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(1). Here we compare two ways of defining absolutely integrable functions on
R.

Solution. Consider the open cover of R given by the intervals (n − 1, n + 1) for
n ∈ Z. Let ψ be the function defined by

ψ(x) =


0 , if |x| ≥ 3/4

1 , if |x| ≤ 1/4

2(3/4− x) , if 1/4 ≤ x ≤ 3/4

2(3/4 + x) , if − 3/4 ≤ x ≤ −1/4

It is clear that supp(ψ) = [−3/4, 3/4]. If we define ψn for n ∈ Z by
ψn(x) = ψ(x− n)

then note that ψn is just translating the graph of ψ such that (n, 0) is the new
origin. So, we see that

supp(ψn) = [n− 3/4, n+ 3/4] ⊂ (n− 1, n+ 1)

We first show that ψn form a partition of unity with respect to the given cover. It
is clear that eachψn has compact support contained inside (n−1, n+1). Observe
that if x ∈ R, then only finitely many open intervals of the form (n − 1, n + 1)
intersect with the ball B(x, 1/2); this is because n is ranging over the set Z. So,
this shows that only finitely many ψn are non-zero on this neighborhood of x.
Now suppose x ∈ Z. So the only open interval containing x is (x − 1, x + 1). In
that case, we have

ϕx(x) = ϕ(x− x) = ϕ(0) = 1

Next, suppose x /∈ Z, so that n− 1 < x < n for some n ∈ Z. In this case, the only
open intervals containing x are (n− 2, n) and (n− 1, n + 1). The corresponding
functions are ψn−1 and ψn. So we must show that

ψn−1(x) + ψn(x) = 1

Now a couple of cases are possible.
(1) In the first case, we have n− 1 < x ≤ n− 3/4. So, observe that

ψn(x) = ψ(x− n) = 0 , as x− n ≤ −3/4

and
ψn−1(x) = ψ(x− (n− 1)) = 1 , as 0 ≤ x− (n− 1) ≤ 1/4

so in this case we see that ψn−1(x) + ψn(x) = 1.
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(2) In the next case, we have that n− 3/4 ≤ x ≤ n− 1/4. Observe that
ψn(x) = 2(3/4 + x− n) , as − 3/4 ≤ x− n ≤ −1/4

and
ψn−1(x) = 2(3/4− (x− (n− 1))) , as 1/4 ≤ x− (n− 1) ≤ 3/4

and hence in this case we have
ψn(x) + ψn−1(x) = 3/2 + 3/2− 2 = 1

(3) In the final case, we have n− 1/4 ≤ x < n. This case is symmetric to the
case (1), and the proof is very similar.

So, it follows that {ψn} indeed is a partition of unity with respect to this cover.
Next, let f be a real valued function on R. We show that the following three

statements are equivalent.
(1) f |[−m,m] is integrable for eachm ∈ N and the increasing sequence∫

[−m,m]

|f(x)|dx

tends to a finite limit.
(2) f |[m1,m2] is integrable for eachm1 < m2 ∈ Z and the set∫

[m1,m2]

|f(x)|dx

is bounded above.
(3) f |[n−1,n+1] is integrable for each n ∈ Z and the series∑

n∈Z

∫
[n−1,n+1]

ψn(x)|f(x)|dx

is convergent.
Let us first show that (1) =⇒ (2). Let m1 < m2 ∈ Z, and let m ∈ Z such that
[m1,m2] ⊊ [−m,m]. Since f is integrable on [−m,m], it is clear that f is also
integrable on [m1,m2] since [m1,m2] is an acceptable set. Moreover, it is easy to
see that ∫

[m1,m2]

|f(x)|dx ≤
∫
[−m,m]

|f(x)|dx ≤ lim
m→∞

∫
[−m,m]

|f(x)|dx

and so the given set is bounded above.
Next, we prove that (2) =⇒ (3). If n ∈ Z then clearly n−1 < n+1 and hence f is

integrable on [n− 1, n+1]. Now to show that the given series is convergent, it is
enough to show that its partial sums are bounded because there are only pos-
itive terms involved. Now let k ∈ Z, and consider the interval [−k, k]. Consider
the intervals

[−k,−k + 2], [−k + 1,−k + 3], ..., [k − 3, k − 1], [k − 2, k]

whose union is [−k, k]. Now we see that
k−1∑

j=−(k−1)

