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(1). (Problem 3-23 of Spivak). Let A,B be rectangles and let C ⊂ R = A× B be
a set of content zero. For x ∈ A, let Bx ⊂ B be defined by

Bx = {y ∈ B | (x, y) ∈ C}
Let A′ ⊂ A be the set

{x ∈ A | Bx is not of content zero}
Show that A′ is a set of measure zero.

Solution. Let A ⊂ Rn and B ⊂ Rm be rectangles, and let C ⊂ A × B be a set of
content 0. For any x ∈ A, define

Bx = {y ∈ B : (x, y) ∈ C}
and define

A′ = {x ∈ A : Bx is not of content 0}
We will show that A′ has measure 0.
First, we show that we can assumewithout loss of generality thatC is closed.

To show this, consider C . Let R1, ..., Rk be closed rectangles in Rn+m such that
C ⊂ R1 ∪ ... ∪Rk

and
k∑

i=1

volume(Ri) < ϵ

Now, R1 ∪ ... ∪Rk is closed, and this means that
C ⊂ R1 ∪ ... ∪Rk

and hence C also has content zero. Moreover, define
B′

x = {y ∈ B : (x, y) ∈ C}
and also

A′′ = {x ∈ A|B′
x does not have content 0}

Then, it is easy to see that Bx ⊂ B′
x and A′ ⊂ A′′. So, it is fair to assume that

C is closed, and we will do so for the rest of the solution. Moreover, since C is
bounded, it is compact.
SinceC has content zero, ∂C also has content zero, so thatχC is integrable on

A×B. We showed in ASSIGNMENT-2 that any compact subset of Rk of content
zero has volume zero, and hence ∫

A×B

χC = 0
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Now, applying Fubini’s theorem, we see that∫
A×B

χC =

∫
A

L =

∫
A

U = 0

where L,U are defined on A as

U(x) =
∫
B

χC(x, y)dy =

∫
B

χC,x(y)dy

L(x) =
∫
B

χC(x, y)dy =

∫
B

χC,x(y)dy

Also, U is a non-negative function. We claim that if x ∈ A′, then

U(x) > 0

First, let πy : A × B → B be the projection map, which is continuous. Observe
that for any x ∈ A, we have

Bx = πy(C ∩ {x} ×B)

and hence Bx is compact, because C ∩ {x} ×B is compact. Now, let x ∈ A′, and
suppose U(x) = 0, which implies that∫

B

χC,x(y) = 0

Now, χC,x is a non-negative function on B. Since it is integrable, any point y ∈ B
where χC,x(y) > 0 must be a point of discontinuity. So, it follows that the set of
points where χC,x is positive has measure 0. But, this set is precisely Bx. Since
Bx is compact, measure 0 implies content 0. But, this contradicts the fact that
x ∈ A′. So, it must be true that U(x) > 0.
Finally, since U is integrable on A and is non-negative, any point where U is

positive must be a point of discontinuity. By what we have showed above, all
points of A′ are points of discontinuity of U . Since U is integrable, this implies
that A′ has measure 0, completing the proof.

(2). Let Ii ⊂ R for 1 ≤ i ≤ n be closed bounded intervals of non-zero length.
Prove that Ii is not of content zero, and an induction to show that I1 × ...× In is
not of measure zero.

Solution. In ASSIGNMENT-2, I showed that a compact set in Rn with content 0
must have volume zero. So, I will show by induction that

volume(I1 × ...× In) > 0

which will show that I1× ...× In cannot have content zero. This will be the proof
strategy.
For the base case, let n = 1 and let I1 = [a1, b1]. Then, we have

volume(I1) =
∫ b1

a1

1 = b1 − a1 > 0

and clearly the base case is true. For the inductive case, let I1 = [a1, b1], ..., In =
[an, bn] be closed and bounded intervals in R with non-zero length such that

volume(I1 × ...× In) = (b1 − a1)...(bn − an) > 0
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Let In+1 = [an+1, bn+1] be another closed bounded interval of non-zero length.
So, we have

volume(I1 × ..× In+1) =

∫
[a1,b1]×..×[an+1,bn+1]

1 =

∫
[an+1,bn+1]

∫
[a1,b1]×...×[an,bn]

