ASSIGNMENT-3

SIDDHANT CHAUDHARY
BMC201953
(1). (Problem 3-23 of Spivak). Let A, B be rectangles and let $C \subset R=A \times B$ be a set of content zero. For $x \in A$, let $B_{x} \subset B$ be defined by

$$
B_{x}=\{y \in B \mid(x, y) \in C\}
$$

Let $A^{\prime} \subset A$ be the set

$$
\left\{x \in A \mid B_{x} \text { is not of content zero }\right\}
$$

Show that A^{\prime} is a set of measure zero.
Solution. Let $A \subset \mathbb{R}^{n}$ and $B \subset \mathbb{R}^{m}$ be rectangles, and let $C \subset A \times B$ be a set of content 0 . For any $x \in A$, define

$$
B_{x}=\{y \in B:(x, y) \in C\}
$$

and define

$$
A^{\prime}=\left\{x \in A: B_{x} \text { is not of content } 0\right\}
$$

We will show that A^{\prime} has measure 0 .
First, we show that we can assume without loss of generality that C is closed. To show this, consider \bar{C}. Let R_{1}, \ldots, R_{k} be closed rectangles in \mathbb{R}^{n+m} such that

$$
C \subset R_{1} \cup \ldots \cup R_{k}
$$

and

$$
\sum_{i=1}^{k} \operatorname{volume}\left(R_{i}\right)<\epsilon
$$

Now, $R_{1} \cup \ldots \cup R_{k}$ is closed, and this means that

$$
\bar{C} \subset R_{1} \cup \ldots \cup R_{k}
$$

and hence \bar{C} also has content zero. Moreover, define

$$
B_{x}^{\prime}=\{y \in B:(x, y) \in \bar{C}\}
$$

and also

$$
A^{\prime \prime}=\left\{x \in A \mid B_{x}^{\prime} \text { does not have content } 0\right\}
$$

Then, it is easy to see that $B_{x} \subset B_{x}^{\prime}$ and $A^{\prime} \subset A^{\prime \prime}$. So, it is fair to assume that C is closed, and we will do so for the rest of the solution. Moreover, since C is bounded, it is compact.

Since C has content zero, ∂C also has content zero, so that χ_{C} is integrable on $A \times B$. We showed in ASSIGNMENT-2 that any compact subset of \mathbb{R}^{k} of content zero has volume zero, and hence

$$
\int_{A \times B} \chi_{C}=0
$$

Date: October 2020.

Now, applying Fubini's theorem, we see that

$$
\int_{A \times B} \chi_{C}=\int_{A} \mathcal{L}=\int_{A} \mathcal{U}=0
$$

where \mathcal{L}, \mathcal{U} are defined on A as

$$
\begin{aligned}
\mathcal{U}(x) & =\bar{\int}_{B} \chi_{C}(x, y) d y=\overline{\int_{B}} \chi_{C, x}(y) d y \\
\mathcal{L}(x) & =\underline{\int_{B}} \chi_{C}(x, y) d y=\underline{\int_{B}} \chi_{C, x}(y) d y
\end{aligned}
$$

Also, \mathcal{U} is a non-negative function. We claim that if $x \in A^{\prime}$, then

$$
\mathcal{U}(x)>0
$$

First, let $\pi_{y}: A \times B \rightarrow B$ be the projection map, which is continuous. Observe that for any $x \in A$, we have

$$
B_{x}=\pi_{y}(C \cap\{x\} \times B)
$$

and hence B_{x} is compact, because $C \cap\{x\} \times B$ is compact. Now, let $x \in A^{\prime}$, and suppose $\mathcal{U}(x)=0$, which implies that

$$
\int_{B} \chi_{C, x}(y)=0
$$

Now, $\chi_{C, x}$ is a non-negative function on B. Since it is integrable, any point $y \in B$ where $\chi_{C, x}(y)>0$ must be a point of discontinuity. So, it follows that the set of points where $\chi_{C, x}$ is positive has measure 0 . But, this set is precisely B_{x}. Since B_{x} is compact, measure 0 implies content 0 . But, this contradicts the fact that $x \in A^{\prime}$. So, it must be true that $\mathcal{U}(x)>0$.

