
ASSIGNMENT-2

SIDDHANT CHAUDHARY
BMC201953

(1). Let f : [a, b] → R be a bounded function. Here we make precise the no-
tion that lower Riemann sums increase under refinements and upper Riemann
sums decrease under refinements.
Let P be a partition of [a, b], and let P ′ be a refinement of P . Without loss of

generality, we assume that P ′ has exactly one more point than P , and for more
points we can proceed by induction. So, let the partitions be

P := a = t0 < t1 < ... < tk < tk+1 < ... < tn = b

P ′ := a = t0 < t1 < ... < tk < t′k < tk+1 < ... < tn = b

i.e, the new point in P ′ is t′k, for some 0 ≤ k ≤ n−1. For a subinterval [ti−1, ti], put

mi(f) = inf
x∈[ti−1,ti]

f(x)

Mi(f) = sup
x∈[ti−1,ti]

f(x)

and put

M1 = sup
x∈[tk,t′k]

f(x)

M2 = sup
x∈[t′k,tk+1]

f(x)

m1 = inf
x∈[tk,t′k]

f(x)

m2 = inf
x∈[t′k,tk+1]

f(x)

So, we have

U(P, f)− U(P ′, f) = Mk+1(f)(tk+1 − tk)−M1(t
′
k − tk)−M2(tk+1 − t′k)

≥ Mk+1(f)(tk+1 − tk)−Mk+1(f)(t
′
k − tk)−Mk+1(f)(tk+1 − t′k)

= 0

where we have used the simple fact thatM1,M2 ≤ Mk+1(f). Similarly, we have

L(P, f)− L(P ′, f) = mk+1(f)(tk+1 − tk)−m1(t
′
k − tk)−m2(tk+1 − t′k)

≤ mk+1(f)(tk+1 − tk)−mk+1(f)(t
′
k − tk)−mk+1(f)(tk+1 − t′k)

= 0

where we used the simple fact that m1,m2 ≥ mk+1(f). This shows that upper
sums decrease, and lower sums increase by taking refinements.
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(2). Let I = [a, b], and let f be a monotonic function on I . Without loss of gen-
erality, we assume that f is monotonic increasing on I (the decreasing case is
similar). We show that f is Riemann integrable on I .
Let ϵ > 0 be given, and there exists a k > 0 such that

k(f(b)− f(a)) < ϵ

Let P be a partition of [a, b] given by
P := a = t0 < t1 < ... < tn = b

such that ti − ti−1 < k for each 1 ≤ i ≤ n. We use the notation as in problem (1).
Since f is monotonic increasing, we have

mi(f) = f(ti−1)

Mi(f) = f(ti)

So, for this partition we have

U(P, f)− L(P, f) =
n∑

i=1

[f(ti)− f(ti−1)](ti − ti−1)

≤ k
n∑

i=1

(f(ti)− f(ti−1))

= k(f(b)− f(a))

< ϵ

and hence by the Cauchy-criterion for integrability, this shows that f is inte-
grable on [a, b].

(4). Let X be a metric space, and let E ⊂ X . We show that
∂E = ∂Ec

First, suppose x ∈ ∂E. This means that for every δ > 0, B(x, δ) contains a point
of E and a point of Ec. Now, to cases are possible:

(1) x ∈ E. In this case, x /∈ Ec, and hence x is a limit point of Ec (because
every neighborhood contains a point of Ec). So, x ∈ Ec. However, x /∈
Int(Ec) (as x /∈ Ec), and hence x ∈ ∂Ec.

(2) x /∈ E. In this case, x ∈ Ec, so that x ∈ Ec. However, every neighborhood
of x contains a point of E, and hence x /∈ Int(Ec), and hence x ∈ ∂Ec.

So in any case, we see that ∂E ⊂ ∂Ec. We can reverse the roles of E and Ec to
get the reverse inclusion, and hence it follows that ∂E = ∂Ec.
Before doing the next problem, we prove a lemma.

Lemma 0.1. Any compact subset of R2 which has content 0 is acceptable and
has area 0.

Proof: Let T ⊂ R2 be compact with content 0. Since ∂T ⊂ T (because T is
closed), this means that ∂T has content 0, and hence T is acceptable. Now let
ϵ > 0 be given , and let R1, ..., Rn be a collection of closed rectangles in R2 such
that T ⊂ R1 ∪R2 ∪ ... ∪Rn and

n∑
i=1

area(Ri) < ϵ
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Take a rectangle R ⊂ R2 which contains R1 ∪ ... ∪Rn. So,

area(T ) =
∫
R

χT

≤
∫
R

χR1 + ...+ χRn

=

∫
R

χR1 + ...+

∫
R

χRn

=
n∑

i=1

area(Ri)

< ϵ

and since ϵ was arbitrary, this shows that area(T ) = 0, completing the proof.

