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These aremy notes for the courseCALCULUSwhich I took inmy third semes-
ter. The notes are mostly self-contained. The main reference book I used was
Calculus on Manifolds by M.Spivak. Throughout the document, the symbol ■
will mean QED.
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1. Recap of the Riemann Integral in Dimension 1

In this section, we will revise some statements regarding the Riemann integral
in one dimension. In subsequent sections, the goal will be to prove analogues
in higher dimensions.

Lemma 1.1. Any two partitions of an interval have a common refinement.
Date: August 2020.
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Proof. Let I = [a, b] be our interval, and let P = a = a0 < a1 < ... < an = b,
P ′ = a = a′0 < ... < a′m = b be two partitions. Consider the set Q = {a0, ..., an} ∪
{a′0, ..., a′m} and suppose Q = {a = b0, ..., br = b} be written in non-decreasing
order. Consider the parition

P ∗ = a = b0 < ... < br = b

and we claim that P ∗ is a common refinement of P and P ′. But this is easy to
see, because all points of P and P ′ are present in P ∗, proving the claim. ■
Our next lemma is regarding the upper and lower sums of a partition and its
refinements.
Lemma 1.2. Suppose P is a partition of [a, b], and let Q be a refinement. Then,

m(b− a) ≤ L(P, f) ≤ L(Q, f) ≤ U(Q, f) ≤ U(P, f) ≤ M(b− a)

where m,M are respectively the infimum and supremum of f over [a, b] (it is
assumed that f is a bounded function).
Proof. Without loss of generality, we can assume that Q has exactly one more
point than P (otherwise we can repeat the argument one by one for every new
point). So supposeQ := a = a0 < a1 < ... < an = b and letQ := a = a0 < a′1 < a1 <
... < an = b (the extra point is a′1). Now,

U(P, f) = MI1(a1 − a0) +
n∑

i=2

MIi(ai − ai−1)

where Ii = [ai−1, ai] And similarly we have

U(Q, f) = M[a0,a′1]
(a′1 − a0) +M[a′1,a1]

(a1 − a′1) +
n∑

i=2

MIi(ai − ai−1)

And hence we have
U(P, f)− U(Q, f) = MI1(a1 − a0)−M[a0,a′1]

(a′1 − a0)−M[a′1,a1]
(a1 − a′1) ≥ 0

and hence we are done. The proof for lower sums is similar. ■
There is a Cauchy-Criterion for Riemann integrability, which is the following.
Theorem 1.3. f is Riemann-integrable over [a, b] if and only if for every ϵ > 0,
there is a partition P of [a, b] for which

U(P, f)− L(P, f) < ϵ

Another important theoremwehave is the integrability of continuous functions.
Theorem 1.4. If f is continuous on [a, b], then f is integrable on [a, b] as well.
The proof uses the important uniform continuity of f on [a, b], which we state as
a theorem.
Theorem 1.5. Let X,Y be metric spaces where X is compact, and suppose f :
X → Y be continuous. Then, f is uniformly continuous.
Proposition 1.6. Let I be a closed and bounded interval. If f is continuous at
all except finitely many points of I , then f is integrable on I .
Proposition 1.7. Suppose f is Riemann-Integrable on [a, b] such that m ≤ f ≤
M . Let ϕ : [m,M ] → R be a continuous map. Then, ϕ ◦ f : [a, b] → R is also
integrable.
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2. Integration in Higher Dimensions

We first begin with the usual notion of integration over rectangles in Rn. In the
subsequent sections, integration over a larger class of sets will be considered.

Definition 2.1. Let R = [a1, b1]× ...× [an, bn] be a rectangle in Rn. A partition of R
is a collection (P1, P2, ..., Pn) of partitions where Pi is a partition of the interval
[ai, bi] in R. Suppose

P1 := a1 = t10 < t11 < ... < t1m1 = b1

P2 := a2 = t20 < t21 < ... < t2m2 = b2

...

Pn := an = tn0 < tn1 < ... < tnmn = bn

be the partitions. Then, any rectangle of the form
[t1(j1−1),t1j1

]× [t2(j2−1),t2j2
]× ...× [tn(jn−1),tnjn

]

is called a subrectangle of R. Observe that the total number of subrectangles
in this partition will bem1...mn.

Definition 2.2. Let R be a rectangle in Rn and let P = (P1, ..., Pn) be a partition
of R as given in the above definition. Let f : R → R be a bounded function. For
every sub-rectangle S ofR, let v(S) denote its n-dimensional volume, and define

mS(f) := inf{f(x) : x ∈ S}
MS(f) := sup{f(x) : x ∈ S}

Next, we define

U(P, f) =
∑
S

MS(f)v(S)

L(P, f) =
∑
S

mS(f)v(S)

which are the usual upper and lower sums of f with respect to P .

It is clear that L(P, f) ≤ U(P, f). Some properties of upper and lower sums are
given below, and the proofs are very similar to that of the one dimensional case.

Lemma 2.1. Suppose the partition P ′ is a refinement of the partition P . Then,
L(P, f) ≤ L(P ′, f) and U(P ′, f) ≤ U(P, f)

Corollary 2.1.1. If P and P ′ are any two partitions of R, then
L(P ′, f) ≤ U(P, f)

Definition 2.3. For a bounded function f : R → R, we define∫
R

f = inf
P

U(P, f)∫
R

f = sup
P

L(P, f)
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and f is said to be integrable if the above two numbers are equal, and this is
denoted by ∫

R

f =

∫
R

f(x1, x2, ..., xn)dx1...dxn

As usual, the Cauchy-criterion for integrability still holds and is very easy to
prove. Here are two examples.