Finally, since \mathcal{U} is integrable on A and is non-negative, any point where \mathcal{U} is positive must be a point of discontinuity. By what we have showed above, all points of A^{\prime} are points of discontinuity of \mathcal{U}. Since \mathcal{U} is integrable, this implies that A^{\prime} has measure 0 , completing the proof.
(2). Let $I_{i} \subset \mathbb{R}$ for $1 \leq i \leq n$ be closed bounded intervals of non-zero length. Prove that I_{i} is not of content zero, and an induction to show that $I_{1} \times \ldots \times I_{n}$ is not of measure zero.

Solution. In ASSIGNMENT-2, I showed that a compact set in \mathbb{R}^{n} with content 0 must have volume zero. So, I will show by induction that

$$
\text { volume }\left(I_{1} \times \ldots \times I_{n}\right)>0
$$

which will show that $I_{1} \times \ldots \times I_{n}$ cannot have content zero. This will be the proof strategy.

For the base case, let $n=1$ and let $I_{1}=\left[a_{1}, b_{1}\right]$. Then, we have

$$
\operatorname{volume}\left(I_{1}\right)=\int_{a_{1}}^{b_{1}} 1=b_{1}-a_{1}>0
$$

and clearly the base case is true. For the inductive case, let $I_{1}=\left[a_{1}, b_{1}\right], \ldots, I_{n}=$ [a_{n}, b_{n}] be closed and bounded intervals in \mathbb{R} with non-zero length such that

$$
\text { volume }\left(I_{1} \times \ldots \times I_{n}\right)=\left(b_{1}-a_{1}\right) \ldots\left(b_{n}-a_{n}\right)>0
$$

Let $I_{n+1}=\left[a_{n+1}, b_{n+1}\right]$ be another closed bounded interval of non-zero length. So, we have

$$
\operatorname{volume}\left(I_{1} \times . . \times I_{n+1}\right)=\int_{\left[a_{1}, b_{1}\right] \times . . \times\left[a_{n+1}, b_{n+1}\right]} 1=\int_{\left[a_{n+1}, b_{n+1}\right]} \int_{\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]} 1
$$

where we have used Fubini's Theorem above. By inductive hypothesis,

$$
\int_{\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]} 1=\left(b_{1}-a_{1}\right) \ldots\left(b_{n}-a_{n}\right)
$$

and hence

$$
\begin{aligned}
\int_{\left[a_{n+1}, b_{n+1}\right]} \int_{\left[a_{1}, b_{1}\right] \times \ldots \times\left[a_{n}, b_{n}\right]} 1 & =\int_{\left[a_{n+1}, b_{n+1}\right]}\left(b_{1}-a_{1}\right) \ldots\left(b_{n}-a_{n}\right) \\
& =\left(b_{1}-a_{1}\right) \ldots\left(b_{n}-a_{n}\right) \int_{\left[a_{n+1}, b_{n+1}\right]} 1 \\
& =\left(b_{1}-a_{1}\right) \ldots\left(b_{n}-a_{n}\right)\left(b_{n+1}-a_{n+1}\right) \\
& >0
\end{aligned}
$$

and by induction, the statement is true for all $n \in \mathbb{N}$. So, every rectangle in \mathbb{R}^{n} has non-zero volume, and hence it is not of content zero.
(3). Let $I=[a, b]$ and f a continuous real-valued function on the square $I \times I$. Prove that

$$
\int_{a}^{b}\left(\int_{a}^{y} f(x, y) d x\right) d y=\int_{a}^{b}\left(\int_{x}^{b} f(x, y) d y\right) d x
$$

Solution. Consider the rectangle $I^{2}=[a, b] \times[a, b]$ in \mathbb{R}^{2}, and let $T \subset I^{2}$ be the triangle

$$
T:=\left\{(x, y) \in I^{2} \mid x \leq y\right\}
$$

Clearly, ∂T has measure 0 being a union of three line segments in \mathbb{R}^{2}, and hence T is Jordan Measurable (infact, it is an acceptable set, because it is compact), so that χ_{T} is integrable on I^{2}. Since f is a continuous function on I^{2}, it is integrable over T. Moreover, we have

$$
\int_{T} f=\int_{I^{2}} f \cdot \chi_{T}
$$

Now, we use Fubini's theorem on the integral in the RHS of the above equation. By Fubini's Theorem, we know that