∫
[j−1,j+1]

ψj(x)|f(x)|dx =
k−1∑

j=−(k−1)

∫
[−k,k]

ψj(x)|f(x)|dx
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where the above is true because supp(ψj) ⊂ [j − 1, j + 1]. Now, we see that

k−1∑
j=−(k−1)

∫
[−k,k]

ψj(x)|f(x)|dx =

∫
[−k,k]

 k−1∑
j=−(k−1)

ψj(x)

 |f(x)|dx ≤
∫
[−k,k]

|f(x)|dx

(†)

where we are using the fact that
k−1∑

j=−(k−1)

ψj(x) ≤ 1 , for any x ∈ [−k, k]

So, this shows that the partial sums of the given series are bounded above, and
hence the series is convergent.
Finally, we show that (3) =⇒ (1). So suppose the given series is convergent.

It is enough to show that the sequence∫
[−m,m]

|f(x)|dx , m ∈ N

is bounded above, since it is an increasing sequence. Consider the open inter-
vals

(−m− 1,−m+ 1), (−m,−m+ 2), ..., (m− 2,m), (m− 1,m+ 1)

All of these open intervals cover [−m,m]. Also, consider the corresponding
functions

ψ−m, ψ−m+1, ..., ψm−1, ψm

Now let x ∈ [−m,m]. If x is an integer, then
ϕx(x) = 1 and ψk(x) = 0 for k 6= x, −m ≤ k ≤ m

and hence
m∑

k=−m

ψk(x) = 1

If x is not an integer, then as we have shown before we have that
ψ[x](x) + ψ[x]+1(x) = 1 and ψk(x) = 0 for k 6= [x], [x] + 1, −m ≤ k ≤ m

and again we see that
m∑

k=−m

ψk(x) = 1

So in all cases, we see that∫
[−m,m]

|f(x)|dx =

∫
[−m,m]

(
m∑

k=−m

ψk(x)

)
|f(x)|dx

=
m∑

k=−m

∫
[−m,m]

ψk(x)|f(x)|dx

≤
m∑

k=−m

∫
[k−1,k+1]

ψk(x)|f(x)|dx

≤ lim
m→∞

m∑
k=−m

∫
[k−1,k+1]

ψk(x)|f(x)|dx(‡)
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where in the last stepwehave used the fact that supp(ψk) ⊂ [k−1, k+1] and also
in the last stepwe have an inequality because (−m−1,−m+1) and (m−1,m+1)
are not subsets of [−m,m]. So this shows that the increasing sequence in (1) is
bounded, and hence it tends to a finite limit.
Sowe have shown the equivalence of conditions (1)-(3). Now suppose f is any

function that satisfies any of these conditions, and hence it satisfies all of these
conditions. Clearly, the limit

lim
m→∞

∑
n≤|m|

∫
[n−1,n+1]

ψn(x)f(x)dx

exists because the given series is assumed to be absolutely convergent. Now,
we can write

f = f+ − f−

where f+ = max{0, f} and f− = max{0,−f}. Moreover, we can write

f+ =
|f |+ f

2
and f− =

|f | − f

2

and the integrability of f and |f | on intervals implies the integrability of f+ and
f− on each interval of R. So,∫

[−m,m]

f(x)dx =

∫
[−m,m]

f+(x)dx−
∫
[−m,m]

f−(x)dx

Since the limit
lim
m→∞

∫
[−m,m]

|f(x)|dx

exists, it follows that both the limits

lim
m→∞

∫
[−m,m]

f+(x)dx and lim
m→∞

∫
[−m,m]

f−(x)dx

exist and hence it follows that the limit

lim
m→∞

∫
[−m,m]

f(x)dx

also exists. Finally, we will show that

lim
m→∞

∫
[−m,m]

f(x)dx = lim
m→∞

∑
n≤|m|

∫
[n−1,n+1]

ψn(x)f(x)dx

Let ϵ > 0 be given. Then, there is someM ∈ N such that for all |n| ≥M , we have
that ∫

[n−1,n+1]

ψn(x)|f(x)|dx < ϵ/2

and this is because of the convergence of the series given in condition (3). Now,
let m ∈ N be any integer such that m > M , which means that |m| > M . Now as
we did in proving the inequality (‡), consider the open intervals