Example 2.1. Let f : R → R be a constant function, i.e f(x) = c for all x ∈ R. It
is easy to see that f is integrable over R, and that∫

R

f = cv(R)

Example 2.2. Let f : [0, 1]× [0, 1] → R be defined by
f(x, y) = χQ(x)

where χQ is the characteristic functions of the rationals. It is easy to see that
f is not integrable over the given rectangle.

2.1. Measure and Content. Note that rectangles are not the only interesting
sets inRn. There are other connected sets as well. The situation inR is not that
difficult, because the only connected subsets of R are intervals.

Definition2.4. A subsetA ofRn hasmeasure 0 if for every ϵ > 0, there is a cover⋃
i∈NRi of A where each Ri is a closed (or open) rectangle in Rn such that

∞∑
i=1

v(Ri) < ϵ

Here, v(Ri) is the n-dimensional volume of the closed (or open rectangle).

Remark 2.1.1. The fact that either open or closed rectangles can be used is
powerful and is just a fact about the structure of rectangles in Rn.

Definition2.5. A subsetA ofRn has content 0 if for every ϵ > 0, there are finitely
many closed (or open) rectangles R1, ..., Rk such that A ⊂ R1 ∪ ... ∪Rk and

k∑
i=1

v(Ri) < ϵ

It is clear that a set with measure 0 also has content 0.

Proposition 2.2. Any countable subset of Rn has measure zero.

Proof. Enumerate the points as {a1, ..., an, ...}. Take an open rectangle around
an of volume less than ϵ/2n. The claim follows. ■

Proposition2.3. IfA =
⋃∞

i=1Ai and eachAi hasmeasure 0, thenA hasmeasure
0.

Proof. SinceAi has measure 0 for each i, there are closed (or open rectangles)
Ui,k such that

Ai ⊂
∞⋃
k=1

Ui,k
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and
∞∑
k=1

v(Ui,k) < ϵ/2i

The collection of all rectangles {Ui,k : i, k ∈ N} is countable, and∑
i,k∈N

v(Ui,k) <
∞∑
i=1

ϵ/2i

and hence A has measure 0. ■
Proposition 2.4. If A is compact and has measure 0, then A has content 0.
Proof. This easily follows from the fact that any open cover of a compact set
has a finite subcover, which is just the definition of compactness. ■
2.2. A characterisation of integrable functions. In this subsection, we will
determine exactly which functions are integrable. We begin with some auxil-
iary results on oscillations.
Definition 2.6. Let A be a metric space, and let x0 ∈ A be a limit point of A. Let
f : A → R be a bounded function. Let B(x0, δ) be ball centered at x0. Define

M(f, x0, δ) := sup
x∈B(x0,δ)

f(x)

m(f, x0, δ) := inf
x∈B(x0,δ)

f(x)

The oscillation of f at x0 is defined as
o(f, x0) = lim

δ→0
M(f, x0, δ)−m(f, x0, δ)

The oscillation measures to what extent a function is continuous at a given
point. Note that the limit by which oscillations are defined always exist (as the
function in consideration is bounded).
Proposition 2.5. Let A, x0 and f be as above. Then f is continuous at x0 if and
only if o(f, x0) = 0.
Proof. Clear by the definition of continuity. ■
Proposition 2.6. Let A ⊂ Rn be closed, and let f : A → R be any bounded
function. For any ϵ > 0, the set

Bϵ = {x ∈ A|o(f, x) ≥ ϵ}
is closed.
Proof. Let y be a limit point ofB, and sinceA is closed, y ∈ A (so that f(y) is well
defined). Let δ > 0 be given, and there is some x ∈ Bϵ such that x ∈ B(y, δ) ∩ A.
Moreover, there is some δ1 such that B(x, δ1) ∩ A ⊂ B(y, δ) ∩ A. Now, because
o(f, x) ≥ ϵ, it follows that

M(f, x, δ1)−m(f, x, δ1) ≥ ϵ

and hence this shows that
M(f, y, δ)−m(f, y, δ) ≥ ϵ

Taking limits as δ → 0, we get that o(f, y) ≥ ϵ, and hence y ∈ Bϵ. The proof is
complete. ■



6 SIDDHANT CHAUDHARY

Lemma 2.7. Let R ⊂ Rn be a closed rectangle, and let f : R → R be a bounded
function such that o(f, x) ≤ ϵ for every x ∈ R. Then, there is some partition P of
R such that

U(P, f)− L(P, f) < ϵv(R)

Proof. To be completed. ■
Theorem2.8. LetR ⊂ Rn be a closed rectangle, and let f : R → R be a bounded
function. Let

B = {x ∈ R|f is not continuous at x}
Then f is integrable on R if and only if B has measure 0. In other words, f is
integrable if and only if its set of discontinuities has measure 0.
Proof. To be completed. ■
2.3. Extension of integrability to subsets of Rectangles. Having studied inte-
gration on rectangles, we can now define the notion of integration to subsets
of rectangles. We do this using characteristic functions of sets.
Definition 2.7. Let R be a closed rectangle, and let f : R → R be a bounded
function. Let C ⊂ R. Define ∫

C

f =

∫
R

f · χC

given that f · χC is integrable on R.
So, integrals on a subset C will certainly be defined if both f and χC are inte-
grable on R (as product of integrable functions is integrable). We now find a
criteria to see when χC is integrable. Before that, we verify a quick property.
Proposition2.9. LetC be a set such that there is some closed rectangleR ⊂ Rn

such that χC is integrable onR. Then, for any closed rectangleR′ containing C ,
χC is integrable on R′.
Proof. Suppose C is a set such that R is a closed rectangle containing C such
that χC is integrable on R. Let R′ be any other closed rectangle containing C .
Consider R ∩ R′, which is again a closed rectangle containing C . Let P be a
partition of R such that R ∩R′ is a subrectangle of the partition. Then we know
that χC is integrable on this subrectangle, and that∫

