ONE DIMENSIONAL RIEMANN INTEGRALS

SIDDHANT CHAUDHARY

BMC201953
(1). Let $S \subset \mathbb{R}$ be bounded above. We show that $a=\sup S$ iff $a \geq x$ for all $x \in S$ and there exists a sequence x_{n} of elements of S such that $x_{n} \rightarrow a$.

First, suppose $a=\sup S$. By the definition of the supremum, it means that $a \geq x$ for all $x \in S$. Next, let $n \in \mathbb{N}$, and consider the number

$$
a-\frac{1}{n}
$$

which is strictly less than a. Again, by the definition of the supremum, there exists some $x_{n} \in S$ such that

$$
a-\frac{1}{n}<x_{n} \leq a
$$

and consider the sequence $\left\{x_{n}\right\}$. It is easy to see that $x_{n} \rightarrow a$ because

$$
0 \leq a-x_{n}<a-\left(a-\frac{1}{n}\right)=\frac{1}{n}
$$

implying that $\left|a-x_{n}\right| \rightarrow 0$ as $n \rightarrow \infty$.
Conversely, suppose $a \in \mathbb{R}$ satisfies the given properties. Then, a is an upper bound for S. Let $\left\{x_{n}\right\}$ be a sequence of elements of S converging to a. Let $\epsilon>0$ be given. So, there is some $n \in \mathbb{N}$ for which

$$
0 \leq a-x_{n}<\epsilon
$$

which means that for this n,

$$
a-\epsilon<x_{n}
$$

This shows that $a-\epsilon$ cannot be an upper bound for S, for any $\epsilon>0$. This shows that $a=\sup S$, completing the proof. An analogous statement and proof holds for $\inf S$ as well, if S is assumed to be bounded below.
(2). Let $a, b \in \mathbb{R}$ such that $a<b$. We compute supremums and infimums in the following cases.
(a) $S=[a, b]$. Clearly for all $x \in S, x \leq b$. Moreover, $b \in S$, and hence $\sup S=b$, because if a set has a maximum element, then it must be the supremum. A very similar argument shows that inf $S=a$.
(b) $S=[a, b)$. We have that $x \leq b$ for all $x \in S$ (infact the inequality is strict). Moreover, for any $\epsilon>0$ such that $a<b-\epsilon$, we see that $b-\epsilon \in S$, so that there is some sequence $\left\{x_{n}\right\}$ of elements in S converging to b. By problem (1). we see that $b=\sup S$. The same argument as in (a) will show that inf $S=a$.
(c) $S=(a, b]$. This is symmetric to case (b), we just have an interval open on the left and closed on the right. It follows that inf $S=a$ and $\sup S=b$.
(d) $S=(a, b)$. For the supremum, the same justification as in (b) shows that $\sup S=b$. A similar justification will show that inf $S=a$.
(3). In this problem, we compute supremums and infimums of the given sets.
(a) $S=\left\{x \in \mathbb{Q} \mid x^{2} \leq 2\right\}$. If $x^{2} \leq 2$, and we have that $x \leq \sqrt{2}$. Since x in consideration is rational, it follows that $x<\sqrt{2}$, so that $\sqrt{2}$ is an upper bound (in \mathbb{R}). Also, $-\sqrt{2}$ is a lower bound (which is easy to see). Moreover, from Analysis 1 , we know that there is a sequence of rationals less than $\sqrt{2}$ converging to $\sqrt{2}$. Eventually, the terms of this sequence of rationals have their squares less than 2 , and so applying problem (1), we see that $\sup S=\sqrt{2}$. By symmetry of the square function, we see that inf $S=-\sqrt{2}$. Both of these are taken in \mathbb{R}. However, since \mathbb{Q} is the set in consideration, it follows that this set has no supremum/infimum.
(b) $S=\left\{x \in \mathbb{Q} \mid x^{2}<2\right\}$. As mentioned in part (a), because only rationals are being considered, this set has no supremum/infimum.
(c) $S=\left\{x \in \mathbb{Q} \mid x>0, x^{2} \leq 2\right\}$. Again, this set has no supremum. However, since only positive rationals are being considered, this set is bounded below by 0 . Moreover, if $0<x<1$, then $x^{2}<1<2$, so that there is a sequence of members of S converging to 0 . This shows that $\inf S=0$.
(d) $S=\left\{x \in \mathbb{R} \mid x>0, x^{2} \leq 2\right\}$. The infimum, as computed in part (c), is 0 . For the supremum, as computed in part (a), we have $\sup S=\sqrt{2}$, because $\sqrt{2}$ is infact a real number.
(4). Here, we determine which of the given functions on ($-1,1$) are uniformly continuous.
(a) f is defined by

