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(1). Let S ⊂ R be bounded above. We show that a = supS iff a ≥ x for all x ∈ S
and there exists a sequence xn of elements of S such that xn → a.
First, suppose a = supS. By the definition of the supremum, it means that

a ≥ x for all x ∈ S. Next, let n ∈ N, and consider the number

a− 1

n

which is strictly less than a. Again, by the definition of the supremum, there
exists some xn ∈ S such that

a− 1

n
< xn ≤ a

and consider the sequence {xn}. It is easy to see that xn → a because

0 ≤ a− xn < a−
(
a− 1

n

)
=

1

n

implying that |a− xn| → 0 as n → ∞.
Conversely, suppose a ∈ R satisfies the given properties. Then, a is an upper

bound for S. Let {xn} be a sequence of elements of S converging to a. Let ϵ > 0
be given. So, there is some n ∈ N for which

0 ≤ a− xn < ϵ

which means that for this n,
a− ϵ < xn

This shows that a− ϵ cannot be an upper bound for S, for any ϵ > 0. This shows
that a = supS, completing the proof. An analogous statement and proof holds
for infS as well, if S is assumed to be bounded below.

(2). Let a, b ∈ R such that a < b. We compute supremums and infimums in the
following cases.

(a) S = [a, b]. Clearly for all x ∈ S, x ≤ b. Moreover, b ∈ S, and hence supS = b,
because if a set has amaximum element, then it must be the supremum. A very
similar argument shows that infS = a.

(b) S = [a, b). We have that x ≤ b for all x ∈ S (infact the inequality is strict).
Moreover, for any ϵ > 0 such that a < b− ϵ, we see that b− ϵ ∈ S, so that there
is some sequence {xn} of elements in S converging to b. By problem (1). we see
that b = supS. The same argument as in (a) will show that infS = a.
(c) S = (a, b]. This is symmetric to case (b), we just have an interval open on

the left and closed on the right. It follows that infS = a and supS = b.
(d) S = (a, b). For the supremum, the same justification as in (b) shows that

supS = b. A similar justification will show that infS = a.
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(3). In this problem, we compute supremums and infimums of the given sets.
(a) S = {x ∈ Q|x2 ≤ 2}. If x2 ≤ 2, and we have that x ≤

√
2. Since x in

consideration is rational, it follows that x <
√
2, so that

√
2 is an upper bound (in

R). Also, −
√
2 is a lower bound (which is easy to see). Moreover, from Analysis

1, we know that there is a sequence of rationals less than
√
2 converging to√

2. Eventually, the terms of this sequence of rationals have their squares less
than 2, and so applying problem (1), we see that supS =

√
2. By symmetry

of the square function, we see that infS = −
√
2. Both of these are taken in

R. However, since Q is the set in consideration, it follows that this set has no
supremum/infimum.

(b) S = {x ∈ Q|x2 < 2}. As mentioned in part (a), because only rationals are
being considered, this set has no supremum/infimum.

(c) S = {x ∈ Q|x > 0, x2 ≤ 2}. Again, this set has no supremum. However,
since only positive rationals are being considered, this set is bounded below
by 0. Moreover, if 0 < x < 1, then x2 < 1 < 2, so that there is a sequence of
members of S converging to 0. This shows that infS = 0.
(d) S = {x ∈ R|x > 0, x2 ≤ 2}. The infimum, as computed in part (c), is 0. For

the supremum, as computed in part (a), we have supS =
√
2, because

√
2 is

infact a real number.

(4). Here, we determine which of the given functions on (−1, 1) are uniformly
continuous.

(a) f is defined by

f(x) =

{
1 , if x ≥ 0

−1 , otherwise

Observe that this function is not even continuous at the point x = 0, and hence
it cannot be uniformly continuous.

(b) f(x) = x. Let ϵ > 0 be given, and let δ = ϵ. If |x− y| < δ, then |f(x)− f(y)| =
|x− y| < ϵ, so that f is uniformly continuous.
(c) f(x) = tan πx

2
. We know that

lim
x→1−

tan πx

2
= ∞

and that tan is continuouson (−1, 1). We show that auniformly continuous func-
tion on (−1, 1) cannot be unbounded, which will show that f in our case is not
uniformly continuous.
So, consider a function g on (−1, 1) that is uniformly continuous. Let ϵ > 0 be

fixed. Then, there is a δ > 0 such that |x − y| < δ implies |g(x) − g(y)| < ϵ, for
x, y ∈ (−1, 1). Now, take points x1 < x2 < ... < xn in (−1, 1) such that

