3.4. For every i ≥ 1, if Σp
i = Πp

i then PH = Σp
i . So in this case, the

hierarchy PH collapses to the ith level.

Proof. Didnt’ have enough time to write the proof. But, I like the proof of Theo-
rem 2 in http://www.cs.umd.edu/~jkatz/complexity/f11/lecture8.pdf. ■
Proposition 3.5. PH ⊆ PSPACE.
Proof. To be completed. ■
Theorem 3.6. Suppose there is some language L that is PH-complete. Then,
there exists an i such that PH = Σp

i .

Proof. This is easy to prove: suppose L is a PH-complete language. So, there
is some i such that L ∈ Σp

i . Then, every problem of PH can be polynomially
reduced to L, and hence every language in PH is in Σp

i . ■
Theorem 3.7. Let i ∈ N. Define the following problems.

ΣiSAT := {φ | ∃u1∀u2∃ · · ·Qiui φ(u1, ..., ui) = 1}
ΠiSAT := {φ | ∀u1∃u2∀ · · ·Siui φ(u1, ..., ui) = 1}

Then, the problem ΣiSAT is a complete problem for Σp
i and the problem ΠiSAT

is a complete problem for Πp
i .

Proof. To be completed. ■

3.3. Oracle Computations. Now let us look at an important abstract idea.

Definition 3.7. An oracle for a language A is a device that can report if a string
w is a member of A or not. An oracle Turing Machine MA is a TM which can
query the oracle for A, and has a special oracle tape: whenever MA writes a
string w on its oracle tape, the oracle for A can report toM whether w ∈ A in a
single computational step. MA is said to have access to an oracle for A.

http://www.cs.umd.edu/~jkatz/complexity/f11/lecture8.pdf

14 SIDDHANT CHAUDHARY

Remark 3.7.1. The best way to think about oracles is to think about them as
being black boxes to solve certain problems for free. This is also called rela-
tivisation, i.e we study properties of computation relative to a given problem,
i.e if we can solve a certain problem for free, how much power do we have to
solve other problems.

Definition 3.8. Let A be any language. Denote by PA the class of all languages
solvable by polynomial time TMs having access to the oracle A. Similarly, the
class NPA is defined.

Theorem 3.8. There exists oracles A,B such that PA ̸= NPA and PB = NPB .

Proof. Let B = TQBF. Then we have the following inclusions.

NPTQBF ⊆ NSPACE ⊆ PSPACE ⊆ PTQBF

The first inclusion is true because any problem in NPTQBF can simply solve any
instance of TQBF in polynomial space instead of using the oracle for it. The
second inclusion is true bySavitch’s Theorem 2.5, and the last inclusion is true
because TQBF is PSPACE-complete. This shows that PB = NPB .
Next, wewill exhibit the oracleA. Complete this proof! The proof done in class

was Theorem 9.20 of [2]. ■

3.4. Circuit Complexity. First, we review boolean circuits.

Definition 3.9. Formally, a boolean circuit is a directed acyclic graph in which
the leaves are labelled by variables x1, ..., xn and the rest of the vertices are
labelled by logical gates (AND, OR and NOT). The edges of a boolean circuit are
called wires.

An example of a boolean circuit is the following.

Figure 1. Circuit having three variables

Definition 3.10. Let C be a boolean circuit with n variables. We associate a
function fC : {0, 1}n → {0, 1} as follows: for any (x1, ..., xn) ∈ {0, 1}n, we let
f(x1, ..., xn) to be the output of the circuit C on these input variables.

Definition 3.11. A circuit family C is an infinite sequence of circuites {Cn}n∈N.
We say that the familyC recognizes a languageL ⊆ {0, 1}∗ if circuitCn correctly
decides the membership of the language L=n, where

L=n := {x ∈ L | |x| = n}

COMPLEXITY THEORY 15

Definition 3.12. The size of a circuit C (denoted by |C|) is the number of gates
that it contains. The depth of a circuitC is the length of the longest path from an
input variable to an output gate. A language L is said to have a T (n)-size circuit
family if there is a circuit family C = {Cn} recognizing L such that |Cn| ≤ T (n)
for all n ∈ N. A language A is said to have circuit complexity T (n) if the size-
minimal family of circuits recognizing A has size T (n).
Definition 3.13. Define P/poly to be the class of problems that can be decided
by polynomial size circuit families.
Theorem 3.9. P ⊆ P/poly. More precisely, let t : N → N be a function with
t(n) ≥ n. if A ∈ DTIME(t(n)), then A has circuit complexity O(t2(n)).
Proof. In class, we covered the proof done in Theorem 9.30 of [2]. ■
Theorem3.10. The class P/poly contains an undecidable problem. Hence, P ⊊
P/poly.
Proof. First, weshow that everyunary languageL ⊆ {1}∗ is contained inP/poly.
For n ∈ N, let Cn be the trivial circuit which rejects every input if 1n /∈ L, and if
1n ∈ L, let Cn be the boolean circuit which consists of only AND gates. For in-
stance, if 13 ∈ L then the circuit C3 looks something like the circuit given below.