$$
f(x)= \begin{cases}1 & , \text { if } x \geq 0 \\ -1 & , \text { otherwise }\end{cases}
$$

Observe that this function is not even continuous at the point $x=0$, and hence it cannot be uniformly continuous.
(b) $f(x)=x$. Let $\epsilon>0$ be given, and let $\delta=\epsilon$. If $|x-y|<\delta$, then $|f(x)-f(y)|=$ $|x-y|<\epsilon$, so that f is uniformly continuous.
(c) $f(x)=\tan \frac{\pi x}{2}$. We know that

$$
\lim _{x \rightarrow 1^{-}} \tan \frac{\pi x}{2}=\infty
$$

and that tan is continuous on $(-1,1)$. We show that a uniformly continuous function on $(-1,1)$ cannot be unbounded, which will show that f in our case is not uniformly continuous.

So, consider a function g on $(-1,1)$ that is uniformly continuous. Let $\epsilon>0$ be fixed. Then, there is a $\delta>0$ such that $|x-y|<\delta$ implies $|g(x)-g(y)|<\epsilon$, for $x, y \in(-1,1)$. Now, take points $x_{1}<x_{2}<\ldots<x_{n}$ in $(-1,1)$ such that

$$
(-1,1) \subset B\left(x_{1}, \delta\right) \cup \ldots \cup B\left(x_{n}, \delta\right)
$$

which is possible because $(-1,1)$ is a bounded interval. Then let $M=\max _{i}\left|g\left(x_{i}\right)\right|$. For any $x \in(-1,1)$, there is an i for which $x \in B\left(x_{i}, \delta\right)$, and in that case

$$
|g(x)|<\left|g\left(x_{i}\right)\right|+\epsilon \leq M+\epsilon
$$

so that g is bounded. This finishes the proof. Hence, f is not uniformly continuous in our case.
(5). Consider the function $\log x$ on $[1, \infty)$. We know that this function is differentiable in the given interval, and

$$
\log ^{\prime} x=\frac{1}{x}
$$

for all $x \in[1, \infty)$. Observe that

$$
0<\frac{1}{x} \leq 1
$$

for all $x \in[1, \infty)$, so that the derivative is bounded. Using this, we show that $\log x$ is uniformly continuous in the given domain. Let $\epsilon>0$ be given, and let $\delta=\epsilon$. So if $x, y \in[1, \infty)$ such that $|x-y|<\delta$, then observe that

$$
|\log x-\log y|=\left|\log ^{\prime}(c)\right||x-y| \leq|x-y|<\epsilon
$$

where we used the mean value theorem (i.e c is between x and y). Hence, the function is uniformly continuous.
(6). Let f be a continuously differentiable function defined in an open interval. We claim that the following holds: if f^{\prime} is bounded, then f is uniformly continuous. Let the open interval be (a, b), and suppose $\left|f^{\prime}(x)\right| \leq M$ for all $x \in(a, b)$. Let $\epsilon>0$ be given, and put $\delta=\epsilon / M$. If $x, y \in(a, b)$ such that $|x-y|<\delta$, then by the mean value theorem we see that

$$
|f(x)-f(y)|=\left|f^{\prime}(c)\right||x-y|<M \epsilon / M=\epsilon
$$

so that f is uniformly continuous over this open interval. This completes the proof.

Before doing problem (7), I will state the following theorem which I will be using (did not include the proof as the assignment was already too lengthy, and this is a standard theorem).