R

χC =
∑

S∈P,S ̸=R∩R′

∫
S

χC +

∫
R∩R′

χC =

∫
R∩R′

χC

Finally, take any partition S ′ of R′ that contains R ∩ R′ as a subrectangle. It
follows that χC is integrable on R′. ■
Theorem 2.10. Let C ⊂ R ⊂ Rn where R is a closed rectangle. Then, χC is
integrable on R if and only if ∂C has measure 0 (and hence content 0).
Proof. Since C is bounded, C is also bounded, and take a closed rectangleR0 ⊂
Rn such that C ⊂ Int(R0). Now, we show that the set of points of discontinuities
of χC in R0 is exactly ∂C . Any point in the interior of C must be a point where χC

is continuous, and similarly for any point in (Rn − C) ∩R0. Moreover, any point
on ∂C is a point of discontinuity, because any neighborhood intersects with C
and (Rn−C)∩R0. So, χC is integrable onR0 if and only if ∂C hasmeasure 0 (and
hence content 0, since ∂C is compact). By Proposition 2.9, it follows that χC is
integrable on R if and only if ∂C has measure (or content) 0. ■
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Definition 2.8. Let C be a bounded subset of Rn such that ∂C has measure 0.
Then C is said to be Jordan Measurable. The integral

∫
C
1 is said to be the n-

dimensional volume of C .

Now, we will try to extend the notion of integrability even further. Above, we
started with a function on some rectangle, and we defined the integral on a
subset of the rectangle. We now start with a function on some subset of Rn,
which is not necessarily a rectangle, but we will assume it to be compact.

Definition 2.9. Any compact subset of S of Rn with the property that χS is inte-
grable on R for some rectangle R containing S is said to be acceptable. (This is
not standard terminology).

Remark 2.10.1. By Proposition 2.9, we know that if S is acceptable, then χS

is integrable on any rectangle containing S. By Theorem 2.10, we immediately
see that a compact set S is acceptable if and only if ∂S hasmeasure (or content)
0.

Definition 2.10. Let S be an acceptable set, and let R be a closed rectangle
containing S. Let f : S → R be bounded function. Define

f̃(x) =

{
f(x) , if x ∈ S

0 , if x /∈ S

and then define ∫
S

f =

∫
R

f̃

Remark 2.10.2. This definition is different from Definition 2.7, because here
we start with a function on a set, and extend it to the rectangle. However, as
we shall see, both definitions co-incide for acceptable sets.

Theorem 2.11 (Tietze Extension Theorem). Let X be a metric space, and let A
be a closed subset of X . Suppose f : A → R is a continuous function. Then, f
can be extended toX , i.e there is some continuous g : X → R such that g|A = f .

Theorem2.12. Let S be any acceptable set. Given any closed rectangleR such
thatS ⊂ R, the restrictionof aRiemann integrable functiononR toS is Riemann-
integrable. Specifically, if g is integrable on R, then∫

R

g(x)χS(x) =

∫
S

g|S

Moreover, continuous functions on S are integrable (where S is interpretted
as a metric space in itself).

Proof. The first two statements follow by the equation

g|S = g · χS

and the fact that the product of integrable functions is integrable. For the sec-
ond statment, observe that by the Tietze Extension Theorem 2.11, any contin-
uous map from S to R can be extended to one from R to R, and we know that
continuous functions are integrable. ■
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3. Iterated Integrals and Fubini’s Theorem

First, some intuition. Suppose f : R = [a, b]× [c, d] → R is a continuous function.
Then, ∫

R

f

is just the volume under the surface described by f . Now, if x ∈ [a, b], we get a
function fx : [c, d] → R defined by

fx(y) = f(x, y)

It is then reasonable to assume that the volume under the surface is∫ b

a

(∫ d

c

fx(y)dy

)
dx

Moreover, if we switched the roles of the variables x, y, it is reasonable that the
answer will be the same. This actually turns out to be true, and we will prove
a general version of this process, which will lead to the famous theorem given
below.

Theorem 3.1 (Fubini’s Theorem). Let A ⊂ Rn and B ⊂ Rm be two closed rect-
angles, and let

f : A×B → R

be an integrable function on the product rectangle A × B in Rn+m. For x ∈ A,
define

gx(y) = f(x, y)

so that gx : B → R. Define

L(x) =
∫

B

gx

and

U(x) =
∫

B

gx

i.e L(x) and U(x) are the lower and upper integrals of gx over B (note that gx
need not be integrable). Then, L and U are integrable over A, and∫

A

L =

∫
A

U =

∫
A×B

f

Proof. Let PA be a partition of A, PB be a partition of B, so that PA × PB is a
partition of A×B. Any subrectangle S in PA × PB is of the form

SA × SB

where SA is a subrectangle in PA and SB is a subrectangle in PB . First, the
inequality

L(x) ≤ U(x)

is clear for any x ∈ A.
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A typical lower sum for approximating
∫
A×B

f will look like∑
SA∈PA,SB∈PB

mSA×SB
(f)vol(SA × SB) =

∑
SA∈PA,SB∈PB

mSA×SB
(f)vol(SA)vol(SB)

=
∑

SA∈PA

vol(SA)
∑

SB∈PB

mSA×SB
(f)vol(SB)

≤
∑

SA∈PA

vol(SA)
∑

SB∈PB

mSB
(gx)vol(SB)

≤
∑

SA∈PA

vol(SA)L(x)

≤ L(L, PA)

where above x was any point in SA. Similarly, we can get the inequality∑
SA∈PA,SB∈PB

MSA×SB
(f)vol(SA × SB) ≥ U(U , PA)