1

where we have used Fubini’s Theorem above. By inductive hypothesis,∫
[a1,b1]×...×[an,bn]

1 = (b1 − a1)...(bn − an)

and hence∫
[an+1,bn+1]

∫
[a1,b1]×...×[an,bn]

1 =

∫
[an+1,bn+1]

(b1 − a1)...(bn − an)

= (b1 − a1)...(bn − an)

∫
[an+1,bn+1]

1

= (b1 − a1)...(bn − an)(bn+1 − an+1)

> 0

and by induction, the statement is true for all n ∈ N. So, every rectangle in Rn

has non-zero volume, and hence it is not of content zero.
(3). Let I = [a, b] and f a continuous real-valued function on the square I × I .
Prove that ∫ b

a

(∫ y

a

f(x, y)dx

)
dy =

∫ b

a

(∫ b

x

f(x, y)dy

)
dx

Solution. Consider the rectangle I2 = [a, b] × [a, b] in R2, and let T ⊂ I2 be the
triangle

T := {(x, y) ∈ I2|x ≤ y}
Clearly, ∂T hasmeasure 0 being a union of three line segments inR2, and hence
T is Jordan Measurable (infact, it is an acceptable set, because it is compact),
so that χT is integrable on I2. Since f is a continuous function on I2, it is inte-
grable over T . Moreover, we have∫

T

f =

∫
I2
f · χT

Now, we use Fubini’s theorem on the integral in the RHS of the above equation.
By Fubini’s Theorem, we know that∫

I2
f · χT =

∫ b

a

U(x)dx

where

U(x) =
∫ b

a

f(x, y)χT (x, y)dy =

∫ b

x

f(x, y)dy

and hence we get ∫
T

f =

∫ b

a

(∫ b

x

f(x, y)dy

)
dx(†)

Similarly, by restricting the function to the x-axis instead, we get∫
I2
f · χT =

∫ b

a

U ′(y)dy
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where

U ′(y) =

∫ b

a

f(x, y)χT (x, y)dx =

∫ y

a

f(x, y)dx

and hence ∫
T

f =

∫ b

a

(∫ y

a

f(x, y)dx

)
dy(∗)

and by (†) and (∗), we get∫ b

a

(∫ y

a

f(x, y)dx

)
dy =

∫ b

a

(∫ b

x

f(x, y)dy

)
dx

(4). (Equality of mixed partial derivatives using Fubini!) Let f be a C 2 function
on an open rectangle in R2, with x, y being the coordinates. This means that the
partial derivatives upto order two exist and are continuous. Use Fubini to prove
that the mixed partials are equal.

∂2f

∂x∂y
=

∂2f

∂y∂x

Solution. LetU be an open subset ofR2, and suppose f : R2 → R is aC 2 function
on U . We show that for any point (x, y) ∈ U , we have

D21f(x, y) = D12f(x, y)

i.e the second order mixed partials are equal. For the sake of contradiction,
suppose there is some (x, y) ∈ U such that

D21f(x, y)−D12f(x, y) > 0

SinceD21f−D12f is assumed to be continuous, there is a small rectangle [a, b]×
[c, d] containing (x, y) and some ϵ > 0 such that

inf
(s,t)∈[a,b]×[c,d]

D21f(s, t)−D12f(s, t) ≥ ϵ

and consequently ∫
[a,b]×[c,d]

D21f −D12f > 0(∗∗)

Now, we compute∫
[a,b]×[c,d]

D21f −D12f =

∫
[a,b]×[c,d]

D21f −
∫
[a,b]×[c,d]

D12f

using Fubini’s theorem to arrive at a contradiction. First, restricting the func-
tion D21f to the y-axis, we have by Fubini’s Theorem∫

[a,b]×[c,d]

D21f =

∫ b

a

U(x)

where

U(x) =
∫ d

c

D21f(x, y)dy =

∫ d

c

D21f(x, y)dy

because D21f is continuous. Computing further, we see that∫ d

c

D21f(x, y)dy = D1f(x, d)−D1f(x, c)
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by the Fundamental Theorem of Calculus in one variable. So, we obtain∫
[a,b]×[c,d]