(−m− 1,−m+ 1), (−m,m+ 2), ..., (m− 2,m), (m− 1,m+ 1)

and the corresponding functions
ψ−m, ψ−m+1, ..., ψm−1, ψm
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As we have proven above, we have that for any x ∈ [−m,m]

m∑
n=−m

ψn(x) = 1

So, we see that∫
[−m,m]

f(x)dx =

∫
[−m,m]

(
m∑

n=−m

ψn(x)

)
f(x)dx

=
m∑

n=−m

∫
[−m,m]

ψn(x)f(x)dx

=

∫
[−m,−m+1]

ψ−m(x)f(x)dx+
m−1∑

n=−m+1

∫
[n−1,n+1]

ψn(x)f(x)dx+

∫
[m−1,m]

ψm(x)f(x)dx

and again we have used the fact that supp(ψn) ⊂ [n−1, n+1]. The above implies
that ∣∣∣∣∣

∫
[−m,m]

f(x)dx−
m−1∑

n=−m+1

∫
[n−1,n+1]

ψn(x)f(x)dx

∣∣∣∣∣
=

∣∣∣∣∫
[−m,−m+1]

ψ−m(x)f(x)dx+

∫
[m−1,m]

ψm(x)f(x)dx

∣∣∣∣
≤
∫
[−m,−m+1]

ψ−m(x)|f(x)|dx+
∫
[m−1,m]

ψm(x)|f(x)|dx

≤
∫
[−m−1,−m+1]

ψ−m(x)|f(x)|dx+
∫
[m−1,m+1]

ψm(x)|f(x)|dx

< ϵ/2 + ϵ/2

= ϵ

Sincem > M was arbitrary, this shows that

lim
m→∞

∫
[−m,m]

f(x)dx = lim
m→∞

∑
|n|≤m

∫
[n−1,n+1]

ψn(x)f(x)dx

completing our proof. ■

(2). Define the function G2 : R2 → R by G2(x, y) = exp−x2 − y2.

(a). First, we show that G2 is absolutely integrable on R2. We note that G2 is a
non-negative continuous function on R2, and hence to prove that G2 is abso-
lutely integrable onR2, it is enough to show that the integral ofG2 on every rec-
tangle in R2 is bounded above. So suppose there is a rectangle [−L,L]× [−L,L]
in R2. Then, using Fubini’s Theorem and using the fact that G2 is a continuous
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function, we have∫
[−L,L]2

e−x2−y2dxdy =

∫
[−L,L]

e−y2
(∫

[−L,L]

e−x2

dx

)
dy

=

(∫
[−L,L]

e−x2

dx

)(∫
[−L,L]

e−y2dy

)
=

(∫
[−L,L]

e−x2

dx

)2

Next, we show that the functionG1 : R → R defined byG1(x) = e−x2 is absolutely
integrable on R. Again, note that G1 is a non-negative continuous function on
R, and hence it is enough to show that the integral of G1 on every interval of R
is bounded above. But this has been done in class (in particular, page 45 of the
Lecture Notes). So, it follows that G2 is integrable on R2. ■
(b). Couldn’t do it. ■
(c). (Note: there was an error in the assignment; the range of θ is between −π
and π and the set should be {(x, 0) | x ≤ 0}. See below). Consider the map

Φ : {(r, θ) | r > 0,−π < θ < π} → R2 \ {(x, 0) | x ≤ 0}
given by

Φ(r, θ) = (r cos θ, r sin θ)
We show thatΦ is a C 1 diffeomorphism. It is enough to show thatΦ is a one-one
C 1 map with invertible derivative at every point in the domain. It is clear that Φ
is a one-one map, because we are restricting θ to the range (−π, π). Moreover,
it is C 1, because each of its component functions are C 1 at each point in the
domain (and infact they are C ∞). Finally, the Jacobian at any point (r, θ) is given
by

JΦ(r, θ) = det
[
cos θ −r sin θ
sin θ r cos θ

]
= r cos2 θ + r sin2 θ = r

and hence the derivative at every point in the domain is invertible. So, this
shows that Φ is a C 1 diffeomorphism. ■
(3). Here I will be solving problems 7,8,9 of Rudin’s Chapter 6.
Problem 7. Let f : (0, 1] → R be a real function such that f is Riemann Inte-
grable on [c, 1] for every c > 0. We define∫ 1