(−1, 1) ⊂ B(x1, δ) ∪ ... ∪B(xn, δ)

which is possible because (−1, 1) is a bounded interval. Then letM = maxi |g(xi)|.
For any x ∈ (−1, 1), there is an i for which x ∈ B(xi, δ), and in that case

|g(x)| < |g(xi)|+ ϵ ≤ M + ϵ

so that g is bounded. This finishes the proof. Hence, f is not uniformly continu-
ous in our case.
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(5). Consider the function log x on [1,∞). We know that this function is differ-
entiable in the given interval, and

log′ x =
1

x

for all x ∈ [1,∞). Observe that
0 <

1

x
≤ 1

for all x ∈ [1,∞), so that the derivative is bounded. Using this, we show that
logx is uniformly continuous in the given domain. Let ϵ > 0 be given, and let
δ = ϵ. So if x, y ∈ [1,∞) such that |x− y| < δ, then observe that

| logx− log y| = | log′(c)||x− y| ≤ |x− y| < ϵ

where we used the mean value theorem (i.e c is between x and y). Hence, the
function is uniformly continuous.

(6). Let f be a continuously differentiable function defined in an open interval.
We claim that the following holds: if f ′ is bounded, then f is uniformly continu-
ous. Let the open interval be (a, b), and suppose |f ′(x)| ≤ M for all x ∈ (a, b). Let
ϵ > 0 be given, and put δ = ϵ/M . If x, y ∈ (a, b) such that |x − y| < δ, then by the
mean value theorem we see that

|f(x)− f(y)| = |f ′(c)||x− y| < Mϵ/M = ϵ

so that f is uniformly continuous over this open interval. This completes the
proof.
Before doing problem (7), I will state the following theorem which I will be

using (did not include the proof as the assignment was already too lengthy, and
this is a standard theorem).

Theorem: Let f be Riemann integrable on [a, b] such thatm ≤ f ≤ M , and let
g be a continuous function on [m,M ]. Then, g ◦ f is also Riemann integrable on
[a, b].

(7). Here, we prove some basic properties of the Riemann Integral. Through-
out, let I = [a, b], and let f, g : [a, b] → R be Riemann-Integrable functions.

(a) f + g is also integrable, and∫ b

a

(f + g)(x)dx =

∫ b

a

f(x)dx+

∫ b

a

g(x)dx

Let P be a partition of I . The key fact that we will use is
L(P, f) + L(P, g) ≤ L(P, f + g) ≤ U(P, f + g) ≤ U(P, f) + U(P, g)(0.1)

We only show that inequality for the upper sums, and the inequality for the
lower sum has an analogous argument. Suppose P is the partition a = t0 <
t1 < ... < tn = b. Then,

U(P, f + g) =
n∑

i=1

sup
x∈[ti−1,ti]

(f + g)(x)∆ti(0.2)

≤
n∑

i=1

[ sup
x∈[ti−1,ti]

f(x) + sup
x∈[ti−1,ti]

g(x)]∆ti(0.3)

= U(P, f) + U(P, g)(0.4)
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where we used the simple fact
sup

x∈[ti−1,ti]

(f + g)(x) ≤ sup
x∈[ti−1,ti]

f(x) + sup
x∈[ti−1,ti]

g(x)

This proves the given inequality. Now, let ϵ > 0 be given. By the Cauchy-
criterion for integrability, we find partitions P1, P2 of I such that

0 ≤ U(P1, f)− L(P1, f) < ϵ(0.5)
0 ≤ U(P2, g)− L(P2, g) < ϵ(0.6)

and if we put P to be a common refinement of P1 and P2, then the above two
inequalities hold there as well. So, we get

U(P, f) + U(P, g)− L(P, f)− L(P, g) < 2ϵ(0.7)
Observe that

L(P, f + g) ≤
∫ b

a

(f + g)(x)dx ≤
∫ b

a

(f + g)(x)dx ≤ U(P, f + g)(0.8)

Finally, combining (0.1), (0.7) and (0.8), we get∫ b

a

(f + g)(x)dx−
∫ b

a

(f + g)(x)dx < 2ϵ

since ϵwas arbitrary, this shows that the upper and lower integrals are equal,
and hence f + g is integrable. Now to show that the integral is the sum of the
two integrals, first observe that

L(P, f) + L(P, g) ≤
∫ b

a

f(x)dx+

∫ b

a

g(x)dx ≤ U(P, f) + U(P, g)

and then using (0.7), (0.8) again, we see that∣∣∣∣∫ b

a

f(x)dx+

∫ b

a

g(x)dx−
∫ b

a

(f + g)(x)