Combining these inequalities, we see that
L(f, PA × PB) ≤ L(L, PA) ≤ U(L, PA) ≤ U(U , PA) ≤ U(f, PA × PB)

and hence we see that ∫
A

L =

∫
A×B

f

Now, it is easy to see that
L(L, PA) ≤ L(U , PA)

and hence ∫
A

L =

∫
A

U =

∫
A×B

f

which completes the proof. ■
Remark 3.1.1. Note that, in this proof, we didn’t use any new ideas, just com-
pared Riemann sums with each other. This is one of those powerful theorems
which have natural proofs.
This theorem has a bunch of important consequences, which are given below.
Corollary 3.1.1. Let f : A × B → R be Riemann Integrable, where A ⊂ Rn and
B ⊂ Rm are rectangles. Then,∫

A×B

f =

∫
B

L′ =

∫
B

U ′

where L′ and U ′ are defined as the lower and upper integrals of gy : A → R.
Proof. This is analogous to the proof of Fubini’s Theorem 3.1, where instead of
freezing the variable x, we freeze the variable y. ■
Corollary 3.1.2. Suppose f is integrable on A × B, and in addition suppose
each function gx is integrable on A and gy is integrable on B for all x, y ∈ A,B
respectively. Then,∫

A×B

f =

∫
A

∫
B

f(x, y)dydx =

∫
B

∫
A

f(x, y)dxdy

i.e the two iterated integrals are equal. In particular, this theorem applies
when f is continuous.
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Example 3.1. (This is problem 3-26 of Spivak’s book). As an exercise, we will
show that theareaunder thegraphof an integrable function is theone-dimensional
integral of the function. Note that now we do have a definition of area to work
with.
Let f : [a, b] → R be continuous and non-negative and let

Af := {(x, y) | x ∈ [a, b], 0 ≤ y ≤ f(x)}

We show that Af is a Jordan Measurable subset of R2, and

area(Af ) =

∫ b

a

f(x)dx

and this is the usual interpretation of the integral as the area under the curve.
It is clear that Af is a closed and bounded set, so that it is compact. Moreover,
we immediately see that the boundary of Af is

∂Af = {a} × [0, f(a)] ∪ {b} × [0, f(b)] ∪ [a, b]× {0} ∪Gf

where Gf is the graph of f . The first three sets in this union are line segments,
so that they have measure (and content) zero. It is enough to show that Gf has
measure (and content) zero. But this is clear, because f is Riemann Integrable,
and we can find a partition P of [a, b] such that

U(P, f)− L(P, f) < ϵ

where ϵ > 0 is given and hence we can cover Gf by finitely many rectangles
of arbitrarily small area. Thus, Af is a Jordan Measurable set (and infact, by
our definition, an acceptable set). PutM = supx∈[a,b] f(x). So it follows that the
rectangle [a, b]× [0,M ] contains the set Af . So by Fubini’s Theorem we see that

area(Af ) =

∫
[a,b]×[0,M ]

χA =

∫ b

a

U(x)dx

where U : [a, b] → R is defined as

U(x) =
∫ M

0

χA(x, y)dy =

∫ f(x)

0

1dy = f(x)

and so we see that

area(Af ) =

∫ b

a

f(x)dx

which completes the proof.

4. Differential Calculus

In this section, we will revise some basic notions of differentiation in higher
dimensions. In most of the places, I won’t be including a proof.

Definition 4.1. Let f : U → Rm be a function, where U ⊂ Rn is open. Let p ∈ U ,
and let u ∈ Rn be any vector. Then, the directional derivative of f at p along u is
defined as

Duf(p) = lim
t→0

f(p+ tu)− f(p)

t
whenever the above limit exists.
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From differential calculus in higher dimensions, we know the following.

Proposition 4.1. Suppose f : U → Rm is as above, and suppose f is differen-
tiable at p. Then, Duf(p) exists for all u ∈ Rn, and

Duf(p) = Df(p)(u)

where Df(p) is the derivative of f at p. In particular, ifm = 1, then
Duf(p) = 〈∇f, u〉

where 〈., .〉 is the standard dot product in Rn.

A characterisation of C 1 maps is relatively straightforward.

Theorem 4.2. Let f : U → Rm be a map, where U ⊂ Rn is open. Then, f is C 1

on U if and only if each partial derivative Difj exists and is continuous on U .
Usually, the notation is

Difj =
∂fj
∂xi

4.1. A special case of the Chain Rule. In this short section, we will discuss an
important case of the chain rule.
Let f : U → R be a C 1 map, where U ⊂ R2 is an open set. We use the notation
x1, x2 for variables instead of x, y. Let γ1, γ2 : V → R be C 1 maps, where V is also
an open set. These maps will be used to parametrise the variables x1, x2, as we
will see. Observe that the map γ : V → U given by

γ(t1, t2) = (γ1(t1, t2), γ2(t1, t2))

is a C 1 map as well. So, in simpler words, if a point q in V has coordinates
(t1, t2), then the point γ(q) in U will have coordinates (γ1(t1, t2), γ2(t1, t2)). Finally,
let g : V → R be the composite map

g = f ◦ γ
.
Our goal is to compute the partial derivatives of g with respect to those of f .
Observe that, by the chain rule,

Dg = Df ◦Dγ

at any point in V . In other words, for any point q ∈ V , put p = γ(q), we have

[
∂g

∂t1
(q)

∂g

∂t2
(q)

]
=

[
∂f

∂x1

(p)
∂f

∂x2

(p)

]∂γ1∂t1
(q)

∂γ1
∂t2

(q)

∂γ2
∂t1

(q)
∂γ2
∂t2

(q)


and this immediately gives us the following two equations.

