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BMC201953

(1). (Problem 3-23 of Spivak). Let A, B be rectanglesand let C ¢ R = A x B be
a set of content zero. For z € A, let B, C B be defined by

B, ={yeB|(z,y) €C}
Let A’ C A be the set
{z € A | B, is not of content zero}

Show that A’ is a set of measure zero.

Solution. Let A ¢ R” and B C R™ be rectangles, and let C C A x B be a set of
content 0. For any x € A, define

B,={y€ B:(xz,y) € C}
and define
A"={x € A: B, is not of content 0}

We will show that A’ has measure 0.
First, we show that we can assume without loss of generality that C'is closed.
To show this, consider C. Let Ry, ..., R, be closed rectangles in R"™ such that

CCRU...UR;
and

k
Z volume(R;) < €
=1

Now, R; U ...U R} is closed, and this means that
CCRU..URy
and hence C also has content zero. Moreover, define
B, ={y€ B:(x,y) € C}
and also

A" = {z € A|B, does not have content 0}

Then, it is easy to see that B, ¢ B/, and A’ ¢ A”. So, it is fair to assume that
C'is closed, and we will do so for the rest of the solution. Moreover, since C'is
bounded, it is compact.

Since C has content zero, 0C also has content zero, so that x¢ is integrable on
A x B. We showed in ASSIGNMENT-2 that any compact subset of R* of content
zero has volume zero, and hence

/ xc =0
AxB
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Now, applying Fubini’'s theorem, we see that

Jure= ==
AxB A A

where £, U are defined on A as

XC:E

<

=

I

||
\ \|

Also, U is a non-negative function. We clalm thatif z € A, then
U(x) >0

First, let 7, : A x B — B be the projection map, which is continuous. Observe
that for any z € A, we have

B, =m,(CN{z} x B)

and hence B, is compact, because C' N {z} x B is compact. Now, letz € A’, and
suppose U(z) = 0, which implies that

/BXC,z(y) =0

Now, xc. is @ non-negative function on B. Since it is integrable, any pointy € B
where xc.(y) > 0 must be a point of discontinuity. So, it follows that the set of
points where x¢, is positive has measure 0. But, this set is precisely B,. Since
B, is compact, measure 0 implies content 0. But, this contradicts the fact that
x € A'. So, it must be true that /(z) > 0.

Finally, since U/ is integrable on A and is non-negative, any point where I/ is
positive must be a point of discontinuity. By what we have showed above, all
points of A’ are points of discontinuity of /. Since U is integrable, this implies
that A’ has measure 0, completing the proof.

(2). Let I; € Rfor1 < i < n be closed bounded intervals of non-zero length.
Prove that J; is not of content zero, and an induction to show that I; x ... x I,, is
not of measure zero.

Solution. In ASSIGNMENT-2, I showed that a compact set in R™ with content 0
must have volume zero. So, I will show by induction that

volume(l; x ... x I,,) >0

which will show that I, x ... x I, cannot have content zero. This will be the proof
strategy.
For the base case, let n = 1 and let I; = [aq, b;]. Then, we have

b1
volume(l;) = / 1=b—a; >0

ai

and clearly the base case is true. For the inductive case, let I} = [a,b4], ..., I, =
[a,, b,] be closed and bounded intervals in R with non-zero length such that

volume(l; x ... x I,) = (by — aq)...(b, — a,) >0
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Let I,,,1 = [ans1,bn41) be another closed bounded interval of non-zero length.
So, we have

volume(l; X .. X I,11) :/ 1 :/ / 1
[al,b1]><..><[an+1,bn+1] [an+1,bn+1] [al,bl]x‘..x[an,bn]

where we have used Fubini’s Theorem above. By inductive hypothesis,

/ 1= (by — ar).(bn — an)
la1,b1]X...X[an,bn]
and hence

/ / 1 :/ (bl—al)...(bn—an)
[an+17bn+l} [al,bl}x-ux[anybn} [an+lybn+1]

:(bl—al)...(bn—an)/ |

[an+1,bn+1]
= (bl — al)(bn — an)(bnﬂ — an+1)
>0

and by induction, the statement is true for all n € N. So, every rectangle in R"
has non-zero volume, and hence it is not of content zero.

(3). Let I = [a,b] and f a continuous real-valued function on the square I x I.