Theorem: Let f be Riemann integrable on $[a, b]$ such that $m \leq f \leq M$, and let g be a continuous function on $[m, M]$. Then, $g \circ f$ is also Riemann integrable on $[a, b]$.
(7). Here, we prove some basic properties of the Riemann Integral. Throughout, let $I=[a, b]$, and let $f, g:[a, b] \rightarrow \mathbb{R}$ be Riemann-Integrable functions.
(a) $f+g$ is also integrable, and

$$
\int_{a}^{b}(f+g)(x) d x=\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x
$$

Let P be a partition of I. The key fact that we will use is

$$
\begin{equation*}
L(P, f)+L(P, g) \leq L(P, f+g) \leq U(P, f+g) \leq U(P, f)+U(P, g) \tag{0.1}
\end{equation*}
$$

We only show that inequality for the upper sums, and the inequality for the lower sum has an analogous argument. Suppose P is the partition $a=t_{0}<$ $t_{1}<\ldots<t_{n}=b$. Then,

$$
\begin{align*}
U(P, f+g) & =\sum_{i=1}^{n} \sup _{x \in\left[t_{i-1}, t_{i}\right]}(f+g)(x) \Delta t_{i} \tag{0.2}\\
& \leq \sum_{i=1}^{n}\left[\sup _{x \in\left[t_{i-1}, t_{i}\right]} f(x)+\sup _{x \in\left[t_{i-1}, t_{i}\right]} g(x)\right] \Delta t_{i} \tag{0.3}\\
& =U(P, f)+U(P, g) \tag{0.4}
\end{align*}
$$

where we used the simple fact

$$
\sup _{x \in\left[t_{i-1}, t_{i}\right]}(f+g)(x) \leq \sup _{x \in\left[t_{i-1}, t_{i}\right]} f(x)+\sup _{x \in\left[t_{i-1}, t_{i}\right]} g(x)
$$

This proves the given inequality. Now, let $\epsilon>0$ be given. By the Cauchycriterion for integrability, we find partitions P_{1}, P_{2} of I such that

$$
\begin{gather*}
0 \leq U\left(P_{1}, f\right)-L\left(P_{1}, f\right)<\epsilon \tag{0.5}\\
0 \leq U\left(P_{2}, g\right)-L\left(P_{2}, g\right)<\epsilon \tag{0.6}
\end{gather*}
$$

and if we put P to be a common refinement of P_{1} and P_{2}, then the above two inequalities hold there as well. So, we get

$$
\begin{equation*}
U(P, f)+U(P, g)-L(P, f)-L(P, g)<2 \epsilon \tag{0.7}
\end{equation*}
$$

Observe that

$$
\begin{equation*}
L(P, f+g) \leq \underline{\int_{a}^{b}}(f+g)(x) d x \leq \overline{\int_{a}^{b}}(f+g)(x) d x \leq U(P, f+g) \tag{0.8}
\end{equation*}
$$

Finally, combining (0.1), (0.7) and (0.8), we get

$$
\overline{\int_{a}^{b}}(f+g)(x) d x-\underline{\int_{a}^{b}}(f+g)(x) d x<2 \epsilon
$$

since ϵ was arbitrary, this shows that the upper and lower integrals are equal, and hence $f+g$ is integrable. Now to show that the integral is the sum of the two integrals, first observe that

$$
L(P, f)+L(P, g) \leq \int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x \leq U(P, f)+U(P, g)
$$

and then using (0.7), (0.8) again, we see that

$$
\left|\int_{a}^{b} f(x) d x+\int_{a}^{b} g(x) d x-\int_{a}^{b}(f+g)(x)\right|<2 \epsilon
$$

and since ϵ is arbitrary, the desired equality follows.
Next, we show that $c f$ is also integrable. If $c=0$ the claim is trivial. We may also assume without loss of generality that $c>0$ (if $c<0$, upper sums will become lower sums and vice-versa, i.e inequalities would be reversed). The key observation here is that for any partition P,