∣∣∣∣ < 2ϵ

and since ϵ is arbitrary, the desired equality follows.
Next, we show that cf is also integrable. If c = 0 the claim is trivial. We may

also assume without loss of generality that c > 0 (if c < 0, upper sums will
become lower sums and vice-versa, i.e inequalities would be reversed). The
key observation here is that for any partition P ,

U(P, cf) = cU(P, f) and L(P, cf) = cL(P, f)

which is proved as follows: we have

U(P, cf) =
n∑

i=1

sup
x∈[ti−1,ti]

(cf)(x)∆ti =
n∑

i=1

c sup
x∈[ti−1,ti]

f(x)∆ti

= cU(P, f)

and this is where the roles are reversed if c < 0, i.e supremums will become
infimums. So, find a partition P such that

U(P, f)− L(P, f) <
ϵ

c
(0.9)

implying that
U(P, cf)− L(P, cf) < ϵ(0.10)
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and by Cauchy’s criterion for integration, cf is integrable. Finally, observe that

L(P, cf) ≤
∫ b

a

cfdx ≤ U(P, cf)

implying that

cL(P, f) ≤
∫ b

a

cfdx ≤ cU(P, f)

and dividing throughout by c, we get

L(P, f) ≤
∫ b

a
cfdx

c
≤ U(P, f)

and then using (0.9), we have∣∣∣∣∣
∫ b

a
cfdx

c
−

∫ b

a

fdx

∣∣∣∣∣ < ϵ

c

and multipling throughout by c, we see that∣∣∣∣∫ b

a

cfdx− c

∫ b

a

fdx

∣∣∣∣ < ϵ

proving the desired equality, since ϵ was arbitrary.
Finally, we show that fg is also integrable by using the Theorem mentioned

before the solution to this problem. The map x 7→ x2 is continuous, and hence
f 2 is integrable for any integrable function f (on I). This shows that (f + g)2 is
integrable (since f + g is), and so is (f − g)2 and consider the fact that

4fg = (f + g)2 − (f − g)2

showing that fg is integrable (we used both results proved above).
(b) Suppose f, g are integrable on [a, b] such that f(x) ≤ g(x) for all x ∈ [a, b].

Let P be any partition of [a, b]. Then, we have

U(P, f) =
n∑

i=1

sup
x∈[ti−1,ti]

f(x)∆ti ≤
n∑

i=1

sup
x∈[ti−1,ti]

g(x)∆ti = U(P, g)

and taking the infimum over all partitions, we see that∫ b

a

f(x)dx ≤
∫ b

a

g(x)dx

(c) Let f be integrable on [a, b], and let a < c < b. We show that f is also
integrable on [a, c] and [c, b], and that∫ b

a

fdx =

∫ c

a

fdx+

∫ b

c

fdx

First, let ϵ > 0 be given. Take a partition P such that
U(P, f)− L(P, f) < ϵ

Adjoin the point c to P (if it is not already there) to get a refinement P ′ of P con-
taining c. Still, it holds that

U(P ′, f)− L(P ′, f) < ϵ(0.11)
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Now here is the key observation. Suppose P ′ is the partition a = t0 < ... < tk =
c < tk+1 < ... < tn = b. Let P1 be the partition a = t0 < ... < tk = c of [a, c] and let
P2 be the partition c = tk < tk+1 < ... < tn = b of [c, b]. Observe that

U(P ′, f) = U(P1, f |[a,c]) + U(P2, f |[c,b])
and a similar equality holds for lower sums as well. So, we see that
U(P ′, f)− L(P ′, f) = U(P1, f |[a,c])− L(P1, f |[a,c]) + U(P2, f |[c,b])− L(P2, f |[c,b]) < ϵ

and since upper summinus the lower sum is always non-negative, this implies
U(P1, f |[a,c])− L(P1, f |[a,c])) < ϵ

showing that f |[a,c] is integrable. Same holds for the interval [c, b]. To get the
desired equality, it is enough to observe that

L(P1, f |[a,c]) + L(P1, f |[c,b]) ≤
∫ c

a

f(x)dx+

∫ b

c

f(x)dx ≤ U(P1, f |[a,c]) + U(P1, f |[c,b]))

and by (0.11), we see that∣∣∣∣∫ b

a

f(x)dx−
∫ c

a

f(x)dx−
∫ b

c

f(x)dx

∣∣∣∣ < ϵ

proving the claim, since ϵ was arbitrary.
(d) Suppose f : I → C is complex valued, with

f(x) = fr(x) + ifi(x)