Prove that ( } }
) Y b b
/ (/ f(.’l?./jl/)d:]?) dy = / (/ f(x, y)dy) dx

Solution. Consider the rectangle I? = [a,b] x [a,b] in R?, and let T C I? be the
triangle

T:={(z.y) € P’lz <y}
Clearly, 9T has measure 0 being a union of three line segments in R?, and hence
T is Jordan Measurable (infact, it is an acceptable set, because it is compact),
so that y is integrable on /2. Since f is a continuous function on 72, it is inte-
grable over T'. Moreover, we have

ﬁjz [ 7o

Now, we use Fubini’s theorem on the integral in the RHS of the above equation.
By Fubini’s Theorem, we know that

b
fxr= / U(z)dx
12 a
where

uwz/Jmmm@wwz/f@w@

and hence we get

) /szfab (/:f(x,y)dy) iz

Similarly, by restricting the function to the z-axis instead, we get

b
xr= [ U )d
g fxr / (y)dy
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where

W) = [ fpates - [ " fery)da

and hence

() /sz/ab </ayf(x,y>d:v) dy

and by (1) and (x), we get

/ab (/ayf(x,y)dx) dy = /ab (/:f(x,y)dy) 0

(4). (Equality of mixed partial derivatives using Fubini!) Let f be a ¢ function
on an open rectangle in R?, with z, y being the coordinates. This means that the
partial derivatives upto order two exist and are continuous. Use Fubini to prove
that the mixed partials are equal.

*f  f

0xdy  Oyox

Solution. Let U be an open subset of R?, and suppose f : R? — Risa %”? function
on U. We show that for any point (z,y) € U, we have

Doy f(x,y) = Diaf (z,y)

i.e the second order mixed partials are equal. For the sake of contradiction,
suppose there is some (z,y) € U such that

Doy f(x,y) — Diaf(z,y) >0

Since Dy f — D15 f is assumed to be continuous, there is a small rectangle [a, b] x
[c, d] containing (x,y) and some ¢ > 0 such that

inf D t)—D ) >
(at)e[la,b}x[c,d] 21f(s,1) 12f(s,t) > €

and consequently
() / Doy f — Diaf >0
[a,b] X [c,d]
Now, we compute
/ Do f — Dyof = Do f — Do f
[a,b] X [e,d] [a,b] x[c,d] [a,b] X [c,d]

using Fubini’s theorem to arrive at a contradiction. First, restricting the func-
tion Do, f to the y-axis, we have by Fubini’'s Theorem

b
/ Dglf:/ U(CL’)
[a,b] X [e,d] a

T d d
U(x) Z/ D21f($ay)dy:/ Doy f(x,y)dy

because D, f is continuous. Computing further, we see that

d
/ Do f(a, y)dy = Dy f (. d) — Dy f(z,c)

where
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by the Fundamental Theorem of Calculus in one variable. So, we obtain

b
/ l%fZ/(&ﬂﬁﬁ—DJ@dww
[a,b] X [c,d]

/lexdda:—/Dl f(x,c)dx

(1) = f(b,d) — f(a, b,c) — f(a,c))

By a very similar strategy, i.e by restricting the functlon D15 f to the z-axis and
using Fubini’s Theorem, we can obtain

) / Diof = f(b.d) — f(a,d) — (f(b.c) — f(a,c)
[a,b] X [e,d]

and hence by (1) and (x) we get that

/ D21f - D12f =0
[a,b] X [e,d]

which contradicts equation (xx). So, it must be true that

Dy f(z,y) — Diaf(2,y) =0
for all (z,y) € U, and this completes the proof.

(5). Let R = [ay, b1| x[as, by] C R?and f acontinuous real-valued function defined
on R. Define the function F on R by

ron=f 1
[a1,2] X [a2,y]
OF

OF
Is F continuous? Is it ¥'? What are the partial derivatives e and 0—’?
z Yy

Solution. First, let us show that F' is a continuous function on the rectangle R.
First, put
M = sup ||
R

By Fubini’s Theorem, we see that

e[ [

Leta; < x <b;anday <y < b, be fixed. Let (h, k) be such that h, &k > 0. We have
the following equations, for small enough h k:

a+h  py+k z py
) . )

alm ya2 a:—(il—;z yy :v (;1+ka2 at+h py+k z
S REY A N A e B ARy
ST R A A

< h(y —ax)M + (x — a1)kM + hkM
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and the RHS goes to 0 as (h, k) — 0. Using similar arguments, we can show that
F(x—h k =0
olim B = by k) = F(ry)

| F h k =
im F (et by = k) = Fa.y)] = 0

(th)ImOO) |F(x —h,y—k)— F(z,y)|=0
and hence F'is a continuous function on R (this is a generalisation of the proof
of the FTOC in one variable).