$$
U(P, c f)=c U(P, f) \text { and } L(P, c f)=c L(P, f)
$$

which is proved as follows: we have

$$
\begin{aligned}
U(P, c f)=\sum_{i=1}^{n} \sup _{x \in\left[t_{i-1}, t_{i}\right]}(c f)(x) \Delta t_{i} & =\sum_{i=1}^{n} c \sup _{x \in\left[t_{i-1}, t_{i}\right]} f(x) \Delta t_{i} \\
& =c U(P, f)
\end{aligned}
$$

and this is where the roles are reversed if $c<0$, i.e supremums will become infimums. So, find a partition P such that

$$
\begin{equation*}
U(P, f)-L(P, f)<\frac{\epsilon}{c} \tag{0.9}
\end{equation*}
$$

implying that

$$
\begin{equation*}
U(P, c f)-L(P, c f)<\epsilon \tag{0.10}
\end{equation*}
$$

and by Cauchy's criterion for integration, $c f$ is integrable. Finally, observe that

$$
L(P, c f) \leq \int_{a}^{b} c f d x \leq U(P, c f)
$$

implying that

$$
c L(P, f) \leq \int_{a}^{b} c f d x \leq c U(P, f)
$$

and dividing throughout by c, we get

$$
L(P, f) \leq \frac{\int_{a}^{b} c f d x}{c} \leq U(P, f)
$$

and then using (0.9), we have

$$
\left|\frac{\int_{a}^{b} c f d x}{c}-\int_{a}^{b} f d x\right|<\frac{\epsilon}{c}
$$

and multipling throughout by c, we see that

$$
\left|\int_{a}^{b} c f d x-c \int_{a}^{b} f d x\right|<\epsilon
$$

proving the desired equality, since ϵ was arbitrary.
Finally, we show that $f g$ is also integrable by using the Theorem mentioned before the solution to this problem. The map $x \mapsto x^{2}$ is continuous, and hence f^{2} is integrable for any integrable function f (on I). This shows that $(f+g)^{2}$ is integrable (since $f+g$ is), and so is $(f-g)^{2}$ and consider the fact that

$$
4 f g=(f+g)^{2}-(f-g)^{2}
$$

showing that $f g$ is integrable (we used both results proved above).
(b) Suppose f, g are integrable on $[a, b]$ such that $f(x) \leq g(x)$ for all $x \in[a, b]$. Let P be any partition of $[a, b]$. Then, we have

$$
U(P, f)=\sum_{i=1}^{n} \sup _{x \in\left[t_{i-1}, t_{i}\right]} f(x) \Delta t_{i} \leq \sum_{i=1}^{n} \sup _{x \in\left[t_{i-1}, t_{i}\right]} g(x) \Delta t_{i}=U(P, g)
$$

and taking the infimum over all partitions, we see that

$$
\int_{a}^{b} f(x) d x \leq \int_{a}^{b} g(x) d x
$$

(c) Let f be integrable on $[a, b]$, and let $a<c<b$. We show that f is also integrable on $[a, c]$ and $[c, b]$, and that

$$
\int_{a}^{b} f d x=\int_{a}^{c} f d x+\int_{c}^{b} f d x
$$

First, let $\epsilon>0$ be given. Take a partition P such that

$$
U(P, f)-L(P, f)<\epsilon
$$

Adjoin the point c to P (if it is not already there) to get a refinement P^{\prime} of P containing c. Still, it holds that

$$
\begin{equation*}
U\left(P^{\prime}, f\right)-L\left(P^{\prime}, f\right)<\epsilon \tag{0.11}
\end{equation*}
$$

Now here is the key observation. Suppose P^{\prime} is the partition $a=t_{0}<\ldots<t_{k}=$ $c<t_{k+1}<\ldots<t_{n}=b$. Let P_{1} be the partition $a=t_{0}<\ldots<t_{k}=c$ of $[a, c]$ and let P_{2} be the partition $c=t_{k}<t_{k+1}<\ldots<t_{n}=b$ of $[c, b]$. Observe that

$$
U\left(P^{\prime}, f\right)=U\left(P_{1},\left.f\right|_{[a, c]}\right)+U\left(P_{2},\left.f\right|_{[c, b]}\right)
$$