(5). This is just Lemma 0.1.
(6). Let R be the rectangle

R := {(x, y) : |x| ≤ 2, y ≤ 2}
and let

S := {(x, y) : |x| ≤ 2, |y| ≤ 1}
(a) ∂S : First, observe that S is a closed rectangle in R2 with vertices

(2, 1), (2,−1), (−2, 1), (−2,−1)

Hence, the boundary of S in R2 will just be the four sides of this rectangle, be-
causeevery other point is an interior point, becausewecan takea small enough
ball which is contained entirely inside the rectangle. So,

∂S = A ∪B ∪ C ∪D

where
A = {t(2, 1) + (1− t)(2,−1) : t ∈ [0, 1]}
B = {t(2,−1) + (1− t)(−2,−1) : t ∈ [0, 1]}
C = {t(−2,−1) + (1− t)(−2, 1) : t ∈ [0, 1]}
D = {t(−2, 1) + (1− t)(2, 1) : t ∈ [0, 1]}

(b) ∂R : This is similar to part (a), because R is a closed rectangle in R2 with
vertices

(2, 2), (2,−2), (−2, 2), (−2,−2)

and hence the boundary of R in R2 will be the four sides of R. Hence,
∂R = A′ ∪B′ ∪ C ′ ∪D′

where
A′ = {t(2, 2) + (1− t)(2,−2) : t ∈ [0, 1]}
B′ = {t(2,−2) + (1− t)(−2,−2) : t ∈ [0, 1]}
C ′ = {t(−2,−2) + (1− t)(−2, 2) : t ∈ [0, 1]}
D′ = {t(−2, 2) + (1− t)(2, 2) : t ∈ [0, 1]}
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(c) ∂(S,R) : Now, our metric space in question is R. So, ∂(S,R) ⊂ ∂(S). Here,
we claim that ∂(S,R) is the union of the upper and lower edges of the rectangle
S, i.e
∂(S,R) = {t(−2, 1) + (1− t)(2, 1) : t ∈ [0, 1]} ∪ {t(2,−1) + (1− t)(−2,−1) : t ∈ [0, 1]}
This is because any other point of S is an interior point of S wrt R being the
metric space, as points outside R are not considered.
Before doing problem (7)., we will prove a lemma.

Lemma 0.2. Let l be a line segment in R2. Then, l has content 0.

Proof: If a, b ∈ R2, we denote the line segment with endpoints a, b by ab. Let
ϵ > 0 be given, and let pi, pf ∈ R2 be the end points of l. Pick n ∈ N be such that

|pipf |
n

< ϵ

Divide the line segment l into n line-segments, i.e we pick points p1, p2, ...., pn−1

on l such that
l = pipf = pip1 ∪ p1p2 ∪ ... ∪ pn−1pj

and that

|pip1| =
|pipf |
n

|ptpt+1| =
|pipf |
n

for each 1 ≤ t ≤ n− 2

|pn−1pf | =
|pipf |
n

Put p0 = pi and pn = pf . For any two consecutive points pj, pj+1 on l (0 ≤ j ≤ n−1),
pick a rectangle Rj such that pjpj+1 is one of the diagonals of Rj . Observe that

area(Rj) ≤ |pjpj+1|2 =
|pipf |2

n2

Also, any two rectangles Rj, Rj+1 intersect only along part of an edge. So, we
see that

area(R0 ∪R1 ∪ ... ∪Rn−1) = area(R0) + ...+ area(Rn−1) = n
|pipf |2

n2
=

|pipf |2

n
< ϵ

and that
l ⊂ R0 ∪ ... ∪Rn−1

So, we have covered l with finitely many rectangles with total area less than ϵ,
implying that l has content zero. This completes the proof.

(7). Let S = L ∪R ⊂ R2 where
L = {(x, 0) : 1 ≤ |x| ≤ 2}, R = {(x, y) : |x| ≤ 1, |y| ≤ 1}

We can write
L = {(x, 0) : 1 ≤ x ≤ 2} ∪ {(x, 0) : −2 ≤ x ≤ −1} = l1 ∪ l2

and hence L is a disjoint union of two segments.
First, we show that S is acceptable. We claim that

∂S = L ∪ the four sides of the rectangle R
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which is simply because every neighborhood of each point in this set intersects
with Sc. Now,