(Important point: we are not saying that we know how to find the n ∈ N for
which 1n ∈ L. We are just claiming the existence of a polynomial-size circuit
family that accepts this language). Clearly, the circuit family {Cn} is polynomial
sized, and it accepts L. This shows that L ∈ P/poly.
Now, consider the following unary language:

u− HALT := {1n | n encodes ⟨M,x⟩ in binary such that M halts on x}
Being a unary language, u − HALT ∈ P/poly. We claim that u − HALT /∈ P (and
infact, this problem is undecidable), and thiswill complete the proof of the claim.
The fact that this problem is undecidable is clear, because if this problem is
decidable, it would mean that the halting problem HALT is also decidable, which
is a contradiction. ■
Theorem3.11. TheclassP is equal to the classof problemsdecidable bypolynomial-
size circuit families whose descriptions can be obtained in polynomial time.
Remark 3.11.1. Such circuit families are called uniformly-generated circuit
families.
Proof. To be completed. ■

16 SIDDHANT CHAUDHARY

Theorem 3.12 (Karp-Lipton Theorem). If NP ⊆ P/poly then PH = Σp
2.

Remark 3.12.1. This theorem is basically saying that it is very unlikely that NP
is a subset of P/poly.
Proof. Recall the if it is true that Πp

i ⊆ Σp
i , then PH = Σp

2 (see Proposition 3.4).
To prove this theorem, we will show that if NP ⊆ P/poly, then Πp

2 ⊆ Σp
2, and that

will complete our proof. Complete this. ■

4. Modern Complexity

4.1. Randomized Complexity. First, we will define the notion of a probabilistic
TM.
Definition4.1. AProbabilistic TuringMachine is a non-deterministic TM inwhich
each non-deterministic step is based on a coin toss. If a branch of computation
tosses a coin t times, then the probability associated to that branch is 1/2t.
Definition 4.2. We say a probabilistic TMM accepts a string x if and only if

P(M accepts x) ≥ 2

3
We define the class BPP (Bounded Probabilistic Polymomial time) to be the set
of all languages which are accepted by a probabilistic polynomial time TM.
Proposition 4.1. BPP ⊆ EXP
Proof. The idea is simple: just traverse the computation tree in a BFS fashion.
Clearly, this takes exponential time, because the number of nodes in the com-
putation tree for a string will be exponential in the size of the string. ■
Theorem 4.2. BPP ⊆ Σp

2 ∩ Πp
2

4.2. AlgebraicCircuits. Analgebraic circuit is just like abooleancircuit, where
the gates are + and - gates (which represent addition and subtraction). These
gates compute multivariate polynomials. For example, consider the following
algebraic circuit.

The above boolean circuit will compute the polynomial x1x2 + x3, which is a
polynomial over three variables. The good thing about these circuits is that
small algebraic circuits can compute big polynomials. For example, consider
the polynomial

p(x1, ..., xn) = (1 + x1)(1 + x2) · · · (1 + xn)

It can be checked that this polynomial has O(2n)monomials. However, there is
a simple algebraic circuit to compute this polynomial which has only n+1 gates
(finding such a circuit is almost trivial).

COMPLEXITY THEORY 17

4.3. Polynomial IdentityTesting. In this section,wewill lookat aproblemwhich
has a fairly simple randomized algorithm that solves it.
Suppose we are given an algebraic circuit C which computes a polynomial P

of degree ≤ d. We need to determine whether P ≡ 0, i.e whether P is the zero
polynomial. It is an open problem to determine whether PIT ∈ P.

Lemma 4.3 (Schwartz-Zippel Lemma). Let P (x1, ..., xn) ∈ Q[x1, ..., xn] be a non-
zero polynomial of degree d. Let S ⊆ Q be any finite subset of Q. If a1, a2, ..., an
are picked uniformly at random from the set S, then

P[P (a1, ..., an) = 0] ≤ d

|S|

Remark 4.3.1. For polynomials in one variable, this lemma is trivial, because in
that case P can have atmost d roots (since we are working over a field).

Proof. We prove this by induction on n. As mentioned in the remark, the base
case n = 1 is trivially true, because a polynomial of degree D can have at-
most d roots. Assume that the lemma holds for those cases when the num-
ber of variables is ≤ n − 1. Now, we can write the polynomial P (x1, ..., xn) as a
polynomial over the variable xn, where the coefficients will be taken from the
ring Q[x1, ..., xn−1]; more formally, we are using the isomorphism Q[x1, ..., xn] ∼=
Q[x1, ..., xn−1][xn]. We will use the notation x = (x1, x2, ..., xn). So, let

P (x) =
d̃∑

i=0

xi
nPi(x1, ..., xn−1)

where each Pi(x1, ..., xn−1) ∈ Q[x1, ..., xn−1] and 0 ≤ d̃ ≤ d. Since P (x) ̸≡ 0, there
is a maximum index j ≤ d such that such that Pj(x1, ..., xn−1) ̸≡ 0. So, we can
write