Suppose f is integrable, i.e both fr and fi are integrable on [a, b]. By the The-
oremmentioned before, we see that f 2

r and f 2
i are also integrable (since x 7→ x2

is continuous), and so is f 2
r + f 2

i . Also, the function x 7→
√
x is also continuous

in its domain, and hence
√

f 2
r + f 2

i is also integrable on [a, b], showing that |f | is
also integrable on [a, b].
Next, we show the inequality∣∣∣∣∫ b

a

f(x)dx

∣∣∣∣ ≤ ∫ b

a

|f(x)|dx

Let z =
(∫ b

a
frdx,

∫ b

a
fidx

)
= (z1, z2) be in R2. Then, observe that

|z|2 = z21 + z22

= z1

∫ b

a

frdx+ z2

∫ b

a

fidx

=

∫ b

a

z1frdx+

∫ b

a

z2fidx

=

∫ b

a

z1fr + z2fidx

Applying the Cauchy-Schwarz inequality, observe that
(z1fr + z2fi)(x) ≤ |z||f(x)|

and hence, integrating both sides, we get

|z|2 ≤ |z|
∫ b

a

|f(x)|dx
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Now, if |z| = 0, then z = 0, and the inequality is trivial. So, assume that |z| > 0,
and dividing throughout by |z|, we get

|z| ≤
∫ b

a

|f(x)|dx

which is the desired result.

(8). Throughout, let p, q be positive real numbers such that
1

p
+

1

q
= 1

(a) Suppose u ≥ 0, v ≥ 0. We show that

uv ≤ up

p
+

vq

q

To show this, fix v, p, q, and define

h(u) =
up

p
+

vq

q
− uv

Moreover, we have that
h′(u) = up−1 − v

and that
h′′(u) = (p− 1)up−2

so that h′′(u) ≥ 0 for all u ≥ 0 (because p ≥ 1). This shows that h attains a global
minima (where the domain of h is [0,∞) at the point u = v

1
p−1 . Finally, note that

h(v
1

p−1 ) = 0

and hence it follows that h(u) ≥ 0 for all u ≥ 0. This proves the inequality.
(b) Let f, g be non-negative Riemann-Integrable functions on [a, b]. We show

that ∫ b

a

fgdx ≤
(∫ b

a

fpdx

) 1
p
(∫ b

a

gqdx

) 1
q

Weassume that both integrals on theRHSare non-zero (otherwise, wewill have
to use a measure theoretic argument, which we haven’t covered yet).
First consider the case when both the integrals on the RHS are unity. Since

f, g are non-negative, we apply the inequality in (a), and get

fg ≤ fp

p
+

gq

q

Integrating both sides, we get∫ b

a

fgdx ≤
∫ b

a

fp

p
dx+

∫ b

a

gq

q
dx =

1

p
+

1

q
= 1

and hence the inequality is clear in this case.
For the general case, define

h(x) =
f(x)(∫ b

a
fpdx

) 1
p
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and similarly
h1(x) =

g(x)(∫ b

a
gqdx

) 1
q

Then we see that ∫ b

a

hpdx =

∫ b

a

hq
1dx = 1

and hence from the special case, we have∫ b

a

hh1dx ≤ 1

However, we have ∫ b

a

hh1dx =

∫ b

a
fgdx(∫ b

a
fpdx

) 1
p
(∫ b

a
gqdx

) 1
q

≤ 1

and from here we get the desired result.
(c) Let f, g be complex integrable functions on [a, b]. By problem (7) part (d), we

know that both |f |, |g| are also Riemann-integrable on [a, b]. Applying the result
(c) to these, we get that∫ b

a

|f ||g|dx ≤
(∫ b

a

|f |pdx
) 1

p
(∫ b

a

|g|qdx
) 1

q

Again by problem (7) part (d), we know that∣∣∣∣∫ b

a

fgdx

∣∣∣∣ ≤ ∫ b

a

|f ||g|dx

and combining these two inequalities, we get the desired results.

(9). Let u be a complex integrable function on [a, b], and we define

||u||2 :=
(∫ b

a

u2dx

) 1
2

We show the triangle-inequality, i.e
||f − h||2 ≤ ||f − g||2 + ||g − h||2

for complex integrable functions f, g, h on [a, b].
We have∫ b

a

|f − h|2dx =

∫ b

a

|f − g + g − h|2dx

=

∫ b

a

|f − g|2dx+

∫ b

a

|g − h|2dx+ 2

∫ b

a

|f − g| · |g − h|dx

= ||f − g||22 + ||g − h||22 + 2

∫ b

a

|f − g| · |g − h|dx

≤ ||f − g||22 + ||g − h||22 + 2||f − g||2||g − h||2
= (||f − g||2 + ||g − h||2)2

where in the second last step, Holder’s inequality was applied with p = q = 2.
Finally, the desired result is obtained by taking square roots.
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