Next, we will show that F' is ¢! in the interior of the rectangle R, and to do
this we will show that the partial derivatives DI and D, I both exist and are
continuous in the interior of R. Moreover, we will only do the proof for D, F’, as
the proof for D, F is very similar.

Let (x,y) be a point in the interior of R,i.e a; < = < by and a; < y < by. For
t € [a1, by], define the function

)
= / f(t,tg)dtg
a2

Let us show that g is a continuous function on [a,, b,]|. Let € > 0 be given. Since f
is continuous on R and since R is compact, f is uniformly continuous on R. So
there is some § > 0 such that for any s, ¢ € [a1,b,] and t5 € [asg, bs]

(y — az)

|t_8| < d = |f(t7t2) - f(sth)l <
So,if [t —s| < dandt,s € [ay, b1 ], then we have

9(t) — g(s)] = / U Ftta) — f(s. ta)dts

/ ’f t t2 S t2)|dt2

) (y — a2)

and this shows that g is continuous on [a;, b;] (and infact, it is uniformly contin-
uous). Now, by Fubini’'s Theorem, we know that for any p € [ay, b1],

Fip.y) /(/fuzdt2>dt /p ()t

and hence by the Fundamental Theorem of Calculus in one variable, we get that
DiF(ay) = 9(0) = [ (ot
By a very similar argument, we can obtain
Do) = [ Sty
a1

So, both the partial derivatives D, F and D, F existin the interior of R. It remains
to prove the continuity of these. Let (z,y) € (a1,b1) x (ag,by) be fixed. Since f is
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continuous on R, it is uniformly continuous. Let ¢ > 0 be given. There is some
d > 0 such that forany 0 < h < § and ¢, € [ag, by],

|f(z+hty) = fz,t2)] < €/(y —az)

Now, let (h, k) be such that 0 < » < §and k > 0 is small enough. In that case, we
have

|D1F(x + h,y+k)— D F(x,y)| =

/ flz+ h,ty)dts — / f(z,ty)dty

/ f x+ h, tg f(:l?,tg)dtz + / f(.il? + h, t2)dt2
Y

—ag)e/(y —az) + kM
—e—i-k:M

and the last term goes to e as (h, k) — 0. Since ¢ > 0 is arbitrary, it must be true
that

lim |DiF(z+hy+k)— D F(x,y)|=0
(h,k)—0

Using similar arguments, we can show that following limits (observe h, k > 0)

lim |DiF(zx—h,y+k)— DiF(z,y)|=0

(h,k)—0

lim |DiF(x+h,y—k)— DiF(xz,y)|=0
(h,k)—0

| D h,y—k)— D F =
(h;cr)TLO| 1 (Z‘—F Y ) 1 (l’,y)| 0

and hence D, F'is continuous at (z,y). So, D1 F' is continuous in the interior of
R, and similarly D, F is continuous in the interior of R. So, F'is €' in the interior
of R.

(6). Let R = [a1,by] X [ag, b2] C R* and f a ¢! real valued function defined on an
open set containing R. Let G be defined on [ay, by| by

by

Gly)= [ flz,y)dx
Prove that
b1 9
G'(y) = : 3‘5 (x,y)dx

Solution. We know that D, I is continuous on R. So, by the Fundamental Theo-
rem of Calculus in one variable, we know that for any (z,y) € [a1, b1] X [as, by

f(m,y) = f($’y> - f(.%’,az) + f(x>a2) = /y D2f<x>t2)dt2 + f(.??,az)
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So, we see that

by

Gly)= | [flz,y)dr

al

— ; yDQf(m,tg)dt2+f(l‘,Cl2) dx
/(L )

b1 py b1
- / Daf(e,ta)dtsdz + [ f(a, as)de

az ai
y b b1
(**) = / D2f<$, tg)dxdtg -+ f(q;, Clz)d.]j‘
az ai al

where we used Fubini’'s Theorem to switch the order of integration in the last
step. Now, for any t € [as, bs], define the function

ey = [ Dyfe.t)da

al

Let us show that & is a continuous function on [ay, b,]. The argument is very
similar to that in problem (5). Since D, is continuous over R, it is uniformly
continuous. Hence, ife > 0 is given, thereis some § > 0 such thatfort, s € [as, bs],

|t —s| <6 = |Dyf(x,t) — Daf(x,s)| <e/(by —ay)

forany x € [a1,b,]. So, it follows thatif ¢, s € [ay,b;] and |t — s| < 0, then

by

h(t) = h(s)| = | [ D2f(x,t) — Daof(z,s)dx

ai

b1
g/ | Dy f(z,t) — Dy f(z,s)|dx

< (by — a)e/(bs — ar)