P (x) =

j∑
i=0

xi
nPi(x1, ..., xn−1)

Also, note that degPj ≤ d− j. By induction hypothesis, we see that

P
a1,...,an−1∈S

[Pj(a1, ..., an−1) = 0] ≤ d− j

|S|
Now, we have

P (a1, ..., an−1, xn) =

j∑
i=0

xi
nPi(a1, ..., an−1)

Now, we condition the event P (a1, ..., an−1, an) = 0 into two events.
(1) In the first case, P (a1, ..., an−1, an) = 0 and Pj(a1, ..., an−1) = 0. We have

P[P (a1, ..., an−1, an) ∧ Pj(a1, ..., an−1) = 0] ≤ P(Pj(a1, ..., an−1) = 0) ≤ d− j

|S|
(2) In the second case, P (a1, ..., an−1, an) = 0 and Pj(a1, ..., an−1) ̸= 0. Now,

observe

P (a1, ..., an−1, xn) =

j∑
i=0

xi
nPi(a1, ..., an−1)

18 SIDDHANT CHAUDHARY

and the above polynomial is a polynomial in one variable. So in this case
we have

P[P (a1, ..., an−1, an) = 0] ≤ j

|S|
So, it follows that

P[P (a1, ..., an−1, an) = 0] ≤ d− j

|S|
+

j

|S|
=

d

|S|
and this completes the proof. ■
Corollary 4.3.1. The number of zeroes of P (x1, ..., xn) in the box S×S×· · ·×S =
Sn is atmost d · |S|n−1.

Proof. The proof is immediate; suppose k is the number of roots in the box S ×
S × · · · × S = Sn. Then, the above lemma implies

k

|S|n
≤ d

|S|
and hence it follows that k ≤ d · |S|n−1, and this is what we wanted to prove. ■

4.3.1. A simple randomized algorithm for PIT. Using Corollary 4.3.1, we can
devise a simple randomized algorithm for the polynomial identity testing prob-
lem.

(1) Suppose the input is a circuit for f(x1, ..., xn) ∈ Q[x1, ..., xn], wheredeg(f) ≤
d.

(2) Take S ⊆ Q such that |S| = 100d.
(3) Pick a vector (a1, ..., an) ∈ Sn uniformly at random. Use this input in the

circuit, and check whether the output of the circuit is non-zero.
(4) If the output of the circuit is zero, return true. Otherwise return false.

By the Schwartz-Zippel Lemma 4.3, we see that if f ̸≡ 0, then the probability
that the above algorithm returns true is less than d

100d
= 1

100
. So, this algorithm

is the required randomized algorithm for polynomial identity testing.

Remark 4.3.2. Finding an efficient deterministic algorithm for PIT is still an
open problem.

4.4. BipartiteMatching. Supposewe are given a bipartite graphGwith bipar-
tition V1 ∪ V2 such that |V1| = |V2| = n. Make a matrix AG as follows, which we
will call the symbolic adjacencymatrix ofG (this will not be the usual adjacency
matrix): suppose the vertices in V1 and V2 are both labelled with labels 1, 2, ..., n.
Consider n2 variables xij for 1 ≤ i, j ≤ n. AG is an n× nmatrix such that

AG[ij] =

{
xij , if vertex i in V1 is connected to vertex j in V2

0 , otherwise

Now, consider det(AG), and look at it as a polynomial over n2 variables. The
following equivalence is clear using the permutation expansion of the determi-
nant:

det(AG) ̸= 0 ⇐⇒ G has a perfect matching
So, we immediately get a randomized algorithm for existence of perfect match-
ings: use the polynomial identity testing to check whether det(AG) ̸≡ 0.

COMPLEXITY THEORY 19

4.5. Error Reduction and Adelman’s Theorem. One of the simplest statistical
tricks to reduce the error of a randomized machine M is to run many inde-
pendent trials of the machine M on the input. In regard to this, we have the
following lemma.
Proposition 4.4 (Amplification Lemma). Let ϵ be a fixed number between 0 and
1
2
. Then for any polynomial p(n), a probabilistic polynomial time TM M1 that
operates with an error ϵ has an equivalent probabilistic polynomial time TM
M2 that operates with an error of 2−p(n).
Proof. The main idea is to run many independent trials of the machineM1. The
details of the proof were not covered, but are given in Lemma 10.5 of [2]. ■
Theorem 4.5 (Adelman). BPP ⊆ P/poly
Proof. SupposeL ∈ BPP. By theAmplification Lemma 4.4, there is a TMM that
on inputs of size n usesm random bits and satisfies