and a similar equality holds for lower sums as well. So, we see that

$$
U\left(P^{\prime}, f\right)-L\left(P^{\prime}, f\right)=U\left(P_{1},\left.f\right|_{[a, c]}\right)-L\left(P_{1},\left.f\right|_{[a, c]}\right)+U\left(P_{2},\left.f\right|_{[c, b]}\right)-L\left(P_{2},\left.f\right|_{[c, b]}\right)<\epsilon
$$

and since upper sum minus the lower sum is always non-negative, this implies

$$
\left.U\left(P_{1},\left.f\right|_{[a, c]}\right)-L\left(P_{1},\left.f\right|_{[a, c]}\right)\right)<\epsilon
$$

showing that $\left.f\right|_{[a, c]}$ is integrable. Same holds for the interval $[c, b]$. To get the desired equality, it is enough to observe that

$$
\left.L\left(P_{1},\left.f\right|_{[a, c]}\right)+L\left(P_{1},\left.f\right|_{[c, b]}\right) \leq \int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x \leq U\left(P_{1},\left.f\right|_{[a, c]}\right)+U\left(P_{1},\left.f\right|_{[c, b]}\right)\right)
$$

and by (0.11), we see that

$$
\left|\int_{a}^{b} f(x) d x-\int_{a}^{c} f(x) d x-\int_{c}^{b} f(x) d x\right|<\epsilon
$$

proving the claim, since ϵ was arbitrary.
(d) Suppose $f: I \rightarrow \mathbb{C}$ is complex valued, with

$$
f(x)=f_{r}(x)+i f_{i}(x)
$$

Suppose f is integrable, i.e both f_{r} and f_{i} are integrable on $[a, b]$. By the Theorem mentioned before, we see that f_{r}^{2} and f_{i}^{2} are also integrable (since $x \mapsto x^{2}$ is continuous), and so is $f_{r}^{2}+f_{i}^{2}$. Also, the function $x \mapsto \sqrt{x}$ is also continuous in its domain, and hence $\sqrt{f_{r}^{2}+f_{i}^{2}}$ is also integrable on $[a, b]$, showing that $|f|$ is also integrable on $[a, b]$.

Next, we show the inequality

$$
\left|\int_{a}^{b} f(x) d x\right| \leq \int_{a}^{b}|f(x)| d x
$$

Let $z=\left(\int_{a}^{b} f_{r} d x, \int_{a}^{b} f_{i} d x\right)=\left(z_{1}, z_{2}\right)$ be in \mathbb{R}^{2}. Then, observe that

$$
\begin{aligned}
|z|^{2} & =z_{1}^{2}+z_{2}^{2} \\
& =z_{1} \int_{a}^{b} f_{r} d x+z_{2} \int_{a}^{b} f_{i} d x \\
& =\int_{a}^{b} z_{1} f_{r} d x+\int_{a}^{b} z_{2} f_{i} d x \\
& =\int_{a}^{b} z_{1} f_{r}+z_{2} f_{i} d x
\end{aligned}
$$

Applying the Cauchy-Schwarz inequality, observe that

$$
\left(z_{1} f_{r}+z_{2} f_{i}\right)(x) \leq|z||f(x)|
$$

and hence, integrating both sides, we get

$$
|z|^{2} \leq|z| \int_{a}^{b}|f(x)| d x
$$

Now, if $|z|=0$, then $z=0$, and the inequality is trivial. So, assume that $|z|>0$, and dividing throughout by $|z|$, we get

$$
|z| \leq \int_{a}^{b}|f(x)| d x
$$

which is the desired result.
(8). Throughout, let p, q be positive real numbers such that

$$
\frac{1}{p}+\frac{1}{q}=1
$$

(a) Suppose $u \geq 0, v \geq 0$. We show that

$$
u v \leq \frac{u^{p}}{p}+\frac{v^{q}}{q}
$$

To show this, fix v, p, q, and define

$$
h(u)=\frac{u^{p}}{p}+\frac{v^{q}}{q}-u v
$$

Moreover, we have that

$$
h^{\prime}(u)=u^{p-1}-v
$$

and that

$$
h^{\prime \prime}(u)=(p-1) u^{p-2}
$$

so that $h^{\prime \prime}(u) \geq 0$ for all $u \geq 0$ (because $p \geq 1$). This shows that h attains a global minima (where the domain of h is $\left[0, \infty\right.$) at the point $u=v^{\frac{1}{p-1}}$. Finally, note that