L ∪ the four sides of the rectangle R

is a finite union of line segments inR2, and by the previous Lemma 0.2, we know
that each line segment has content 0, and that this finite union has content 0.
Hence, ∂S has content 0. Finally, since S is closed and bounded, it is compact,
and hence S is acceptable.
Next, we compute the area of S. Consider the rectangle R′ = [−2, 2]× [−2, 2],

which contains S. We have

area(S) =
∫
R′
χS =

∫
R′
χR + χL − χ{(1,0),(−1,0)}

=

∫
R′
χR +

∫
R′
χL −

∫
R′
χ{(1,0),(−1,0)}

= area(R) +

∫
R′
χl1 +

∫
R′
χl2 −

∫
R′
χ{(1,0),(−1,0)}

= area(R) + area(l1) + area(l2)− area({(1, 0), (0, 1)})
= 4

We have used the fact that any line segment is compact and by Lemma 0.2, it
has content 0, and so by Lemma 0.1 it has area 0. The same thing holds for a
finite set as well.

(8). Here, we will derive the formula for the area of a triangle. We will assume
that area is preserved under rotations and translations.
First, we find the formula for a right angled triangle, since every triangle can

be broken into two right triangles intersecting along an edge. So without loss
of generality, let the vertices of the triangle T be

(0, 0), (a, 0), (0, b)

Let D be the segment with endpoints (0, b) and (a, 0). Now, the boundary of this
triangle is the union of the three segments

{t(0, 0) + (1− t)(a, 0) : t ∈ [0, 1]}
{t(0, 0) + (1− t)(0, b) : t ∈ [0, 1]}
{t(a, 0) + (1− t)(0, b) : t ∈ [0, 1]}

and by Lemma 0.2, each of these segments has content 0, and hence their union
has content 0. This shows that the boundary of the triangle has content 0, and
hence the triangle being compact is acceptable.
Now, let R be the rectangle [0, a]× [0, b], and let P be the partition of R where

the subrectangles are of the form[
ak1
n

,
a(k1 + 1)

n

]
×

[
bk2
n

,
b(k2 + 1)

n

]
where 0 ≤ k1, k2 ≤ n−1. In other words, we are uniformly dividing the intervals
[0, a] and [0, b] into n sub-intervals of sizes a

n
and b

n
respectively. Nowwewill see

how upper and lower sums U(P, χT ) and L(P, χT ) behave.
First, observe that if k1 + k2 ≤ n, then the point(

ak1
n

,
bk2
n

)
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lies on or below the segmentD. This means that if S is any subrectangle of the
form

S =

[
ak1
n

,
a(k1 + 1)

n

]
×

[
bk2
n

,
b(k2 + 1)

n

]
with k1+k2 ≤ n, then the supremum of χT over S is 1. Otherwise, the supremum
is 0. So, we see that

U(P, f) =
∑

k1+k2≤n

area
([

ak1
n

,
a(k1 + 1)

n

]
×

[
bk2
n

,
b(k2 + 1)

n

])
=

∑
k1+k2≤n

ab

n2

Now observe that in the above sum, 0 ≤ k1 ≤ n− 1, and for every such k1, there
are n− k1 possible values of k2 such that k1 + k2 ≤ n. So,∑

k1+k2≤n

ab

n2
=

ab

n2

∑
k1+k2≤n

1

=
ab

n2

n−1∑
k1=0

(n− k1)

=
ab

n2

(
n2 −

(n− 1)n

2

)
=

ab

n2

n2 − n

2

Now, observe that we have already shown that χT is integrable on R (since T is
acceptable), and hence we can take the limit as n → ∞ in the upper sums, and
they will converge to the integral. So,∫

R

χT = lim
n→∞

ab(n2 − n)

2n2
=

ab

2

which is the required formula.
Now, suppose T is any general triangle, and by suitable rotations and trans-

lations, suppose two points of T lie on the x-axis, and one point on the y-axis (as
we can split a triangle into two right angled ones). Let the vertices be

(c, 0), (a, 0), (0, b)

where say a ≥ 0 and c < 0. Let l be the line whose end points are (0, b) and (0, 0),
i.e l is a perpendicular in T . Let T1 be the triangle with endpoints

(0, b), (0, 0), (a, 0)

and T2 be the triangle with endpoints

(0, b), (0, 0), (c, 0)

so that T = T1 ∪ T2 and T1 ∩ T2 = l. As before, T is acceptable because the
boundary is a union of three line segments, and has content zero. Let R be any
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rectangle containing T . So,

area(T ) =
∫
R

χT

=

∫
R

χT1 + χT2 − χl

=

∫
R

χT1 +

∫
R

χT2 −
∫
R

χl

= area(T1) + area(T2)− area(l)

=
ab

2
+

(−c)b

2
+ 0

=
(a− c)b

2

where we used the fact that the area of a line segment is 0 (which follows by
Lemma 0.1 and Lemma 0.2) and the formula for the area of a right triangle.
Note that the factor −c was used, as c < 0 was assumed, and we computed
the formula of the area when all the coordinates are positive. This is the usual
base-height formula for the area of a triangle.