Pr∈{0,1}m [M(x, r) ̸= L(x)] ≤ 1

2n+2

Say a random bit r ∈ {0, 1}m is bad if for an input x ∈ {0, 1}n, M(x, r) is an
incorrect answer, i.eM(x, r) ̸= L(x). Otherwise, we say it is good for x. By the
given probability bound, at most 2m/22n+ 2 values of r are bad for x. Adding
over all x ∈ {0, 1}n, we conclude that there are atmost 2n×2m/2n+2 < 2m strings
r which are bad for some x. So, there is some string r that is good for every
x ∈ {0, 1}n. We can hardwire such a string r into a circuit Cn that correclty
decides the language L. ■
4.6. A better bound on BPP. In this section, we will prove a good upper bound
for the class BPP.
Theorem 4.6. BPP ⊆ Σ2 ∩ Π2

Proof. It is enough to show that BPP ⊆ Σ2, since BPP is closed under comple-
mentation.
Suppose L ∈ BPP. So, there is a randomized polynomial time TMM such that

Pr[error] ≤
1

2n

for all inputs x ∈ {0, 1}n and random bits r ∈ {0, 1}m. For x ∈ {0, 1}n, let
SX := {r ∈ {0, 1}m | M(x, r) = 1}

By the given probability bound, we immediately see that

x ∈ L =⇒ |Sx| ≥
(
1− 1

2n

)
2m

x /∈ L =⇒ |Sx| ≤
2m

2n
= 2m−n

Let S ⊆ {0, 1}m. Given any y ∈ {0, 1}m, the translate S + y of S is defined as
S + y := {s+ y | s ∈ S}

We will show the following: if the size of S is small then a small number of
translates of S can not cover {0, 1}m (we will make this more precise in a mo-
ment). However, if the size of S is sufficiently large, then there is a small set of
translates of S which can cover {0, 1}m. Let us now show this.

20 SIDDHANT CHAUDHARY

Let k = m
n
+ 1. Suppose S ⊆ {0, 1}m such that |S| ≤ 2m/2n (so that S is a small

set). Let S + u1, ..., S + uk be any translates of S. Then we have∣∣∣∣∣
k⋃

i=1

S + ui

∣∣∣∣∣ ≤ (mn + 1
) 2m

2n
< 2m

and hence any k translates of S cannot cover {0, 1}m (this proves the first part
of the statement made at the end of the above paragraph).
Next, we prove the second statement. We will be using the so-called proba-

bilistic method. The key observation is this: if S is any subset of {0, 1}m then
r ∈ S + u ⇐⇒ r + u = s ∈ S

and this is just a consequence of addition modulo 2. Now, fix r ∈ {0, 1}m. Then
by this observation,

P
u∈{0,1}m

[r ∈ S + u] = P
u∈{0,1}m

[r + u ∈ S] ≤ |S|
2m

Now, let S ⊆ {0, 1}m be such that

|S| ≥
(
1− 1

2n

)
2m

(i.e S is a sufficiently big set). Fix r ∈ {0, 1}m. Then,

P
u1,...,uk∈{0,1}m

[
r /∈

k⋃
i=1

S + ui

]
≤
(
2m/2n

2m

)k

=
1

2nk
= 2−nk

Now, if
(⋃k

i=1 S + ui

)
is not a cover of {0, 1}m then there is some r ∈ {0, 1}m such

that r /∈
⋃k

i=1 S + ui For each r ∈ {0, 1}m, let Er be the event that r /∈
⋃k

i=1 S + ui.
Above we have shown that

P[Er] ≤ 2−nk

and hence it follows that

P

[⋃
r

Er

]
≤
∑
r

P[Er] ≤ 2m2−nk = 2m2−n(m
n
+1) < 1

So, it follows that there are u1, ..., uk such that
k⋃

i=1

S + ui = {0, 1}m

and this proves the second statement.
Now, returning back to our original problem. By what we have shown thus

far, we have

x ∈ L ⇐⇒ |Sx| ≥
(
1− 1

2n

)
2m ⇐⇒ ∃u1, ..., uk ∀r ∈ {0, 1}m r ∈

k⋃
i=1

Sx + ui

This is very close to a language in Σ2. The only thing we need to do is convert
the statement

r ∈
k⋃

i=1

Sx + ui

COMPLEXITY THEORY 21

to a logical predicate. We use the machineM to do this. Again, observe that
r ∈ ui + Sx ⇐⇒ r + ui ∈ Sx ⇐⇒ M(x, r + ui) = 1

and hence
x ∈ L ⇐⇒ ∃u1, ..., uk ∀r ∈ {0, 1}m ∨k

i=1 M(x, r + ui)

■

4.7. ChernoffBound andMore onRandomizedAlgorithms. First, let us begin
with the Chernoff Bound.

Proposition 4.7 (Chernoff Bound). Let X1, ..., Xk be independent boolean ran-
dom variables such that

P[Xi = 1] = p

for each 1 ≤ i ≤ k. Let

X =
k∑

i=1

Xi

and we see that

E[X] =
k∑

i=1

E[Xi] = pk

Then
P [|X − µ| > δµ] ≤ e

−δ2

4
µ

Proof. Look up a standard probability textbook. ■
Now, suppose we have a randomized algorithm Awhich works within a two-

sided error bound of 1/3. As in the Amplification Lemma 4.4, we can always
reduce the error of this algorithm by repeating the algorithm independently
many times, and judging my the major outcome (i.e if majority of times the al-
gorithm accepts, then we accept, otherwise we reject). Let us look into this in
a bit more detail. So suppose we have a string x with |x| = n, and suppose we
run the algorithmA on xwith k random bits r1, ..., rk which are picked uniformly
at random. For each 1 ≤ i ≤ k, let