$$
\int_{I^{2}} f \cdot \chi_{T}=\int_{a}^{b} \mathcal{U}(x) d x
$$

where

$$
\mathcal{U}(x)=\overline{\int_{a}^{b}} f(x, y) \chi_{T}(x, y) d y=\int_{x}^{b} f(x, y) d y
$$

and hence we get

$$
\int_{T} f=\int_{a}^{b}\left(\int_{x}^{b} f(x, y) d y\right) d x
$$

Similarly, by restricting the function to the x-axis instead, we get

$$
\int_{I^{2}} f \cdot \chi_{T}=\int_{a}^{b} \mathcal{U}^{\prime}(y) d y
$$

where

$$
\mathcal{U}^{\prime}(y)=\overline{\int_{a}^{b}} f(x, y) \chi_{T}(x, y) d x=\int_{a}^{y} f(x, y) d x
$$

and hence
(*)

$$
\int_{T} f=\int_{a}^{b}\left(\int_{a}^{y} f(x, y) d x\right) d y
$$

and by (\dagger) and $(*)$, we get

$$
\int_{a}^{b}\left(\int_{a}^{y} f(x, y) d x\right) d y=\int_{a}^{b}\left(\int_{x}^{b} f(x, y) d y\right) d x
$$

(4). (Equality of mixed partial derivatives using Fubini!) Let f be a \mathscr{C}^{2} function on an open rectangle in \mathbb{R}^{2}, with x, y being the coordinates. This means that the partial derivatives upto order two exist and are continuous. Use Fubini to prove that the mixed partials are equal.

$$
\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}
$$

Solution. Let U be an open subset of \mathbb{R}^{2}, and suppose $f: \mathbb{R}^{2} \rightarrow \mathbb{R}$ is a \mathscr{C}^{2} function on U. We show that for any point $(x, y) \in U$, we have

$$
D_{21} f(x, y)=D_{12} f(x, y)
$$

i.e the second order mixed partials are equal. For the sake of contradiction, suppose there is some $(x, y) \in U$ such that

$$
D_{21} f(x, y)-D_{12} f(x, y)>0
$$

Since $D_{21} f-D_{12} f$ is assumed to be continuous, there is a small rectangle $[a, b] \times$ $[c, d]$ containing (x, y) and some $\epsilon>0$ such that

$$
\inf _{(s, t) \in[a, b] \times[c, d]} D_{21} f(s, t)-D_{12} f(s, t) \geq \epsilon
$$

and consequently

$$
\begin{equation*}
\int_{[a, b] \times[c, d]} D_{21} f-D_{12} f>0 \tag{**}
\end{equation*}
$$

Now, we compute

$$
\int_{[a, b] \times[c, d]} D_{21} f-D_{12} f=\int_{[a, b] \times[c, d]} D_{21} f-\int_{[a, b] \times[c, d]} D_{12} f
$$

using Fubini's theorem to arrive at a contradiction. First, restricting the function $D_{21} f$ to the y-axis, we have by Fubini's Theorem

$$
\int_{[a, b] \times[c, d]} D_{21} f=\int_{a}^{b} \mathcal{U}(x)
$$

where

$$
\mathcal{U}(x)=\overline{\int_{c}^{d}} D_{21} f(x, y) d y=\int_{c}^{d} D_{21} f(x, y) d y
$$

because $D_{21} f$ is continuous. Computing further, we see that

$$
\int_{c}^{d} D_{21} f(x, y) d y=D_{1} f(x, d)-D_{1} f(x, c)
$$

by the Fundamental Theorem of Calculus in one variable. So, we obtain

$$
\begin{align*}
\int_{[a, b] \times[c, d]} D_{21} f & =\int_{a}^{b}\left(D_{1} f(x, d)-D_{1} f(x, c)\right) d x \\
& =\int_{a}^{b} D_{1} f(x, d) d x-\int_{a}^{b} D_{1} f(x, c) d x \\
& =f(b, d)-f(a, d)-(f(b, c)-f(a, c))
\end{align*}
$$