∂g

∂t1
(q) =

∂f

∂x1

(p)
∂γ1
∂t1

(q) +
∂f

∂x2

(p)
∂γ2
∂t1

(q)

∂g

∂t2
(q) =

∂f

∂x1

(p)
∂γ1
∂t2

(q) +
∂f

∂x2

(p)
∂γ2
∂t2

(q)

Example 4.1. We now consider an example of the above situation. Let f : R2 →
R be a C 1 function. Let γ : V → U be a change of coordinates map, i.e

γ(q) = Aqt
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for q,∈ V , where
A =

[
a11 a21
a12 a22

]
is an invertible matrix. In this case, we have

γ1(t1, t2) = a11t1 + a21t2

γ2(t1, t2) = a12t1 + a22t2

From the above equations, we get for any q ∈ V

∂g

∂t1
(q) = a11

∂f

∂x1

(p) + a21
∂f

∂x2

(p)

∂g

∂t2
(q) = a12

∂f

∂x1

(p) + a22
∂f

∂x2

(p)

where again p = γ(q).
4.2. Polar Coordinates. Let (x, y) ∈ R2 such that (x, y) 6= (0, 0). We know that

(x, y) = (r cos θ, r sin θ)
for some r > 0, and some θ ∈ R. These coordinates are called the polar coor-
dinates of (x, y). Moreover, r is unique, while θ is unique modulo 2π.
So, consider the following open sets.

V := {(r, θ) ∈ R2 : r > 0}
U := {(x, y) ∈ R2 : (x, y) 6= (0, 0)}

Let γ : V → U be the following map.
γ(r, θ) = (r cos θ, r sin θ)

Observe that γ is surjective, not injective, and is a C 1 map. Moreover, at any
point q = (r, θ) ∈ V , we have the following.

Dγ(q) =

[
cos θ −r sin θ
sin θ r cos θ

]
So we have that det(Dγ(q)) = r > 0, so that Dγ(q) is invertible. Applying the
inverse function theorem, we see that there is an open neighborhood V1 of q
contained in V , and an open neighborhood U1 of γ(q) contained in U such that
γ|V1 is injective, and γ(V1) = U1, and that γ−1 : U1 → V1 is also C 1. Moreover, if
q = (r, θ), then we know that

Dγ−1(γ(q)) = (Dγ(q))−1

so in matrix form, we have

Dγ−1(r cos θ, r sin θ) =
[
cos θ −r sin θ
sin θ r cos θ

]−1

=

[
cos θ − sin θ
sin θ
r

cos θ
r

]
where the inverse is calculated using Cramer’s rule.
Example4.2. Asanexampleof theaboveprocedure,wecancompute the Lapla-
cian of a map. So, let f : U → R be a C 2 map for some open subset U ⊂ R2. The
Laplacian of f at a point is defined as

∆f = −∂2f

∂x2
− ∂2f

∂y2
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Fix p ∈ U , and let q = γ−1(p), where say θ is chosen modulo 2π. As above, the
inverse function theorem gives us an open neighborhood V of q such that γ|V
is injective and γ(V ) is an open subset of R2 containing p. So, without loss of
generality, let U = γ(V ). Observe that on U , we have

f = g ◦ γ−1

and the chain rule immediately gives us the following two equations.
∂f

∂x
(p) =

∂g

∂r
(q) cos θ − ∂g

∂θ
(q)

sin θ
r

∂f

∂y
(p) =

∂g

∂r
(q) sin θ + ∂g

∂θ
(q)

cos θ
r

Using these equations, the ∆f can be computed in polar coordinates, and one
sees that

∆f(p) = −∂2g

∂r2
(q)− 1

r

∂g

∂r
(q)− 1

r2
∂2g

∂θ2
(q)

5. Partitions of Unity

In this section, we will study a very important tool which is used throughout
analysis. Let us begin by proving a theorem.

Theorem 5.1. Let A ⊂ Rn be any set, and let O be an open cover of A. Then,
there is a familyΦ of C ∞ functions φ defined in an open set containingA having
the following properties.

(1) φ ≥ 0 for each φ ∈ Φ.
(2) For each x ∈ A, there is an open neighborhood V of x such that all but

finitely many φ ∈ Φ are 0 on V .
(3) For each x ∈ A, the following sum holds:∑

φ∈Φ

φ(x) = 1

and note that by (2), this sum is finite.
(4) For each φ ∈ Φ, there is an open set U ∈ O such that the support of φ is

a compact subset of U .

Remark 5.1.1. This version of the theorem is also available in Spivak’s book,
but with an error. In (4), Spivak says that the support of φ is closed, but instead
it should say compact. Similarly, in the third line of page 64, in the linewhich is
1 onA and 0 outside of some closed set in U, the word closedmust be replaced
by compact. See this link and related threads for more information.

Definition 5.1. If the family Φ satisfies (1)-(3), then it is called a C ∞ partition of
unity for A. If Φ also satisfies (4), then it is said to be subordinate to the cover
O.

Proof of Theorem 5.1. To be completed (For the first time, it is fine to skip this
proof, because theproof is not important for ourpurposeof applying these.) ■

Corollary 5.1.1. Let A, O, and Φ be as above, and let C ⊂ A be a compact set.
Then, all but finitely many φ ∈ Φ are zero on C .

https://math.stackexchange.com/questions/173237/is-this-definition-missing-some-assumptions?noredirect=1&lq=1


14 SIDDHANT CHAUDHARY

Proof. Let x ∈ C , and hence there is some open set Vx such that all but finitely
many φ ∈ Φ are zero on Vx. Then, the cover⋃

x∈C

Vx

is an open cover of C , and hence there is some finite subcover

C ⊂ Vx1 ∪ ... ∪ Vxn

It is then clear that all but finitely many φ ∈ Φ are zero on C . ■

Corollary 5.1.2. LetK ⊂ Rn be a compact set, and letO be an open cover ofK .
Then, there exist finitely many C ∞ functions φ1, ..., φk such that φi ≥ 0 for each
i, each φi has compact support in some Ui ∈ O and

∑
i φi(x) = 1 for each x ∈ K .