D21f =

∫ b

a

(D1f(x, d)−D1f(x, c))dx

=

∫ b

a

D1f(x, d)dx−
∫ b

a

D1f(x, c)dx

= f(b, d)− f(a, d)− (f(b, c)− f(a, c))(†)
By a very similar strategy, i.e by restricting the function D12f to the x-axis and
using Fubini’s Theorem, we can obtain∫

[a,b]×[c,d]

D12f = f(b, d)− f(a, d)− (f(b, c)− f(a, c))(∗)

and hence by (†) and (∗) we get that∫
[a,b]×[c,d]

D21f −D12f = 0

which contradicts equation (∗∗). So, it must be true that
D21f(x, y)−D12f(x, y) = 0

for all (x, y) ∈ U , and this completes the proof.

(5). LetR = [a1, b1]×[a2, b2] ⊂ R2 and f acontinuous real-valued function defined
on R. Define the function F on R by

F (x, y) =

∫
[a1,x]×[a2,y]

f

Is F continuous? Is it C 1? What are the partial derivatives ∂F

∂x
and ∂F

∂y
?

Solution. First, let us show that F is a continuous function on the rectangle R.
First, put

M = sup
R

|f |

By Fubini’s Theorem, we see that

F (x, y) =

∫ x

a1

∫ y

a2

f

Let a1 ≤ x ≤ b1 and a2 ≤ y ≤ b2 be fixed. Let (h, k) be such that h, k ≥ 0. We have
the following equations, for small enough h, k:

|F (x+ h, y + k)−F (x, y)| =
∣∣∣∣∫ x+h

a1

∫ y+k

a2

f −
∫ x

a1

∫ y

a2

f

∣∣∣∣
=

∣∣∣∣∫ x+h

a1

∫ y

a2

f +

∫ x+h

a1

∫ y+k

y

f −
∫ x

a1

∫ y

a2

f

∣∣∣∣
=

∣∣∣∣∫ x

a1

∫ y

a2

f +

∫ x+h

x

∫ y

a2

f +

∫ x

a1

∫ y+k

y

f +

∫ x+h

x

∫ y+k

y

f −
∫ x

a1

∫ y

a2

f

∣∣∣∣
=

∣∣∣∣∫ x+h

x

∫ y

a2

f +

∫ x

a1

∫ y+k

y

f +

∫ x+h

x

∫ y+k

y

f

∣∣∣∣
≤ h(y − a2)M + (x− a1)kM + hkM
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and the RHS goes to 0 as (h, k) → 0. Using similar arguments, we can show that

lim
(h,k)→(0,0)

|F (x− h, y + k)− F (x, y)| = 0

lim
(h,k)→(0,0)

|F (x+ h, y − k)− F (x, y)| = 0

lim
(h,k)→(0,0)

|F (x− h, y − k)− F (x, y)| = 0

and hence F is a continuous function on R (this is a generalisation of the proof
of the FTOC in one variable).
Next, we will show that F is C 1 in the interior of the rectangle R, and to do

this we will show that the partial derivatives D1F and D2F both exist and are
continuous in the interior of R. Moreover, we will only do the proof forD1F , as
the proof forD2F is very similar.
Let (x, y) be a point in the interior of R, i.e a1 < x < b1 and a2 < y < b2. For

t ∈ [a1, b1], define the function

g(t) =

∫ y

a2

f(t, t2)dt2

Let us show that g is a continuous function on [a1, b1]. Let ϵ > 0 be given. Since f
is continuous on R and since R is compact, f is uniformly continuous on R. So
there is some δ > 0 such that for any s, t ∈ [a1, b1] and t2 ∈ [a2, b2]

|t− s| < δ =⇒ |f(t, t2)− f(s, t2)| <
ϵ

(y − a2)

So, if |t− s| < δ and t, s ∈ [a1, b1], then we have

|g(t)− g(s)| =
∣∣∣∣∫ y

a2

f(t, t2)− f(s, t2)dt2

∣∣∣∣
≤

∫ y

a2

|f(t, t2)− f(s, t2)|dt2

≤ (y − a2) ·
ϵ

(y − a2)

= ϵ

and this shows that g is continuous on [a1, b1] (and infact, it is uniformly contin-
uous). Now, by Fubini’s Theorem, we know that for any p ∈ [a1, b1],