By a very similar strategy, i.e by restricting the function $D_{12} f$ to the x-axis and using Fubini's Theorem, we can obtain

$$
\begin{equation*}
\int_{[a, b] \times[c, d]} D_{12} f=f(b, d)-f(a, d)-(f(b, c)-f(a, c)) \tag{*}
\end{equation*}
$$

and hence by (\dagger) and $(*)$ we get that

$$
\int_{[a, b] \times[c, d]} D_{21} f-D_{12} f=0
$$

which contradicts equation $(* *)$. So, it must be true that

$$
D_{21} f(x, y)-D_{12} f(x, y)=0
$$

for all $(x, y) \in U$, and this completes the proof.
(5). Let $R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset \mathbb{R}^{2}$ and f a continuous real-valued function defined on R. Define the function F on R by

$$
F(x, y)=\int_{\left[a_{1}, x\right] \times\left[a_{2}, y\right]} f
$$

Is F continuous? Is it \mathscr{C}^{1} ? What are the partial derivatives $\frac{\partial F}{\partial x}$ and $\frac{\partial F}{\partial y}$?
Solution. First, let us show that F is a continuous function on the rectangle R. First, put

$$
M=\sup _{R}|f|
$$

By Fubini's Theorem, we see that

$$
F(x, y)=\int_{a_{1}}^{x} \int_{a_{2}}^{y} f
$$

Let $a_{1} \leq x \leq b_{1}$ and $a_{2} \leq y \leq b_{2}$ be fixed. Let (h, k) be such that $h, k \geq 0$. We have the following equations, for small enough h, k :

$$
\begin{aligned}
\mid F(x+h, y+k)- & F(x, y)\left|=\left|\int_{a_{1}}^{x+h} \int_{a_{2}}^{y+k} f-\int_{a_{1}}^{x} \int_{a_{2}}^{y} f\right|\right. \\
& =\left|\int_{a_{1}}^{x+h} \int_{a_{2}}^{y} f+\int_{a_{1}}^{x+h} \int_{y}^{y+k} f-\int_{a_{1}}^{x} \int_{a_{2}}^{y} f\right| \\
& =\left|\int_{a_{1}}^{x} \int_{a_{2}}^{y} f+\int_{x}^{x+h} \int_{a_{2}}^{y} f+\int_{a_{1}}^{x} \int_{y}^{y+k} f+\int_{x}^{x+h} \int_{y}^{y+k} f-\int_{a_{1}}^{x} \int_{a_{2}}^{y} f\right| \\
& =\left|\int_{x}^{x+h} \int_{a_{2}}^{y} f+\int_{a_{1}}^{x} \int_{y}^{y+k} f+\int_{x}^{x+h} \int_{y}^{y+k} f\right| \\
& \leq h\left(y-a_{2}\right) M+\left(x-a_{1}\right) k M+h k M
\end{aligned}
$$

and the RHS goes to 0 as $(h, k) \rightarrow 0$. Using similar arguments, we can show that

$$
\begin{aligned}
& \lim _{(h, k) \rightarrow(0,0)}|F(x-h, y+k)-F(x, y)|=0 \\
& \lim _{(h, k) \rightarrow(0,0)}|F(x+h, y-k)-F(x, y)|=0 \\
& \lim _{(h, k) \rightarrow(0,0)}|F(x-h, y-k)-F(x, y)|=0
\end{aligned}
$$

and hence F is a continuous function on R (this is a generalisation of the proof of the FTOC in one variable).

Next, we will show that F is \mathscr{C}^{1} in the interior of the rectangle R, and to do this we will show that the partial derivatives $D_{1} F$ and $D_{2} F$ both exist and are continuous in the interior of R. Moreover, we will only do the proof for $D_{1} F$, as the proof for $D_{2} F$ is very similar.

Let (x, y) be a point in the interior of R, i.e $a_{1}<x<b_{1}$ and $a_{2}<y<b_{2}$. For $t \in\left[a_{1}, b_{1}\right]$, define the function

$$
g(t)=\int_{a_{2}}^{y} f\left(t, t_{2}\right) d t_{2}
$$

Let us show that g is a continuous function on $\left[a_{1}, b_{1}\right]$. Let $\epsilon>0$ be given. Since f is continuous on R and since R is compact, f is uniformly continuous on R. So there is some $\delta>0$ such that for any $s, t \in\left[a_{1}, b_{1}\right]$ and $t_{2} \in\left[a_{2}, b_{2}\right]$

$$
|t-s|<\delta \Longrightarrow\left|f\left(t, t_{2}\right)-f\left(s, t_{2}\right)\right|<\frac{\epsilon}{\left(y-a_{2}\right)}
$$