= €

showing that & is uniformly continuous over [a,, b;]. From equation (xx), we see
that
b1

G(y) = /y h(t2)dts + f(z,as)dx

az al

Note that the second integral is independent of y. So, by the Fundamental The-
orem of Calculus in one variable, we get

b1
G'(y) = h(y) = Dy f(z,y)dx

al
completing the proof.

(7). (Problem 3-33 in Spivak) If f : [a,b] x [¢,d] — R is continuous and D f is
continuous, define F(z,y) = [ f(t,y)dt.
(a) Find D, F and D, F.
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(b) If G(z) = ja"<l) f(t,z)dt, find G'(x) where g : [c,d] — [a,b] is a differentiable
function.

Solution. Suppose f : [a,b] X [¢,d] — Ris continuous and D f is continuous. Let

F(x,y) = /xf(t,y)dt

(1) We find D, F" and D, F. First, by Leibniz’ rule, we see that

DyF(7,y) = /I Dy f(t,y)dt

Just as in problem (5)., this integral is continuous, i.e D, F'is continuous.
Also, by the fundamental theorem of calculus, we have that

DlF(may) = f($,y)

because for fixed y, the function f(¢,y) on [a,b] is continuous. Clearly,
D1 F is continuous, since f is continuous. Because both D, F and D, F
exist and are continuous in the interior of the rectangle, it follows that F’
is ¢! in the interior of the rectangle.

(2) Suppose

g9(z)
Glz) = / F(t,2)dt
for some differentiable function g : [¢,d] — [a, b]. So we can write
G=Foh

where I : [c,d] — R?isthe map h(x) = (g(x), z). Clearly, his differentiable
on (c¢,d), and hence G, being a composite of differentiable functions, is
differentiable (note that F' is ¢€'). So, applying the chain rule, we see that

/ g(z)
6'0) = [DiF (o)) Dartata). )] |70 = drstara v [ Daste.yi
(8). (Problem 3-36 in Spivak) Cavalieri’s principle: Let A and B be Jordan-
measurable subsets of R3. Let

A, =A{(z,y) : (x,y,c) € A}

and define B, similarly. Suppose each A, and B, are Jordan measurable and
have the same area. Show that A and B have the same volume.

Solution. As we will see, thisis adirect consequence of Fubini’s Theorem. Since
A, B are Jordan Measurable, they are bounded sets which have a well-defined
volume. Let R = [ay,b1] X [as,bs] X [as3, bs] be a rectangle in R? containing both
A, B. Let x4 and g be the characteristic functions of A and B respectively. So,
we know that
/ XA
R

/XB
R

and
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both exist and are respectively the volumes of A and B. By Fubini’s Theorem,
we know that

b3

(1) /XAZ/ U(c)de
R as
b3

() /XB:/ U'(c)de
R as

where U, U’ : [as, bs] — R are given by

Ue) = / Xa(z,y, c)dwdy = / Xa.(x,y)dzdy
[al,bl]X[aQ,bz] [a1,b1]><[a2,b2}

u’(c):/ xB(x,y,C)dl“dyz/ x5, (v, y)drdy
[a17b1]><[a2,b2] [a17b1]><[az,b2]

Now, we know that both the sets A. and B, are Jordan Measurable, and hence
both the upper integrals in the above equations can be replaced by just inte-
grals. Moreover, we know that A, and B, have the same area, and hence

/ Xa.(7,y)drdy = / xB.(z,y)drdy
[a1 ,b]_} X [ag,bg]

[(11 ,bﬂ X [CL2 ,bg]

and hence we see that U/(c) = U'(c) for every ¢ € |a3, bs]. So by the equations (7)

and (x), we get that
/XA:/XB
R R

and hence, A and B have equal volume. This completes the proof.
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