0

f(x)dx = lim
c→0

∫ 1

c

f(x)dx

if the limit on the RHS exists and is finite.
(a) Suppose f is Riemann Integrable on [0, 1]. Also, suppose |f(x)| ≤ M for
x ∈ [0, 1] (the Riemann Integral is only defined for bounded functions). We will
show that this definition agrees with the old one, i.e we will show that the limit

lim
c→0

∫ 1

c

f(x)dx

exists and is equal to
∫ 1

0
f(x)dx. Let c > 0. Then, we have∫ 1

0

f(x)dx =

∫ c

0

f(x)dx+

∫ 1

c

f(x)dx
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which implies that∣∣∣∣∫ 1

0

f(x)dx−
∫ 1

c

f(x)dx

∣∣∣∣ = ∣∣∣∣∫ c

0

f(x)dx

∣∣∣∣ ≤ ∫ c

0

|f(x)|dx ≤Mc

The above inequality implies that as c→ 0,∣∣∣∣∫ 1

0

f(x)dx−
∫ 1

c

f(x)dx

∣∣∣∣→ 0

and this proves the claim.
(b)We construct a function f for which the above limit exists, but it fails to exist
for |f | in place of f . The idea will involve an alternating series.
Define a function f : (0, 1] → R as follows.

f(x) = (−1)n(n+ 1) , x ∈
(

1

n+ 1
,
1

n

]
i.e we have defined f piecewise. It is clear that for every c > 0, f is integrable
on [c, 1] because it is a sum of piecewise constant functions. More explicitly,
suppose c > 0 such that

1

n+ 1
≤ c ≤ 1

n
for some n ∈ N. Then by summing areas of rectangles, we see that∫ 1

c

f(x)dx =

(
1

n
− c

)
(−1)n(n+ 1) +

n−1∑
k=1

(−1)k(k + 1)

k(k + 1)

The second series above is just
n−1∑
k=1

(−1)k

k

which is a partial sum of the alternating harmonic series. Now as c→ 0, we see
that n→ ∞, and hence(

1

n
− c

)
(−1)n(n+ 1) ≤

(
1

n
− 1

n+ 1

)
(−1)n(n+ 1) → 0

So we see that

lim
c→0

∫ 1

c

f(x)dx =
∞∑
k=1

(−1)k

k

and hence this limit exists. Now, we again by summing areas of rectangles, we
can see that for c > 0 with

1

n+ 1
≤ c ≤ 1

n
we have ∫ 1

c

|f(x)|dx =

∫ 1

c

f(x)dx =

(
1

n
− c

)
(n+ 1) +

n−1∑
k=1

(k + 1)

k(k + 1)

As before, as c→ 0, we have n→ ∞ and hence(
1

n
− c

)
(n+ 1) ≤

(
1

n
− 1

n+ 1

)
(n+ 1) → 0
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But, the partial sums
n−1∑
k=1

(k + 1)

k(k + 1)
=

n−1∑
k=1

1

k

diverge by the divergence of the harmonic series. Hence, the limit

lim
c→0

∫ 1

c

|f(x)|dx = ∞

and hence it does not exist. ■
Problem 8. Suppose f(x) ≥ 0 and f decreases monotonically on [1,∞). We
show that ∫ ∞

1

f(x)dx

converges if and only if
∞∑
n=1

f(n)

converges. First, suppose the given integral converges. Let n > 1 be any natu-
ral number. Consider the partition

[1, 2] ∪ [2, 3] ∪ ... ∪ [n− 1, n]

of the interval [1, n]. Since f is decreasing, the lower Riemann sumof f over this
partition is

f(2) + f(3) + ...+ f(n) =
n∑

k=2

f(k)

and hence hence we see that
n∑

k=2

f(k) ≤
∫ n

1

f(x)dx ≤
∫ ∞

1

f(x)dx

So, the partial sums of the series are all bounded above, and since the series
consists of only positive terms, we see that the series is also convergent. Con-
versely, suppose the given series is convergent. Again, consider the interval
[1, n] for n > 1 and the same partition. Since f is decreasing, the upper Rie-
mann sum of f with respect to this partition is