Xi =

{
1 if A(x, ri) decides the membership of x correctly
0 otherwise

Clearly, we see that
E[Xi] ≥

2

3
If we putX =

∑
i Xi then we have

k ≥ E[X] ≥ 2

3
k

(1) Consider the case when x ∈ L, and the algorithm A incorrectly decides
the membership of L. Clearly, this can happen only if X ≤ 1

2
k (i.e more

than half random bits incorrectly decide the membership of x in L). In
this case, we have

|X − E[X]| ≥
∣∣∣∣12k − 2

3
k

∣∣∣∣ = 1

6
k ≥ 1

6
E[X]

22 SIDDHANT CHAUDHARY

and then one can use the Chernoff Bound 4.7 to show that

P
[
X ≤ 1

2
k

]
≤ e−Ω(k)

If k is some polynomial of n, then

e−Ω(k) ≤ 1

exp(n)
This shows that repeating the algorithm A polynomially many times will
give an exponentially low probability of error.

4.8. Randomized Space Bounded Computation. First we begin with a defini-
tion.

Definition 4.3. RL denotes the class of all languages which are recognizable by
a randomized log-space machine with a one-sided error bound.

Example 4.1. Consider the problem UREACH defined as
UREACH := {⟨G, s, t⟩ | There is a path from s to t in the undirected graph G}

In 2004, it was proven that UREACH∈ L, a result which is very hard to prove.
The following theorem is a bit easier to prove.

Theorem 4.8. UREACH ∈ RL
Proof. Our randomized algorithm will have this following vague description:
suppose the input is ⟨G, s, t⟩.

(1) Start a random walk from s.
(2) If at any time you hit the vertex t, accept. Continue the random walk for

a certain number of steps, which will be polynomial in n, where n is the
length of our input.

(3) If t is never found, reject.
Clearly, the algorithm above will only have a one-sided error: if s and t are in
different connected components, then the above algorithm will never make a
mistake. Let us explore this in more detail.
First, let us restrict ourselves to the case when G is a d-regular graph. Con-

sider AG, the adjacency matrix of G. Now, we consider the normalised matrix
AG/d. Clearly, this is a doubly stochastic matrix, i.e the sum of the entries in
each row and column of this matrix is 1. Now, AG is an n× n symmetric matrix,
where n is the number of vertices in G. So, all the eigenvalues of AG are real,
and we can find a set of eigenvectors which form an orthonormal basis of Rn.
Now, it can be easily checked that the vector u = (1/

√
n, · · · , 1/

√
n) ∈ Rn is a

unit eigenvector of AG with eigenvalue 1. So, 1 is an eigenvalue of AG. It can be
shown that all eigenvalues of a stochastic matrix have absolute value atmost 1.
Now, let 1 = λ1, λ2, ..., λn be all the eigenvalues of AG, arranged in an order so
that

1 ≥ |λ1| ≥ · · · ≥ |λn|
Complete this analysis!
Now, suppose that we have a graph G which is not necessarily regular. We

will convert this graph to a 3-regular graph, such that the reachability between
s, t in G is preserved in this new graph. The idea is to create a new graph G′ as
follows: for every vertex v in the graph with degree dv, create a dv cycle, and

https://math.stackexchange.com/questions/40320/proof-that-the-largest-eigenvalue-of-a-stochastic-matrix-is-1
https://math.stackexchange.com/questions/40320/proof-that-the-largest-eigenvalue-of-a-stochastic-matrix-is-1

COMPLEXITY THEORY 23

add this cycle to G′. Then, if (u, v) is an edge in G, add an edge between any
vertex in u′s cycle, and any vertex in v′s cycle. It is easily seen that this graphG′

is 3-regular. Moreover, s, t are reachable in G if and only if they are reachable
in G′ (where s and t are identified with any vertex on their corresponding cycle
in G′). Clearly, the size of the graph G′ is polynomial in the size of G. Now, we
can apply the above algorithm to G′, and the claim follows. ■

4.9. Interactive Proofs. We will begin with a simple definition.
Definition 4.4. A language L ∈ IP if the following are true.

x ∈ L =⇒ ∃ prover P such that P[verifier V accepts x] ≥ 2/3

x /∈ L =⇒ ∀ provers P , P[verifier V accepts x] ≤ 1/3

The first condition is called completeness and the second condition is called
soundness. The class dIP is similarly defined, except in that case the verifier V
is deterministic. For more information, see the section 8.2 in [1].