So, if $|t-s|<\delta$ and $t, s \in\left[a_{1}, b_{1}\right]$, then we have

$$
\begin{aligned}
|g(t)-g(s)| & =\left|\int_{a_{2}}^{y} f\left(t, t_{2}\right)-f\left(s, t_{2}\right) d t_{2}\right| \\
& \leq \int_{a_{2}}^{y}\left|f\left(t, t_{2}\right)-f\left(s, t_{2}\right)\right| d t_{2} \\
& \leq\left(y-a_{2}\right) \cdot \frac{\epsilon}{\left(y-a_{2}\right)} \\
& =\epsilon
\end{aligned}
$$

and this shows that g is continuous on $\left[a_{1}, b_{1}\right]$ (and infact, it is uniformly continuous). Now, by Fubini's Theorem, we know that for any $p \in\left[a_{1}, b_{1}\right]$,

$$
F(p, y)=\int_{a_{1}}^{p}\left(\int_{a_{2}}^{y} f\left(t, t_{2}\right) d t_{2}\right) d t=\int_{a_{1}}^{p} g(t) d t
$$

and hence by the Fundamental Theorem of Calculus in one variable, we get that

$$
D_{1} F(x, y)=g(x)=\int_{a_{2}}^{y} f\left(x, t_{2}\right) d t_{2}
$$

By a very similar argument, we can obtain

$$
D_{2} F(x, y)=\int_{a_{1}}^{x} f\left(t_{1}, y\right) d t_{1}
$$

So, both the partial derivatives $D_{1} F$ and $D_{2} F$ exist in the interior of R. It remains to prove the continuity of these. Let $(x, y) \in\left(a_{1}, b_{1}\right) \times\left(a_{2}, b_{2}\right)$ be fixed. Since f is
continuous on R, it is uniformly continuous. Let $\epsilon>0$ be given. There is some $\delta>0$ such that for any $0 \leq h<\delta$ and $t_{2} \in\left[a_{2}, b_{2}\right]$,

$$
\left|f\left(x+h, t_{2}\right)-f\left(x, t_{2}\right)\right|<\epsilon /\left(y-a_{2}\right)
$$

Now, let (h, k) be such that $0 \leq h<\delta$ and $k>0$ is small enough. In that case, we have

$$
\begin{aligned}
\left|D_{1} F(x+h, y+k)-D_{1} F(x, y)\right| & =\left|\int_{a_{2}}^{y+k} f\left(x+h, t_{2}\right) d t_{2}-\int_{a_{2}}^{y} f\left(x, t_{2}\right) d t_{2}\right| \\
& =\left|\int_{a_{2}}^{y} f\left(x+h, t_{2}\right)-f\left(x, t_{2}\right) d t_{2}+\int_{y}^{y+k} f\left(x+h, t_{2}\right) d t_{2}\right| \\
& \leq\left(y-a_{2}\right) \epsilon /\left(y-a_{2}\right)+k M \\
& =\epsilon+k M
\end{aligned}
$$

and the last term goes to ϵ as $(h, k) \rightarrow 0$. Since $\epsilon>0$ is arbitrary, it must be true that

$$
\lim _{(h, k) \rightarrow 0}\left|D_{1} F(x+h, y+k)-D_{1} F(x, y)\right|=0
$$

Using similar arguments, we can show that following limits (observe $h, k \geq 0$)

$$
\begin{aligned}
& \lim _{(h, k) \rightarrow 0}\left|D_{1} F(x-h, y+k)-D_{1} F(x, y)\right|=0 \\
& \lim _{(h, k) \rightarrow 0}\left|D_{1} F(x+h, y-k)-D_{1} F(x, y)\right|=0 \\
& \lim _{(h, k) \rightarrow 0}\left|D_{1} F(x+h, y-k)-D_{1} F(x, y)\right|=0
\end{aligned}
$$

and hence $D_{1} F$ is continuous at (x, y). So, $D_{1} F$ is continuous in the interior of R, and similarly $D_{2} F$ is continuous in the interior of R. So, F is \mathscr{C}^{1} in the interior of R.
(6). Let $R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \subset \mathbb{R}^{2}$ and f a \mathscr{C}^{1} real valued function defined on an open set containing R. Let G be defined on $\left[a_{2}, b_{2}\right]$ by