U(P, f) = f(1) + f(2) + ...+ f(n− 1) =
n−1∑
k=1

f(k)

and hence ∫ n

1

f(x)dx ≤ U(P, f) =
n−1∑
k=1

f(k) ≤
∞∑
k=1

f(k)

Because f is a positive function and since the integral of f over [1, n] is bounded
above for every n > 1, we see that the integral of f over [1, b] is bounded above
for every b > 1, and hence ∫ n

1

f(x)dx <∞

and this completes the proof. ■
Here are two facts that I will prove before solving the next problem.
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Proposition 0.1 (CauchyCriterion). Let a ∈ R be fixed, and let f : [a,∞) → R be
a function such that f is integrable on every interval [a, b] for b > a. Then, the
integral ∫ ∞

a

f(x)dx

converges if and only if for every ϵ > 0 there is an M ≥ a such that for all
B ≥ A ≥M we have ∣∣∣∣∫ B

A

f(x)dx

∣∣∣∣ < ϵ

Proof. First, suppose that the given improper integral converges to L ∈ R and
let ϵ > 0 be given. Then, there is someM ≥ a such that for all A ≥M we have∣∣∣∣∫ A

a

f(x)dx− L

∣∣∣∣ < ϵ/2

Then, for any B ≥ A ≥M we have∣∣∣∣∫ B

A

f(x)dx

∣∣∣∣ = ∣∣∣∣∫ B

a

f(x)dx−
∫ A

a

f(x)dx

∣∣∣∣
=

∣∣∣∣∫ B

a

f(x)dx− L+ L−
∫ A

a

f(x)dx

∣∣∣∣
≤
∣∣∣∣∫ B

a

f(x)dx− L

∣∣∣∣+ ∣∣∣∣∫ A

a

f(x)dx− L

∣∣∣∣
< ϵ

Conversely, suppose the given Cauchy Criterion holds. For natural numbers
n ≥ a, let

an =

∫ n

a

f(x)dx

Let ϵ > 0 and let M ≥ 0 be such that for all natural numbers n ≥ m ≥ M , we
have

|an − am| =
∣∣∣∣∫ n

m

f(x)dx

∣∣∣∣ < ϵ

and hence {an} is a Cauchy sequence, and so {an} has a limit L. Again, let ϵ > 0
be given and chooseM ≥ a such that |an − L| ≤ ϵ/2 and∣∣∣∣∫ B

A

f(x)dx

∣∣∣∣ < ϵ/2

for all n,A,B ≥ M , n ∈ N. Now, let A ≥ M + 1, and hence [A] ≥ M . For such A,
we have ∣∣∣∣∫ A

a

f(x)dx− L

∣∣∣∣ =
∣∣∣∣∣
∫ [A]

a

f(x)dx− L+

∫ [A]

A

f(x)dx

∣∣∣∣∣
≤

∣∣∣∣∣
∫ [A]

a

f(x)dx− L

∣∣∣∣∣+
∣∣∣∣∣
∫ [A]

A

f(x)dx

∣∣∣∣∣
< ϵ

andhence thegiven improper integral converges toL. This completes theproof.
■
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Proposition 0.2. Let f : [a,∞) → R be a function such that f is integrable on
every [a, b], for b > a. Suppose the integral∫ ∞

a

|f(x)|dx

converges. Then, the integral ∫ ∞

a

f(x)dx

also converges. Hence, absolute convergence of improper integrals implies
convergence.

Proof. Suppose the ∫ ∞

a

|f(x)|dx

is convergent, and let ϵ > 0 be given. So by the Cauchy Criterion 0.1 there is
someM ≥ a such that for all B ≥ A ≥M ,∫ B

A

|f(x)|dx < ϵ

So for such A,B we have∣∣∣∣∫ B

A

f(x)dx

∣∣∣∣ ≤ ∫ B

A

|f(x)|dx < ϵ

and hence again by the Cauchy Criterion 0.1 the integral∫ ∞

a

f(x)dx

is convergent. ■
Problem 9. We will prove an integration by parts formula for improper inte-
grals. Let a ∈ R be a fixed number, and let f, g : [a,∞) → R be continuously
differentiable functions on [a,∞) such that