$$
h\left(v^{\frac{1}{p-1}}\right)=0
$$

and hence it follows that $h(u) \geq 0$ for all $u \geq 0$. This proves the inequality.
(b) Let f, g be non-negative Riemann-Integrable functions on $[a, b]$. We show that

$$
\int_{a}^{b} f g d x \leq\left(\int_{a}^{b} f^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} g^{q} d x\right)^{\frac{1}{q}}
$$

We assume that both integrals on the RHS are non-zero (otherwise, we will have to use a measure theoretic argument, which we haven't covered yet).

First consider the case when both the integrals on the RHS are unity. Since f, g are non-negative, we apply the inequality in (a), and get

$$
f g \leq \frac{f^{p}}{p}+\frac{g^{q}}{q}
$$

Integrating both sides, we get

$$
\int_{a}^{b} f g d x \leq \int_{a}^{b} \frac{f^{p}}{p} d x+\int_{a}^{b} \frac{g^{q}}{q} d x=\frac{1}{p}+\frac{1}{q}=1
$$

and hence the inequality is clear in this case.
For the general case, define

$$
h(x)=\frac{f(x)}{\left(\int_{a}^{b} f^{p} d x\right)^{\frac{1}{p}}}
$$

and similarly

$$
h_{1}(x)=\frac{g(x)}{\left(\int_{a}^{b} g^{q} d x\right)^{\frac{1}{q}}}
$$

Then we see that

$$
\int_{a}^{b} h^{p} d x=\int_{a}^{b} h_{1}^{q} d x=1
$$

and hence from the special case, we have

$$
\int_{a}^{b} h h_{1} d x \leq 1
$$

However, we have

$$
\int_{a}^{b} h h_{1} d x=\frac{\int_{a}^{b} f g d x}{\left(\int_{a}^{b} f^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b} g^{q} d x\right)^{\frac{1}{q}}} \leq 1
$$

and from here we get the desired result.
(c) Let f, g be complex integrable functions on $[a, b]$. By problem (7) part (d), we know that both $|f|,|g|$ are also Riemann-integrable on $[a, b]$. Applying the result (c) to these, we get that

$$
\int_{a}^{b}|f||g| d x \leq\left(\int_{a}^{b}|f|^{p} d x\right)^{\frac{1}{p}}\left(\int_{a}^{b}|g|^{q} d x\right)^{\frac{1}{q}}
$$

Again by problem (7) part (d), we know that

$$
\left|\int_{a}^{b} f g d x\right| \leq \int_{a}^{b}|f||g| d x
$$

and combining these two inequalities, we get the desired results.
(9). Let u be a complex integrable function on $[a, b]$, and we define

$$
\|u\|_{2}:=\left(\int_{a}^{b} u^{2} d x\right)^{\frac{1}{2}}
$$

We show the triangle-inequality, i.e

$$
\|f-h\|_{2} \leq\|f-g\|_{2}+\|g-h\|_{2}
$$

for complex integrable functions f, g, h on $[a, b]$.
We have

$$
\begin{aligned}
\int_{a}^{b}|f-h|^{2} d x & =\int_{a}^{b}|f-g+g-h|^{2} d x \\
& =\int_{a}^{b}|f-g|^{2} d x+\int_{a}^{b}|g-h|^{2} d x+2 \int_{a}^{b}|f-g| \cdot|g-h| d x \\
& =\|f-g\|_{2}^{2}+\|g-h\|_{2}^{2}+2 \int_{a}^{b}|f-g| \cdot|g-h| d x \\
& \leq\|f-g\|_{2}^{2}+\|g-h\|_{2}^{2}+2\|f-g\|_{2}\|g-h\|_{2} \\
& =\left(\|f-g\|_{2}+\|g-h\|_{2}\right)^{2}
\end{aligned}
$$

where in the second last step, Holder's inequality was applied with $p=q=2$. Finally, the desired result is obtained by taking square roots.