$$
G(y)=\int_{a_{1}}^{b_{1}} f(x, y) d x
$$

Prove that

$$
G^{\prime}(y)=\int_{a_{1}}^{b_{1}} \frac{\partial f}{\partial y}(x, y) d x
$$

Solution. We know that $D_{2} F$ is continuous on R. So, by the Fundamental Theorem of Calculus in one variable, we know that for any $(x, y) \in\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]$

$$
f(x, y)=f(x, y)-f\left(x, a_{2}\right)+f\left(x, a_{2}\right)=\int_{a_{2}}^{y} D_{2} f\left(x, t_{2}\right) d t_{2}+f\left(x, a_{2}\right)
$$

So, we see that

$$
\begin{align*}
G(y) & =\int_{a_{1}}^{b_{1}} f(x, y) d x \\
& =\int_{a_{1}}^{b_{1}}\left(\int_{a_{2}}^{y} D_{2} f\left(x, t_{2}\right) d t_{2}+f\left(x, a_{2}\right)\right) d x \\
& =\int_{a_{1}}^{b_{1}} \int_{a_{2}}^{y} D_{2} f\left(x, t_{2}\right) d t_{2} d x+\int_{a_{1}}^{b_{1}} f\left(x, a_{2}\right) d x \\
& =\int_{a_{2}}^{y} \int_{a_{1}}^{b_{1}} D_{2} f\left(x, t_{2}\right) d x d t_{2}+\int_{a_{1}}^{b_{1}} f\left(x, a_{2}\right) d x \tag{**}
\end{align*}
$$

where we used Fubini's Theorem to switch the order of integration in the last step. Now, for any $t \in\left[a_{2}, b_{2}\right]$, define the function

$$
h(t)=\int_{a_{1}}^{b_{1}} D_{2} f(x, t) d x
$$

Let us show that h is a continuous function on $\left[a_{2}, b_{2}\right]$. The argument is very similar to that in problem (5). Since D_{2} is continuous over R, it is uniformly continuous. Hence, if $\epsilon>0$ is given, there is some $\delta>0$ such that for $t, s \in\left[a_{2}, b_{2}\right]$,

$$
|t-s|<\delta \Longrightarrow\left|D_{2} f(x, t)-D_{2} f(x, s)\right|<\epsilon /\left(b_{1}-a_{1}\right)
$$

for any $x \in\left[a_{1}, b_{1}\right]$. So, it follows that if $t, s \in\left[a_{1}, b_{1}\right]$ and $|t-s|<\delta$, then

$$
\begin{aligned}
|h(t)-h(s)| & =\left|\int_{a_{1}}^{b_{1}} D_{2} f(x, t)-D_{2} f(x, s) d x\right| \\
& \leq \int_{a_{1}}^{b_{1}}\left|D_{2} f(x, t)-D_{2} f(x, s)\right| d x \\
& \leq\left(b_{1}-a_{1}\right) \epsilon /\left(b_{1}-a_{1}\right) \\
& =\epsilon
\end{aligned}
$$

showing that h is uniformly continuous over $\left[a_{1}, b_{1}\right]$. From equation $(* *)$, we see that

$$
G(y)=\int_{a_{2}}^{y} h\left(t_{2}\right) d t_{2}+\int_{a_{1}}^{b_{1}} f\left(x, a_{2}\right) d x
$$

Note that the second integral is independent of y. So, by the Fundamental Theorem of Calculus in one variable, we get

$$
G^{\prime}(y)=h(y)=\int_{a_{1}}^{b_{1}} D_{2} f(x, y) d x
$$

completing the proof.
(7). (Problem 3-33 in Spivak) If $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is continuous and $D_{2} f$ is continuous, define $F(x, y)=\int_{a}^{x} f(t, y) d t$.
(a) Find $D_{1} F$ and $D_{2} F$.
(b) If $G(x)=\int_{a}^{g(x)} f(t, x) d t$, find $G^{\prime}(x)$ where $g:[c, d] \rightarrow[a, b]$ is a differentiable function.