Definition 5.2. Let A ⊂ Rn be an open set, and letO be an open cover of A. O is
said to be an admissible cover of A if each U ∈ O is contained in A.

6. Change Of Variables

In this section, we will derive the change of variables formula for integrals
in higher dimensions. First, we start with some preliminary concepts (a lot of
these ideas are taken from Baby Rudin).

6.1. Primitive Mappings. Informally, a primitive mapping is one which leaves
all but one variable fixed. We now describe these more formally.

Definition 6.1. A mapping G : U → Rn for some open subset U ⊂ Rn is said to
be a primitive mapping if G can be written as

G(x1, ..., xm, ..., xn) = (x1, ..., g(x1, ..., xn), ..., xn)

for some function g : U → R, i.ewe are changing themth coordinate and keeping
other coordinates fixed.

Observe that if g is differentiable at a point a ∈ U , it is clear that G is also dif-
ferentiable at that point. Moreover, the Jacobian matrix of G at the point a will
look something like below.

(JG)(a) =



1 0 0 .... 0
0 1 0 .... 0
0 0 1 .... 0
... ... ... .... ...

D1g(a) D2g(a) D3g(a) ... Dng(a)
... ... ... .... ...
0 0 0 ... 1


i.e (JG)(a) is the identity matrix, but the mth row is ∇g(a), and hence it is clear
that

det(JG)(a) = Dmg(a)

so that G′(a) is invertible if and only if Dmg(a) 6= 0.

Definition 6.2. A linear map B on Rn is said to be a flip if it interchanges two
coordinates (and these are also called transpositions as permutations).
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Aswe see in the following theorem, anyC 1mapping locally bewritten as a prod-
uct of primitive maps and flips.

Theorem 6.1. Let F : U → Rn be a C 1 map for some open set U ⊂ Rn and let
t0 ∈ U with F ′(t0) invertible. There exists a permutation B of the coordinates
and (for i = 1, .., n) primitive C 1 maps Gi : Ui → Rn (where Ui is an open neigh-
borhood of the origin) such that

Gi(0) = 0, Gi(Ui) ⊂ Ui−1

such that
(1) Un + t0 ⊂ U and
(2) if t ∈ Un, then

F (t+ t0) = B ◦G1 ◦ ... ◦Gn(t) + F (t0)

(3) G′
i(0) is invertible.

and so in simpler words, we have written F locally around t0 as a product of a
permutation and primitive mappings. Note that B can be written as a product
of flips.

Proof. To be completed. For now, maybe it is fine to understand the theorem
and skip the proof. This is theorem 10.7 in Baby Rudin. ■

6.2. TheChange of Variables Formula. In this section, we will state and prove
a version of the change of variables formula in higher dimensional integration.
First, let us look at a version of the change of variables formula in one dimen-
sion.

Proposition 6.2. Let γ : (c, d) → (a, b) be a C 1 bijection with C 1 inverse. Let
I = [a0, b0] be a closed interval contained in (a, b), and let f be a continuous
function on (a, b). Then,∫

I

f(x)dx =

∫
γ−1(I)

f(γ(t))|γ′(t)|dt

Remark 6.2.1. We note that this is not the most general situation in which a
change of variables can be done in one variable. But the point here is to gener-
alise to higher dimensions, and so we only deal with this special case.

Remark 6.2.2. The absolute value around γ′(t) has the explanation that γ can
either be increasing or decreasing, and if we don’t put the absolute value sign,
the equation won’t be true in the case when γ is decreasing. So handle both
cases, we include the absolute value (Try some examples yourself).

Proof. Asmentioned in the above remarks, wewill handle two cases, onewhere
γ is increasing and the other where it is decreasing. A point to be noted is that
because γ has a C 1 inverse, we get by the chain rule that γ′(t) cannot be zero
for any t ∈ (c, d).

• First, suppose γ is increasing, and since it is a bijection, it is strictly in-
creasing. Also, γ′(t) > 0 for every t ∈ (c, d), and hence

|γ′(t)| = γ(t)
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for every t ∈ (c, d). So suppose γ[c0, d0] = [a0, b0] where [c0, d0] ⊂ (c, d).
Define the function F : [a0, b0] → R by

F (x) =

∫ x

a0

f(t)dt

and it is clear that F ′(x) = f(x) for each x ∈ [a0, b0]. By the Fundamental
Theorem of Calculus, we know that∫ b0

a0

f(t)dt = F (b0)− F (a0) = F (γ(d0))− F (γ(c0))

Also, consider the function F ◦ γ on [c0, d0]. We know that

(F ◦ γ)′(t) = f(γ(t))γ′(t) = f(γ(t))|γ′(t)|

for any t ∈ [c0, d0]. Again by the Fundamental Theorem of Calculus, we
see that ∫ d0

c0

f(γ(t))|γ′(t)|dt = F (γ(d0))− F (γ(c0))

and so we have ∫
I

f(t)dt =

∫
γ−1(I)

f(γ(t))|γ′(t)|dt

• In the second case, γ is decreasing. Exactly the same proof works as
above, but with sign changes. So this completes the proof of this case
as well.

■

Remark 6.2.3. We can remedy the above situation by giving an orientation to
intervals in R. We will see this viewpoint when we do integration on forms.

Definition 6.3. Let f : Rn → Rn be a continuous function with compact support.
Let R ⊂ Rn be any rectangle containing the support of f . Then, define∫

Rn

f =

∫
R

f

and we know from Proposition 2.9 that the choice of the rectangle R is imma-
terial.

Theorem 6.3. Suppose γ is a 1 − 1 C 1 mapping of an open set V ⊂ Rn into Rn

such that det(Jγ)(x) 6= 0 for all x ∈ V . Let f be a continuousmapping onRn with
compact support contained in γ(V ). Then∫

Rn

f =

∫
Rn

f(γ(x))|det(Jγ)(x)|dx(†)

Before proving this theorem, we mention a couple of important observations.