Proposition 4.9. IP ⊆ PSPACE.
Proof. To be completed. ■
Definition 4.5. Define the language #SATE as follows.
#SATE := {⟨ϕ, k⟩ | ϕ is a boolean formula having exactly k satisfying assignments}

Theorem 4.10. #SATE ∈ IP.
Proof. For simplicity, let ϕ be a boolean formula in 3CNF. Suppose the number
of variables in ϕ is n. Then, observe that

ϕ(b1, ..., bn) = 1 ⇐⇒ {b1, ..., bn} is a satisfying assignment of ϕ
So, it follows that ∑

b1∈{0,1}

· · ·
∑

bn∈{0,1}

ϕ(b1, ..., bn) = k

where k is the number of satisfying assignments of ϕ.
Next, suppose C is a clause of the form ti ∨ tj ∨ tk, where ti, tj, tk are literals.

Let variables be denoted by x1, ..., xn. An example of C might be
C = xi ∨ xj ∨ xk

For this C , define a polynomial PC as follows.
PC(xi, xj, xk) = 1− (1− xi)xj(1− xk)

Similarly, for any clause C , we can define a polynomial PC similarly. Then note
that C agrees with the polynomial PC on {0, 1} values.
So, if ϕ is a formula in 3CNF given by

ϕ = C1 ∧ C2 ∧ · · ·Cm

then define
Pϕ(x1, ..., xn) = PC1 · PC2 · · ·PCm

Then, observe that∑
b1,...,bn∈{0,1}

ϕ(b1, ..., bk) = k ⇐⇒
∑

b1,...,bn∈{0,1}

Pϕ(x1, ..., xn) = k

24 SIDDHANT CHAUDHARY

So, we have converted our problem about satisfiability of a boolean expression
to an algebraic problem.
Now, choose some n such that k ≤ 2n (recall that k is the number of satisfying

assignments of ϕ). Now, choose a prime number p (sufficiently large) such that
2n < p ≤ 22n

It is clear that p can be represented with 2n bits in binary. Now, look at the
polynomial Pϕ as an element of Fp[x1, ..., xn]. Then,∑

b1,...,bn∈{0,1}

Pϕ(b1, ..., bn) = k ⇐⇒
∑

b1,...,bn∈{0,1}

Pϕ(b1, ..., bn) = k (mod p)

and this is because of our choice of p. So, our problem of determining whether
ϕ has exactly k satisfying assignments has turned to a problem of checking
whether the right hand sum above is equal to kmodulo p, which is an algebraic
problem.
We now return to the main proof. We will describe the so called sumcheck

protocol. Couldn’t complete this. The sumcheck protocol is discussed on this
link. ■
Theorem 4.11. PSPACE ⊆ IP.
Proof. Sincewealready know that TQBF isPSPACE-complete, it suffices to show
that TQBF ∈ IP. So, suppose we have a fully quantified boolean formula Ψ. For
simplicity, we assume that Ψ is of the form

Ψ = ∃x1∀x2∃x2 · · ·xnϕ(x1, ..., xn)

Then, the idea is as follows.
(1) Covert ϕ to a polynomial Pϕ as in the previous theorem.
(2) Ψ is true if and only if∑

x1∈{0,1}

∏
x2∈{0,1}

∑
x3∈{0,1}

· · ·Pϕ(x1, ..., xn) = K ̸= 0

where above, we use a summation Σ for the ∃ quantifier, and a product∏
for the ∀ quantifier.

Then essentially the same idea as in the previous theorem works, with a lit-
tle modification. We need to handle the degree blowup as well, which results
because of the multiplication above. This is well explained in section 8.5.3 of
[1]. ■

4.10. Public coins and the classAM. In this section, we will define the Arthur-
Merlin complexity class, which is denoted by AM.

Definition 4.6. The class AM is the class of languages that can be decided by
a two round interactive proof which works as follows: on input x, the verifier
V first sends a message y consisting of random bits to the prover. Then, the
prover sends a certificate z back to the verifier. Then, the verifier runs a poly-
nomial time deterministic machine M(x, y, z) to decide the membership of x.
Moreover,

x ∈ L ⇐⇒ Py[∃z | M(x, y, z) = 1] ≥ 2/3

x /∈ L ⇐⇒ Py[∀z | M(x, y, z) = 1] ≤ 1/3

https://www.csa.iisc.ac.in/~chandan/courses/complexity14/notes/lec23.pdf
https://www.csa.iisc.ac.in/~chandan/courses/complexity14/notes/lec23.pdf

COMPLEXITY THEORY 25

Remark 4.11.1. This protocol is also classified as being public, because the
verifier’s random bits are known to the prover.
Theorem 4.12. GISO ∈ AM, where GISO is the graph isomorphism problem.
We now introduce the so called set lower bound protocol. Suppose we have

a set S whose description is known to us. Also, we assume that any x ∈ S has a
shortmembership proof, where shortmeans a polynomial sized certificate for
a proof. LetK be an integer such that

2k−2 ≤ K ≤ 2k−1

In this protocol, the prover proves to the verifier that S has cardinality atleast
K upto accuracy factor of 2, i.e

(1) If |S| ≥ K , then the prover should have a strategy to convince the verifier
with high probability to accept.