F (p, y) =

∫ p

a1

(∫ y

a2

f(t, t2)dt2

)
dt =

∫ p

a1

g(t)dt

and hence by the Fundamental Theorem of Calculus in one variable, we get that

D1F (x, y) = g(x) =

∫ y

a2

f(x, t2)dt2

By a very similar argument, we can obtain

D2F (x, y) =

∫ x

a1

f(t1, y)dt1

So, both the partial derivativesD1F andD2F exist in the interior ofR. It remains
to prove the continuity of these. Let (x, y) ∈ (a1, b1) × (a2, b2) be fixed. Since f is
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continuous on R, it is uniformly continuous. Let ϵ > 0 be given. There is some
δ > 0 such that for any 0 ≤ h < δ and t2 ∈ [a2, b2],

|f(x+ h, t2)− f(x, t2)| < ϵ/(y − a2)

Now, let (h, k) be such that 0 ≤ h < δ and k > 0 is small enough. In that case, we
have

|D1F (x+ h, y + k)−D1F (x, y)| =
∣∣∣∣∫ y+k

a2

f(x+ h, t2)dt2 −
∫ y

a2

f(x, t2)dt2

∣∣∣∣
=

∣∣∣∣∫ y

a2

f(x+ h, t2)− f(x, t2)dt2 +

∫ y+k

y

f(x+ h, t2)dt2

∣∣∣∣
≤ (y − a2)ϵ/(y − a2) + kM

= ϵ+ kM

and the last term goes to ϵ as (h, k) → 0. Since ϵ > 0 is arbitrary, it must be true
that

lim
(h,k)→0

|D1F (x+ h, y + k)−D1F (x, y)| = 0

Using similar arguments, we can show that following limits (observe h, k ≥ 0)

lim
(h,k)→0

|D1F (x− h, y + k)−D1F (x, y)| = 0

lim
(h,k)→0

|D1F (x+ h, y − k)−D1F (x, y)| = 0

lim
(h,k)→0

|D1F (x+ h, y − k)−D1F (x, y)| = 0

and hence D1F is continuous at (x, y). So, D1F is continuous in the interior of
R, and similarlyD2F is continuous in the interior ofR. So, F is C 1 in the interior
of R.

(6). Let R = [a1, b1] × [a2, b2] ⊂ R2 and f a C 1 real valued function defined on an
open set containing R. Let G be defined on [a2, b2] by

G(y) =

∫ b1

a1

f(x, y)dx

Prove that

G′(y) =

∫ b1

a1

∂f

∂y
(x, y)dx

Solution. We know thatD2F is continuous on R. So, by the Fundamental Theo-
rem of Calculus in one variable, we know that for any (x, y) ∈ [a1, b1]× [a2, b2]

f(x, y) = f(x, y)− f(x, a2) + f(x, a2) =

∫ y

a2

D2f(x, t2)dt2 + f(x, a2)
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So, we see that

G(y) =

∫ b1

a1

f(x, y)dx

=

∫ b1

a1

(∫ y

a2

D2f(x, t2)dt2 + f(x, a2)

)
dx

=

∫ b1

a1

∫ y

a2

D2f(x, t2)dt2dx+

∫ b1

a1

f(x, a2)dx

=

∫ y

a2

∫ b1

a1

D2f(x, t2)dxdt2 +

∫ b1

a1

f(x, a2)dx(∗∗)

where we used Fubini’s Theorem to switch the order of integration in the last
step. Now, for any t ∈ [a2, b2], define the function

h(t) =

∫ b1

a1

D2f(x, t)dx

Let us show that h is a continuous function on [a2, b2]. The argument is very
similar to that in problem (5). Since D2 is continuous over R, it is uniformly
continuous. Hence, if ϵ > 0 is given, there is some δ > 0 such that for t, s ∈ [a2, b2],

|t− s| < δ =⇒ |D2f(x, t)−D2f(x, s)| < ϵ/(b1 − a1)

for any x ∈ [a1, b1]. So, it follows that if t, s ∈ [a1, b1] and |t− s| < δ, then

|h(t)− h(s)| =
∣∣∣∣∫ b1

a1

D2f(x, t)−D2f(x, s)dx

∣∣∣∣
≤

∫ b1

a1

|D2f(x, t)−D2f(x, s)|dx

≤ (b1 − a1)ϵ/(b1 − a1)

= ϵ

showing that h is uniformly continuous over [a1, b1]. From equation (∗∗), we see
that

G(y) =

∫ y

a2

h(t2)dt2 +

∫ b1

a1

f(x, a2)dx

Note that the second integral is independent of y. So, by the Fundamental The-
orem of Calculus in one variable, we get

G′(y) = h(y) =

∫ b1

a1

D2f(x, y)dx

completing the proof.