Remark6.3.1. Since γ is a 1−1C 1mappingwith invertibles derivatives at every
point, it can be shown that γ : V → γ(V ) = U is actually a C 1 diffeomorphism
(the proof is simple and uses the inverse function theorem. Try it). In particular,
γ(V ) = U is an open set, and suppf ⊆ U .
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Remark 6.3.2. From the above remark, γ is a diffeomorphism. Define the func-
tion h : Rn → Rn

h(x) =

{
0 , x ∈ V c

f(γ(x))|det(Jγ)(x)| , x ∈ V

We see that h is a continuous function, and in particular we have
supp(h) = γ−1(supp(f)) ⊂ V

because γ : V → U is a diffeomorphism (andweareusing the fact that |det(Jγ)(x)| 6=
0 at any point x ∈ V ). It is then clear that the integrand in the RHS of equation
(†) has compact support, and hence the integral is well-defined.

We will now try to prove Theorem 6.3 in a sequence of steps.

Proposition 6.4 (Step 1). If the statement of Theorem 6.3 holds for one-one
C 1 maps γ : V → U and γ1 : V1 → U , then it holds for the one-one C 1 map
γ ◦ γ1 : V1 → U . Here, all the sets V1, V, U are open subsets of Rn.

Proof. Let f be a continuous function with compact support such that suppf ⊂
U . Applying Theorem 6.3 to the map γ, we see that∫

Rn

f =

∫
Rn

f(γ(x))|det(Jγ)(x)|dx

where by Remark 6.3.2, the function
f(γ(x))|det(Jγ)(x)|

on V is a continuous functionwith compact support contained in V . So, applying
Theorem 6.3 again with this function and the map γ1, we see that∫

Rn

f(γ(x))|det(Jγ)(x)|dx =

∫
Rn

f(γ(γ1(x)))|det(J(γ)(γ1(x)))||det(Jγ1)(x)|dx

=

∫
Rn

f(γ ◦ γ1(x))|det(Jγ ◦ γ1)(x)|dx

where we used the chain rule in the last step. This proves the claim. ■
Proposition6.5 (Step2). Theorem 6.3 holdswhen γ is a permutation of coordi-
nates (in particular, γ : V → U is the restriction of a permutation of coordinates
to V , which we know is an invertible linear map).

Proof. First, observe that if γ is a permutation of coordinates, thenwe canwrite
it as a product of flips (or in group theoretic terms, every permutation is a prod-
uct of transpositions). So, by the help of Proposition 6.4, it is enough to prove
the case when γ is a flip. Without loss of generality, suppose

γ(x1, x2, ..., xn) = (x2, x1, ..., xn)

so that γ : Rn → Rn is an isomorphism, and we assume without loss of general-
ity that V = U = Rn. Moreover, Jγ(x) at any point in Rn is a permutation matrix,
and it’s determinant is ±1, so that

|det Jγ(x)| = 1

Now, letRbeany rectangle inRn containing the support of f , and letR = [a1, b1]×
...× [an, bn]. We have

R′ = γ−1(R) = [a2, b2]× [a1, b1]× [a3, b3]...× [an, bn]
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Clearly, R′ contains the support of f ◦ γ. Put

R′′ = [a3, b3]× ...× [an, bn]∫
Rn

f(x1, x2, x3, ..., xn)dx1dx2...dxn =

∫
R

f(x1, x2, x3, ..., xn)dx1...dxn

=

∫
[a1,b1]×[a2,b2]

(∫
R′′

f(x1, x2, x3, ..., xn)dx3...dxn

)
dx1dx2

=

∫
[a2,b2]

(∫
[a1,b1]

(∫
R′′

f(x1, x2, x3, ..., xn)dx3..dxn

)
dx1

)
dx2

=

∫
[a2,b2]

(∫
[a1,b1]×R′′

f(x1, x2, x3, ..., xn)dx1dx3...dxn

)
dx2

=

∫
[a2,b2]

(∫
[a1,b1]×R′′

f(γ(x2, x1, x3, ..., xn))dx1dx3...dxn

)
dx2

=

∫
R′
f(γ(x2, x1, ..., xn))dx2dx1...dxn

=

∫
Rn

f(γ(x))|Jγ(x)|dx

and this completes the proof. ■

Proposition 6.6 (Step 3). Theorem 6.3 holds if γ is a one-one C 1 primitive map-
ping.

Proof. This statement is just the one variable change of variables formula in
disguise, as we will see. Suppose γ is a primitive one-one C 1 map, and without
loss of generality suppose

γ(x1, ..., xn) = (x1, ..., xn−1, g(x1, ..., xn))

where g : V → R is a C 1 map. Since γ is one-one on V , it follows that g is also
one-one on V . By our hypothesis, the support of f is compact and contained in
U = γ(V ). By Remark 6.3.2, we see that the function (f ◦ γ)|det Jγ| has com-
pact support contained in V , and hence there is some rectangle R ⊂ V which
contains the support of this function. Also, by the discussion in the section on
primitive maps, we see that

|det Jγ(x)| =
∣∣∣∣ ∂g∂xn

(x)

∣∣∣∣
To be completed. There is a nice trick to complete this argument ■

Proposition6.7 (Step3.5). Theorem6.3holds if γ is a translation (in particular,
γ : V → U is the restriction of a translation, and every translation is one-one
and C ∞).