(2) If |S| ≤ K/2, then verifier should reject with high probability.

4.11. Pairwise Independent Hash Family. Let Hm,k be a family of functions
{0, 1}m → {0, 1}k with the following properties.

(1) For any y ∈ {0, 1}k and x ∈ {0, 1}m,

Ph∈Hm,k
[h(x) = y] =

1

2k

(2) For any y1, y2 ∈ {0, 1}k and x1 ̸= x2 ∈ {0, 1}m,
Ph∈Hm,k

[h(x1) = y1 ∧ h(x2) = y2] = Ph∈Hm,k
[h(x1) = y1] · Ph∈Hm,k

[h(x2) = y2]

Such a family is called a pairwise independent hash family. We will now see
how to construct such a family.
First, let us constructHm,m, i.e here k = m. Consider the finite field F2m . Then,

consider the familyHm,m of all maps ha,b : F2m → F2m defined by
ha,b(x) = ax+ b

where a, b ∈ F2m . Clearly, we see that |Hm,m| = 2m · 2m = 22m

Proposition 4.13. Hm,m as defined above is a pairwise independent hash fam-
ily.
Proof. Pick any y1, y2 ∈ {0, 1}m and pick x1 ̸= x2 ∈ {0, 1}m. Now,

Ph∈Hm,m [h(x1) = y1 ∧ h(x2) = y2] = Pa,b∈F2m
[ax1 + b = y1 ∧ ax2 + b = y2]

= Pa,b∈F2m

[[
x1 1
x2 1

] [
a
b

]
=

[
y1
y2

]]
= Pa,b

[[
a
b

]
=

[
x1 1
x2 1

]−1 [
y1
y2

]]
=

1

2m
· 1

2m

=
1

22m

because x1, x2, y1, y2 are fixed in the above chain of equations. ■
Exercise 4.1. If k < m, show that a simple way to construct a pairwise inde-
pendent hash familyHm,k is to ignore the lastm− k bits of the functions inHm,m

constructed above.

26 SIDDHANT CHAUDHARY

4.12. GS Set Lowerbound Protocol. The Goldwasser-Sipser Set Lowerbound
Protocol works as follows.

(1) S ⊆ {0, 1}m is a set such that membership of S can be efficiently proven.
The prover and the verifier both know a numberK . The prover wants to
convince the verifier that |S| ≥ K and the verifier should reject if |S| ≤
K

2
. k is a number such that 2k−2 ≤ K ≤ 2k−1.

(2) The verifier randomly picks a function h ∈ Hm,k, where Hm,k is a pair-
wise independent hash family. The verifier also picks some y ∈ {0, 1}k
randomly. Then, the verifier sends h, y to the prover.

(3) The prover produces x ∈ S such that h(x) = y and sends a certificate of
membership of x in S.

(4) The verifier checks whether h(x) = y and also checks the certificate for
membership of x. If yes, then verifier accepts, otherwise rejects.

Now consider the following.

(1) Suppose |S| ≤ K/2 and that |S| ≤ 2k−1. For x ∈ S, define the event Ex :=
h(x) = y. Then,

P

(⋃
x∈S

Ex

)
≤
∑
x∈S

P[Ex]

=
∑
x∈S

Ph∈Hm,k
[h(x) = y]

=
∑
x∈S

1

2k

≤ |S|
2k

≤ K

2k+1

COMPLEXITY THEORY 27

(2) Next, suppose |S| ≥ K . Then, we see that

P

(⋃
x∈S

Ex

)
≥
∑
x∈S

P[Ex]−
∑

x1 ̸=x2∈S

P[Ex1 ∩ Ex2]

=
|S|
2k

−
∑

x1 ̸=x2∈S

P[h(x1) = y ∧ h(x2) = y]

=
|S|
2k

−
∑

x1 ̸=x2∈S

Ph[h(x1) = y]Ph[h(x2) = y]

=
|S|
2k

−
(
|S|
2

)
1

22k

≥ |S|
2k

− |S|2

2
· 1

22k

=
|S|
2k

(
1− |S|

2k+1

)
≥ 3

4
· |S|
2k

=
3

2
· |S|
2k+1

≥ 3

2

|K|
2k+1

4.13. Graph Non-Isomorphism is in AM. Consider the GISO problem.

Theorem 4.14. GISO ∈ AM.

Proof. We will use the Goldwasser-Sipser Set Lowerbound Protocol here. The
idea is to try to construct a set S and some numberK such that ifG1 ≇ G2 then
|S| ≥ K and if G1

∼= G2 then |S| ≤ K/2, and such that membership of S can be
proven via an efficient polynomial-sized certificate.
So, suppose G1, G2 are input graphs given to us. Define

S := {(H, π) | H ∼= G1 or H ∼= G2, π ∈ Aut(H)}

Notice that the certificate for proving membership in S is polynomial sized (be-
cause we only need to exhibit bijections).
LetK = n!. We claim that ifG1 ≇ G2 then |S| = 2n! and ifG1

∼= G2, then |S| = n!.
For a graph G, define

Iso(G) := {π(G) | π ∈ Sn}

We know that Aut(G) ≤ Sn. So, Aut(G) partitions Sn into cosets. Let {ρ1, ..., ρl}
be the coset representatives. Now, we see that l = |Iso(G)|, and hence

|Iso(G)| · |Aut(G)| = n!