Solution. Suppose $f:[a, b] \times[c, d] \rightarrow \mathbb{R}$ is continuous and $D_{2} f$ is continuous. Let

$$
F(x, y)=\int_{a}^{x} f(t, y) d t
$$

(1) We find $D_{1} F$ and $D_{2} F$. First, by Leibniz' rule, we see that

$$
D_{2} F(x, y)=\int_{a}^{x} D_{2} f(t, y) d t
$$

Just as in problem (5)., this integral is continuous, i.e $D_{2} F$ is continuous. Also, by the fundamental theorem of calculus, we have that

$$
D_{1} F(x, y)=f(x, y)
$$

because for fixed y, the function $f(t, y)$ on $[a, b]$ is continuous. Clearly, $D_{1} F$ is continuous, since f is continuous. Because both $D_{1} F$ and $D_{2} F$ exist and are continuous in the interior of the rectangle, it follows that F is \mathscr{C}^{1} in the interior of the rectangle.
(2) Suppose

$$
G(x)=\int_{a}^{g(x)} f(t, x) d t
$$

for some differentiable function $g:[c, d] \rightarrow[a, b]$. So we can write

$$
G=F \circ h
$$

where $h:[c, d] \rightarrow \mathbb{R}^{2}$ is the map $h(x)=(g(x), x)$. Clearly, h is differentiable on (c, d), and hence G, being a composite of differentiable functions, is differentiable (note that F is \mathscr{C}^{1}). So, applying the chain rule, we see that

$$
G^{\prime}(x)=\left[\begin{array}{ll}
D_{1} F(g(x), x) & D_{2} F(g(x), x)
\end{array}\right]\left[\begin{array}{c}
g^{\prime}(x) \\
1
\end{array}\right]=g^{\prime}(x) f(g(x), x)+\int_{a}^{g(x)} D_{2} f(t, x) d t
$$

(8). (Problem 3-36 in Spivak) Cavalieri's principle: Let A and B be Jordanmeasurable subsets of \mathbb{R}^{3}. Let

$$
A_{c}:=\{(x, y):(x, y, c) \in A\}
$$

and define B_{c} similarly. Suppose each A_{c} and B_{c} are Jordan measurable and have the same area. Show that A and B have the same volume.

Solution. As we will see, this is a direct consequence of Fubini's Theorem. Since A, B are Jordan Measurable, they are bounded sets which have a well-defined volume. Let $R=\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right] \times\left[a_{3}, b_{3}\right]$ be a rectangle in \mathbb{R}^{3} containing both A, B. Let χ_{A} and χ_{B} be the characteristic functions of A and B respectively. So, we know that

$$
\int_{R} \chi_{A}
$$

and

$$
\int_{R} \chi_{B}
$$

both exist and are respectively the volumes of A and B. By Fubini's Theorem, we know that

$$
\begin{align*}
\int_{R} \chi_{A} & =\int_{a_{3}}^{b_{3}} \mathcal{U}(c) d c \\
\int_{R} \chi_{B} & =\int_{a_{3}}^{b_{3}} \mathcal{U}^{\prime}(c) d c
\end{align*}
$$

where $\mathcal{U}, \mathcal{U}^{\prime}:\left[a_{3}, b_{3}\right] \rightarrow \mathbb{R}$ are given by

$$
\begin{aligned}
& \mathcal{U}(c)=\int_{\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \\
& \chi_{A}(x, y, c) d x d y=\int_{\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \chi_{A_{c}}(x, y) d x d y \\
& \mathcal{U}^{\prime}(c)=\chi_{\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \chi_{B}(x, y, c) d x d y=\int_{\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \chi_{B_{c}}(x, y) d x d y
\end{aligned}
$$

Now, we know that both the sets A_{c} and B_{c} are Jordan Measurable, and hence both the upper integrals in the above equations can be replaced by just integrals. Moreover, we know that A_{c} and B_{c} have the same area, and hence

$$
\int_{\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \chi_{A_{c}}(x, y) d x d y=\int_{\left[a_{1}, b_{1}\right] \times\left[a_{2}, b_{2}\right]} \chi_{B_{c}}(x, y) d x d y
$$

and hence we see that $\mathcal{U}(c)=\mathcal{U}^{\prime}(c)$ for every $c \in\left[a_{3}, b_{3}\right]$. So by the equations (\dagger) and (*), we get that

$$
\int_{R} \chi_{A}=\int_{R} \chi_{B}
$$

and hence, A and B have equal volume. This completes the proof.