(9). Here, we will show that
area(D2) = π

where D2 is the closed disk (of radius 1) in R2.
First, we show thatD2 is acceptable. Observe that

∂(D2) = S1

as any neighborhood of a point on the unit circle S1 intersects (D2)c, and hence
is a boundary point. Every other point is an interior point.
Next, we show that S1 has content 0. First, we take n equidistant points on the

unit circle, say points of the form(
cos 2πk

n
, sin 2πk

n

)
for 0 ≤ k ≤ n − 1. Now, we cover S1 with rectangles as follows. Consider the
diagram given on the next page.

Figure 1. The covering rectangle
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Here, P1 and P2 are two consecutive points, and θ =
2π

n
. Consider the rectan-

gle, one of whose diagonals is P1P2. Clearly, all such rectangles will cover S1,
and there will be n such rectangles. The length of P1P2 is given by

|P1P2| = 2 sin θ

2
= 2 sin π

n

and hence the area of this rectangle is bounded by

area ≤ |P1P2|2 = 4 sin2 π

n

Since there are n rectangles, the total area of these is bounded by

4n sin2 π

n

Now, observe that

lim
n→∞

4n sin2 π

n
= 4 lim

n→∞

sin2 π/n

1/n

= 4π2 lim
n→∞

sin2 π/n

π2/n2
· 1
n

= 4π2 lim
n→∞

sin2 π/n

(π/n)2
· lim
n→∞

1

n

= 0

This means no matter what ϵ > 0 is, there is some n > 0 such that

4n sin2 π

n
< ϵ

and hence finitely many rectangles over total area less than ϵ cover S1, show-
ing that S1 has content zero. This shows that D2 is acceptable, because it is
compact, being closed and bounded.
Now,wecalculate area(D2). First, consider a regular polynomialwithn-sides

inscribed in this circle (as we did above, taking n equidistant points). Since the
inscribed regular polygon is a subset of D2, we have

area(polygon) ≤ area(D2)

Now, the polygon canbewritten asaunionofn triangles, and since the triangles
only share edges, we can sum the areas of the triangles to obtain the total area
(just like we did in (8).). The base of one triangle is

2 sin θ

2
= 2 sin π

n

and the height is

cos θ

2
= cos π

n
Hence, the area of one triangle is

sin π

n
cos π

n

and since there are n triangles, we have

area(polygon) = n sin π

n
cos π

n
≤ area(D2)
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Taking limits as n → ∞, we see that

lim
n→∞

n sin π

n
cos π

n
= lim

n→∞

sin π/n
1/n

· cos π

n

= π lim
n→∞

sin π/n
π/n

· lim
n→∞

cos π

n

= π

≤ area(D2)

Next, we will use regular polygons which circumscribeD2. Suppose there is
such a regular polygon with n-sides, and let P1, P2 be consecutive points. Then
∠P1OP2 = θ =

2π

n
, and P1P2 is tangent to the circle. So, the height of the triangle

in this case is 1 (radius of the disk), and the base is of length

2 tan θ

2

So, the area of one triangle is

tan θ

2
= tan π

n

and hence the total area of the polygon is

n tan π

n

Since D2 is a subset of this polygon, we see that

area(D2) ≤ area(polygon) = n tan π

n

Taking limits as n → ∞, we see that

area(D2) ≤ lim
n→∞

n tan π

n

= lim
n→∞

n
sin π/n
cos π/n

= π lim
n→∞

sin π/n
π/n

· lim
n→∞

1

cos π/n
= π

and hence we conclude that
area(D2) = π

In this problem, we have extensively used limits of trigonometric functions.

(10). Here, we consider JordanMeasurable sets, instead of themore stronger
acceptable sets. While is it true that most of the theory of integration is valid
for Jordan Measurable sets too, one of the fundamental facts regarding the
integrability of continuous functions is no longer true, i.e given a continuous
function on a Jordan Measurable set, it is not necessary that the function is
integrable on a rectangle containing the set as well.
For example, observe the following: consider the function interval (0, 1) in

R, which is bounded (but not closed) and Jordan Measurable, as it has empty
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boundary, and hence the measure of the boundary is zero. Consider the func-
tion

f(x) =
1

x
on this interval, which is continuous, and also unbounded. Consider the rectan-
gle [0, 1] inR, which contains (0, 1). Clearly, we cannot apply the Tietze extension
theorem here. In fact, there is no continuous extension for this function, as it
is unbounded. Hence, we cannot integrate this function on [0, 1] in the Riemann
sense, and this is one of the properties that fails to go through for JordanMea-
surable sets.
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