lim
x→∞

f(x)g(x) =M

for someM ∈ R and the integral∫ ∞

a

f(x)g′(x)dx

converges. Then we show that the integral∫ ∞

a

f ′(x)g(x)dx

converges and∫ ∞

a

f ′(x)g(x)dx =M − f(a)g(a)−
∫ ∞

a

f(x)g′(x)dx

So let’s prove this. Let b > a be fixed. Applying integration by parts on the
interval [a, b], we see that∫ b

a

f ′(x)g(x)dx = f(b)g(b)− f(a)g(a)−
∫ b

a

f(x)g′(x)dx
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The limit as b→ ∞ exists on the RHS by our hypothesis, and hence∫ ∞

a

f ′(x)g(x)dx =M − f(a)g(a)−
∫ ∞

a

f(x)g′(x)dx

Let us apply this to a specific case. Consider the interval [0,∞). On this interval
let

f(x) = sinx

g(x) =
1

1 + x

so that both f and g are continuously differentiable on [0,∞). First, observe that∫ ∞

0

| sinx|
(1 + x)2

dx ≤
∫ ∞

0

1

(1 + x)2
dx

Now, we know that the function

x 7→ 1

(1 + x)2

is a positive decreasing function on [0,∞). Using the result in Problem 8. we
see that

∞∑
n=0

1

(1 + n)2
converges ⇐⇒

∫ ∞

0

1

(1 + x)2
dx converges

and we know that the series on the LHS above converges. So, we see that∫ ∞

0

| sinx|
(1 + x)2

dx <∞

and hence by Proposition 0.2, we see that the integral∫ ∞

0

sinx
(1 + x)2

dx

converges. We have just shown that the integral∫ ∞

0

f(x)g′(x)dx = −
∫ ∞

0

sinx
(1 + x)2

dx

is convergent. Now, observe that for any b > 0,

f(b)g(b) =
sin b

(1 + b)2
→ 0 as b→ ∞

Applying the integration by parts formula we proved, we have∫ ∞

0

f ′(x)g(x)dx =

∫ ∞

0

cosx
1 + x

dx = 0− sin 0
1 + 0

−
∫ ∞

0

f(x)g′(x)dx =

∫ ∞

0

sinx
(1 + x)2

dx

and hence ∫ ∞

0

cosx
1 + x

dx =

∫ ∞

0

sinx
(1 + x)2

dx

Now, we will show the the integral on the LHS above is not absolutely conver-
gent, i.e ∫ ∞

0

| cosx|
1 + x

dx = ∞
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Note that on any interval of the form [2πk, 2πk+π/4] for k ≥ 0, the function cosx
is positive and is bounded below by cos(π/4) = 1/

√
2. Now we immediately see

that ∫ ∞

0

| cosx|
1 + x

dx ≥
∞∑
k=0

∫ 2πk+π/4

2πk

1√
2(1 + x)

dx

≥ 1√
2

∞∑
k=0

∫ 2πk+π/4

2πk

1

1 + 2πk + π/4
dx

=
π

4
√
2

∞∑
k=0

1

1 + 2πk + π/4

The last series is of the form

c

∞∑
k=0

1

ak + b

where a, b > 1 and c > 0. Clearly, this series diverges by comparison with the
harmonic series. Hence, the given integral does not converge absolutely. ■

(4). This is problem 3-37 of Spivak.

Solution. (a) Suppose f : (0, 1) → R is a non-negative continuous function. We
will show that

∫
(0,1)

f exists if and only if limϵ→0 0
∫ 1−ϵ

ϵ
f exists. Since f ≥ 0, the

function

g(ϵ) =

∫ 1−ϵ

ϵ

f

is increasing as ϵ→ 0. So,

lim
ϵ→0

∫ 1−ϵ

ϵ

f

exists if and only if
∫ 1−ϵ

ϵ
f is bounded above. Let {Ri}i∈N be a family of rectangles

contained in (0, 1) such that IntRi cover (0, 1) (that such a cover exists is proven
in the LectureNotes). Let {φi}i∈N beapartition of unity subordinate to this cover,
such that supp(φi) ⊂ IntRi for each i ∈ N (existence of this is mentioned in the
Lecture Notes page 48).
Let ϵ > 0. Because [ϵ, 1 − ϵ] is a compact set, only finitely many of the φi are

not 0 on [ϵ, 1− ϵ]. So, we see that∫ 1−ϵ

ϵ

f =

∫ 1−ϵ

ϵ

∑
i∈N

φi · f =
∑
i∈N

∫ 1−ϵ

ϵ

φi · f ≤
∑
i∈N

∫
(0,1)

φi · f

So, the above implies that
∫ 1−ϵ

ϵ
f is bounded above for ϵ > 0, if

∫
(0,1)

f exists.
Hence, if the integral exists, then the given limit exists.
Conversely, suppose the given limit exists. Consider φ1, ..., φn for some n > 0.