(7). (Problem 3-33 in Spivak) If f : [a, b] × [c, d] → R is continuous and D2f is
continuous, define F (x, y) =

∫ x

a
f(t, y)dt.

(a) FindD1F and D2F .
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(b) If G(x) =
∫ g(x)

a
f(t, x)dt, find G′(x) where g : [c, d] → [a, b] is a differentiable

function.

Solution. Suppose f : [a, b]× [c, d] → R is continuous andD2f is continuous. Let

F (x, y) =

∫ x

a

f(t, y)dt

(1) We find D1F and D2F . First, by Leibniz’ rule, we see that

D2F (x, y) =

∫ x

a

D2f(t, y)dt

Just as in problem (5)., this integral is continuous, i.eD2F is continuous.
Also, by the fundamental theorem of calculus, we have that

D1F (x, y) = f(x, y)

because for fixed y, the function f(t, y) on [a, b] is continuous. Clearly,
D1F is continuous, since f is continuous. Because both D1F and D2F
exist and are continuous in the interior of the rectangle, it follows that F
is C 1 in the interior of the rectangle.

(2) Suppose

G(x) =

∫ g(x)

a

f(t, x)dt

for some differentiable function g : [c, d] → [a, b]. So we can write

G = F ◦ h

where h : [c, d] → R2 is themap h(x) = (g(x), x). Clearly, h is differentiable
on (c, d), and hence G, being a composite of differentiable functions, is
differentiable (note that F is C 1). So, applying the chain rule, we see that

G′(x) =
[
D1F (g(x), x) D2F (g(x), x)

] [g′(x)
1

]
= g′(x)f(g(x), x) +

∫ g(x)

a

D2f(t, x)dt

(8). (Problem 3-36 in Spivak) Cavalieri’s principle: Let A and B be Jordan-
measurable subsets of R3. Let

Ac := {(x, y) : (x, y, c) ∈ A}

and define Bc similarly. Suppose each Ac and Bc are Jordan measurable and
have the same area. Show that A and B have the same volume.

Solution. Aswewill see, this is a direct consequenceof Fubini’s Theorem. Since
A,B are Jordan Measurable, they are bounded sets which have a well-defined
volume. Let R = [a1, b1] × [a2, b2] × [a3, b3] be a rectangle in R3 containing both
A,B. Let χA and χB be the characteristic functions of A and B respectively. So,
we know that ∫

R

χA

and ∫
R

χB
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both exist and are respectively the volumes of A and B. By Fubini’s Theorem,
we know that ∫

R

χA =

∫ b3

a3

U(c)dc(†) ∫
R

χB =

∫ b3

a3

U ′(c)dc(∗)

where U ,U ′ : [a3, b3] → R are given by

U(c) =
∫
[a1,b1]×[a2,b2]

χA(x, y, c)dxdy =

∫
[a1,b1]×[a2,b2]

χAc(x, y)dxdy

U ′(c) =

∫
[a1,b1]×[a2,b2]

χB(x, y, c)dxdy =

∫
[a1,b1]×[a2,b2]

χBc(x, y)dxdy

Now, we know that both the sets Ac and Bc are Jordan Measurable, and hence
both the upper integrals in the above equations can be replaced by just inte-
grals. Moreover, we know that Ac and Bc have the same area, and hence∫

[a1,b1]×[a2,b2]

χAc(x, y)dxdy =

∫
[a1,b1]×[a2,b2]

χBc(x, y)dxdy

and hence we see that U(c) = U ′(c) for every c ∈ [a3, b3]. So by the equations (†)
and (∗), we get that ∫

R

χA =

∫
R

χB

and hence, A and B have equal volume. This completes the proof.
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