IfG1
∼= G2, then clearly the cardinality of the set Swill be n! by the above identity.

If G1 ≇ G2, then again by the above identity we see that |S| = 2n!. Then, we just
apply the GS protocol as usual. ■

28 SIDDHANT CHAUDHARY

4.14. Permanent of a Matrix. First, let us begin with a simple definition. For
an n× nmatrix A, we define

Perm(A) =
∑
σ∈Sn

n∏
i=1

ai,σ(i)

and this quantity is called the permament of A. Note the similarity with the de-
terminant.
Just like the determinant, the permanent can be expanded along a row, say

the first row.

Perm(A) =
n∑

i=1

a1i[Perm(A1i)]

where for each i, A1i is the matrix obtained after deleting the first row and the
ith column.
Now suppose we have a randomized algorithm A which takes as input an

n×nmatrixA over a field F and correctly computes the permanent of the input
matrix on 1−1/3n fraction of the input. Then, we claim that there exists another
algorithm Ã which can compute the permanent of the input matrix with high
probability for all inputs A. Let us see how the algorithm Ã works.

(1) Let the input matrix be A. Ã samples a random matrix R ∈ Fn×n, which
is sampled uniformly at random.

(2) Ã then constructs B = A+ xR, where x is a variable. Let

Perm(B) = Perm(A+ xR) = g(x)

where g(x) is a polynomial. Note that deg(g(x)) ≤ n.
(3) If we fix x = a, then note thatB(a) = A+ aR is a randommatrix, because

A, a are fixed, and R is random. Note that g(0) = Perm(A).
(4) Fix any n + 1 distinct elements a1, a2, ..., an+1 ∈ F of the field. Consider

the matricesB(a1), ..., B(an+1). SinceR is a randommatrix, all these ma-
trices are also random. Now, we know that the algorithm A makes a
mistake in computing the permanent of a random matrix with probabil-
ity less than 1

3n
. By a simple union bound, A makes a mistake on any of

B(a1), ..., B(an+1) with probability less than
n+ 1

3n
∼ 1

3
. This means that

with probability ≥ 2

3
, we get the correct permanent for B(a1), ..., B(an+1)

by using A. Note that

g(a1) = Perm(B(a1)), ..., g(an+1) = Perm(B(an))

Now suppose g(x) = g0+ g1x+ ...+ gnx
n. The above equations give us the

following system of linear equations.
1 a1 a21 · · · an1
1 a2 a22 · · · an2
... · · · ...
1 an+1 a2n+1 · · · ann+1

g0
g1
...
gn

 =

Perm(B(a1))
Perm(B(a2))

...
Perm(B(an+1))

The first matrix on the left hand side above is an example of a Vander-
monde Matrix. Since all the a′is are chosen to be distinct, this matrix

COMPLEXITY THEORY 29

is invertible. So, we can recover the values g0, ..., gn, and hence we can
recover g(0), which is what we wanted to do.

So, with probability ≥ 2/3, the algorithm Ã computes Perm(A) correctly for all
matrices A.

4.15. PCPs. Was unable tomake notes on this, but can be found in section 18.1
of [1].

References
[1] SanjeevArora, BoazBarak, Computational Complexity: AModernApproach, Draft of a book:

Dated January 2007.
[2] Michael Sipser, Introduction to the Theory of Computation, Thomson South-Western (2012)

	1. An Informal Introduction
	2. Basic Complexity Classes
	2.1. An Important Note
	2.2. Running Times
	2.3. Poly-time Reducibility and NP-Completeness
	2.4. The Cook-Levin Theorem
	2.5. Space Complexity
	2.6. PSPACE Completeness
	2.7. Sublinear Spaces
	2.8. NL vs co-NL

	3. Intractability
	3.1. Hierarchy Theorems
	3.2. The Polynomial Time Hierarchy
	3.3. Oracle Computations
	3.4. Circuit Complexity

	4. Modern Complexity
	4.1. Randomized Complexity
	4.2. Algebraic Circuits
	4.3. Polynomial Identity Testing
	4.4. Bipartite Matching
	4.5. Error Reduction and Adelman's Theorem
	4.6. A better bound on BPP
	4.7. Chernoff Bound and More on Randomized Algorithms
	4.8. Randomized Space Bounded Computation
	4.9. Interactive Proofs
	4.10. Public coins and the class AM
	4.11. Pairwise Independent Hash Family
	4.12. GS Set Lowerbound Protocol
	4.13. Graph Non-Isomorphism is in AM
	4.14. Permanent of a Matrix
	4.15. PCPs

	References