Since each function is compactly supported and there are finitelymany of them,
there is some ϵ > 0 such that all of φ1, ..., φn are zero outside of [ϵ, 1− ϵ]. In that
case, we have that

n∑
i=1

∫
(0,1)

φi · f =
n∑

i=1

∫ 1−ϵ

ϵ

φi · f =

∫ 1−ϵ

ϵ

n∑
i=1

φi · f ≤
∫ 1−ϵ

ϵ

f ≤ lim
ϵ→0

∫ 1−ϵ

ϵ

f
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and hence the partial sums of the series
∑

i∈N
∫
(0,1)

φi · f are bounded above, i.e
the given series converges. This implies that∫

(0,1)

f

exists and this completes the proof.
(b) Couldn’t do it. ■

(5). In this problem we will show that any C 1 curve γ is rectifiable and that

length(γ) =
∫ b

a

|γ′(t)|dt

Solution. Let γ : [a, b] → Rn by any C 1 curve. First, suppose P := a = x0 <
x1 < ... < xk = b is any partition on [a, b]. Then by the Fundamental Theorem of
Calculus, for any 1 ≤ i ≤ k we see that

|γ(xi)− γ(xi−1)| =
∣∣∣∣∫ xi

xi−1

γ′(t)dt

∣∣∣∣ ≤ ∫ xi

xi−1

|γ′(t)|dt

Summing over all i, we get

Λ(P, γ) ≤
∫ b

a

|γ′(t)|dt

Because P was an arbitrary partition of [a, b], we get

length(γ) ≤
∫ b

a

|γ′(t)|dt

Next we show that reverse inequality. Let ϵ > 0 be given. Because γ′ is con-
tinuous on [a, b], it is uniformly continuous and hence there is some δ > 0 such
that

|γ′(s)− γ′(t)| < ϵ

for all s, t ∈ [a, b] with |s− t| < δ. Now let
P := a = x0 < x1 < ... < xk = b

be any partition of [a, b] such that xi − xi−1 < δ for each 1 ≤ i ≤ k. If t ∈ [xi−1, xi]
then we immediately see that

|γ′(t)| ≤ |γ′(xi)|+ ϵ

So, we have that∫ xi

xi−1

|γ′(t)|dt ≤ |γ′(xi)|[xi − xi−1] + ϵ[xi − xi−1]

=

∣∣∣∣∫ xi

xi−1

γ′(xi)dt

∣∣∣∣+ ϵ[xi − xi−1]

=

∣∣∣∣∫ xi

xi−1

(γ′(t) + γ′(xi)− γ′(t))dt

∣∣∣∣+ ϵ[xi − xi−1]

≤
∣∣∣∣∫ xi

xi−1

γ′(t)dt

∣∣∣∣+ ∣∣∣∣∫ xi

xi−1

(γ′(xi)− γ′(t))dt

∣∣∣∣+ ϵ[xi − xi−1]

≤ |γ(xi)− γ(xi−1)|+ 2ϵ[xi − xi−1]
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where again in the last step we used the Fundamental Theorem of Calculus
and the inequality given by the uniform continuity of γ′. Summing over all i, we
see that ∫ b

a

|γ′(t)|dt ≤ Λ(P, γ) + 2ϵ(b− 1) ≤ length(γ) + 2ϵ(b− a)

Since ϵ is arbitrary, we get that∫ b

a

|γ′(t)|dt ≤ length(γ)

and hence our proof is complete. ■
Proposition 0.3. Let [a, b], [c, d] be any intervals in R. Let ϕ : [a, b] → [c, d] be a
continuous bijection. Then ϕmust bemonotonic. Since it is a bijection, it implies
that ϕ is strictly monotonic.

Proof. It is enough to show that ϕ is monotonic. For the sake of contradiction,
suppose it is not. So, there are a1 < a2 < a3 in [a, b] such that

ϕ(a1) < ϕ(a2) > ϕ(a3)

Let z ∈ (ϕ(a1), ϕ(a2)) ∩ (ϕ(a3), ϕ(a2)). By the intermediate value theorem, we see
that there are x1 ∈ (a1, a2) and x2 ∈ (a2, a3) such that

ϕ(x1) = ϕ(x2) = z

contradicting the fact that ϕ is a bijection. The other case when
ϕ(a1) > ϕ(a2) < ϕ(a3)

is handled similarly. This completes the proof. ■
(6). Here I will do problem 19 of Rudin’s Chapter 6.
Solution. Let γ1 be a curve in Rk defined on [a, b]; let ϕ be a continuous one-one
mapping of [c, d] onto [a, b] such that ϕ(c) = a. We define γ2(s) = γ1(ϕ(s)) for
s ∈ [c, d].
First, suppose γ1 is one-one. Then

γ2(s) = γ2(t) =⇒ γ1(ϕ(s)) = γ1(ϕ(t))

=⇒ ϕ(s) = ϕ(t)

=⇒ s = t

so that γ2 is also one-one. Next, if γ2 is one-one, then we have
γ1(s) = γ1(t) =⇒ γ1(ϕ ◦ ϕ−1(s)) = γ1(ϕ ◦ ϕ−1(t))

=⇒ γ2(ϕ
−1(s)) = γ2(ϕ

−1(t))

=⇒ ϕ−1(s) = ϕ−1(t)

=⇒ s = t

and hence γ1 is also one-one. This shows that γ1 is an arc if and only if γ2 is also
an arc.
Because ϕ is a continuous bijection, we see by Proposition 0.3 that ϕ(d) = b

because we already know that ϕ(c) = a. So this shows that γ1 is a closed curve
if and only if γ2 is a closed curve.
Finally, we show that γ1 is rectifiable if and only if γ2 is rectifiable. Because ϕ is

a continuous bijection, Proposition 0.3 implies that ϕ is strictly monotonic, and
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because ϕ(c) = a, we see that ϕ is monotonic increasing. So, ϕ gives a one-one
correspondence between partitions of [c, d] and partitions of [a, b]; if

P := c = t0 < t1 < ... < tk = d

is a partition of [c, d], then
P ′ := a = ϕ(t0) < ϕ(t1) < ... < ϕ(tk) = b

is a partition of [a, b]. Also, if P and P ′ are such corresponding partitions, then
note that

Λ(P, γ2) =
k∑

i=1

|γ2(ti)− γ1(ti−1)| =
k∑

i=1

|γ1(ϕ(ti))− γ1(ϕ(ti−1))| = Λ(P ′, γ1)

This shows that γ2 is rectifiable if and only if γ1 is rectifiable; the same also
shows that γ1 and γ2 have equal length. ■
(7). The same problem as (6)., except we assume that all parametrisations are
C 1 and we use the change of variables formula.
Solution. Let γ1, γ2 and ϕ be as in the previous problem, and suppose all these
are C 1 mappings. We have already shown that γ2 is rectifiable if and only if γ1
is rectifiable. By problem (5)., we know that

length(γ1) =
∫ b

a

|γ′1(t)|dt

length(γ2) =
∫ d

c

|γ′2(t)|dt

Now, we know that γ2 = γ1 ◦ ϕ, and hence for any t ∈ [c, d]

γ′2(t) = γ′1(ϕ(t))ϕ
′(t)

and hence
|γ′2(t)| = |γ′1(ϕ(t))||ϕ′(t)|

Moreover, aswe showed in the previous problem, we know that ϕ is an increas-
ing function, i.e ϕ′(t) ≥ 0 for every t ∈ [c, d]. So,

|γ′2(t)| = |γ′1(ϕ(t))||ϕ′(t)| = |γ′1(ϕ(t))|ϕ′(t)

for every t ∈ [c, d]. So by change of variables in one variable, we see that

length(γ2) =
∫ d

c

|γ′2(t)|dt =
∫ d

c

|γ′1(ϕ(t))|ϕ′(t)dt =

∫ b

a

|γ′1(t)|dt = length(γ1)

and hence this proves that they have the same length. ■


	(1)
	(2)
	(3)
	(4)
	(5)
	(6)
	(7)