Proof. Let γ be a translation, i.e

γ(x) = x+ a

for some a ∈ Rn. Clearly, γ : V → U is a one-one C 1 (infact C ∞) mapping with
invertible derivative at every point of V (the derivative being the identity map at
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every point of V ). The claim is that γ can be written as a product of n primitive
mappings. In terms of coordinates, we have

γ(x1, ..., xn) = (x1 + a1, ..., xn + an)

For 1 ≤ i ≤ n, let γi : Rn → Rn be the map

γi(x1, ..., xn) = (x1, ..., xi + ai, ..., xn)

and it is clear that γi is a one-one C 1 primitive map for each 1 ≤ i ≤ n with
invertible derivative. Also, we have

γ = γ1 ◦ γ2 ◦ ... ◦ γn

(and infact, the order of the product above does not matter). By Step 3 6.6 and
Step 1 6.4, the claim follows. ■

Proposition 6.8 (Step 4). Let f , γ, V and U be as in the statement of Theorem
6.3. Let {Uα} be an open cover of U where Uα ⊆ U for each α such that the
statement of the theorem holds for any continuous function fα with compact
support contained in Uα. Then, the statement of the theorem holds for f as
well.

Proof. We know that supp(f) is compact and is contained in U , and hence {Uα}
is an open cover of supp(f). By Corollary 5.1.2. we know that there are contin-
uous (infact C ∞) functions φ1, ..., φk with compact support such that supp(φi) ⊆
Uα for some α for each 1 ≤ i ≤ k and that

k∑
i=1

φi(x) = 1

for each x ∈ supp(f). Moreover, it is easy to see that supp(φif) is compact for
each 1 ≤ i ≤ k and is contained inUα for someα (and obviouslyφif is continuous
for each 1 ≤ i ≤ k). Finally, observe that

f =
k∑

i=1

φif

Also, observe that if we define

φ′
i = φi ◦ γ

then φ′
1, ...φ

′
k is a partition of unity for supp(f ◦ γ) (which is a compact set, see

Remark 6.3.2) subordinate to the cover {Vα} where Vα = γ−1(Uα). By the hy-
pothesis of our proposition, the theorem holds true for each φif . So, we have
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the following. ∫
Rn

f(x)dx =

∫
Rn

k∑
i=1

φi(x)f(x)dx

=
k∑

i=1

∫
Rn

φi(x)f(x)dx

=
n∑

i=1

∫
Rn

φi(γ(x))f(γ(x))|det(Jγ)(x)|dx

=
n∑

i=1

∫
Rn

φ′
i(x)f(γ(x))|det(Jγ)(x)|dx

=

∫
Rn

n∑
i=1

φ′
i(x)f(γ(x))|det(Jγ)(x)|dx

=

∫
Rn

f(γ(x))|det(Jγ)(x)|dx

which completes the proof. ■
Final Step for Theorem 6.3. Let f, γ, U, V be as in the statement of the theorem.
Let a ∈ V be any point. Then by Theorem 6.1 there is an open neighborhood
Va ⊂ V of a such that

γ(x) = γ(a) +BG1 ◦G2 ◦ ... ◦Gn(x− a)

for all x ∈ Va, whereB is a permutation and eachGi for 1 ≤ i ≤ n is aC 1mapping
satisfying the conditions in Theorem 6.1. To be completed. We just need to put
everything together. ■
6.3. Volumes under Linear Isomorphisms. In this section, we will prove an
important result about the action of linear isomorphisms to volumes of sets.

Proposition 6.9. Let g1, g2, g3 : Rn → Rn be linear maps defined as follows.
g1(x1, ..., xj, ..., xn) = (x1, ..., axj, ..., xn)

g2(x1, ..., xk, ..., xn) = (x1, ..., xk + xj, ..., xn)

g3(x1, ..., xi, ..., xj, ..., xn) = (x1, ..., xj, ..., xi, ..., xn)

where a ∈ R in the formula for g1, 1 ≤ j < k ≤ n in the formula for g2 (and xk+xj

is the kth coordinate of g2(x1, ..., xn)) and 1 ≤ i < j ≤ n in the formula for g3. Let
U be any rectangle in Rn. Then,

v(gi(U)) = |det gi|v(U)

where v(U) is the n-dimensional volume of U .

Remark 6.9.1. This is part (a) of problem 3-35 in Spivak’s book. I have written
the maps gi in coordinate form.

Proof. It is immediately seen that g3 is a flip (or a transposition), and g1 is invert-
ible if a 6= 0 (these remarks are not important for the proof). Now, it is also easily
seen that g1(U) and g3(U) are rectangles in Rn and |det g1| = |a| and |det g3| = 1,
and it can be easily seen that the formula is indeed true. So, we only deal with
the case for g2.
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Suppose U = [a1, b1]× ...× [an, bn]. Then, one can verify that

g2(U) =
⋃

x∈[aj ,bj ]

[a1, b1]× ...{x} × ...× [ak + x, bk + x]× ...× [an, bn]

and it is not hard to see that this set is Jordan Measurable, as its boundary
is a union of line segments in Rn (to be more geometric, the image is actually
a parallelogram in Rn. To understand it better, try the case n = 2). Applying
Fubini’s Theorem 3.1, we get

v(g2(U)) =

∫
[aj ,bj ]

(∫
[a1,b1]×...×[ak+x,bk+x]×...×[an,bn]

1

)
dx = v(U)

and since det(g3) = 1, the claim follows (Some details are missing from this
proof, but they are relatively easy to fill in. In particular, the application of Fu-
bini’s Theorem above is not immediate, but not hard to prove). ■

Proposition6.10. Let S ⊂ Rn be any acceptable set (i.e a compact Jordanmea-
surable set. Look at Definition 2.9). Let gi be the invertible mappings as in
Proposition 6.9 for 1 ≤ i ≤ 3 (i.e we only consider the casewhen g1 is invertible,
so a 6= 0). Then

v(gi(S)) = |det gi|v(S)
for 1 ≤ i ≤ 3.

Proof. LetR be any rectangle inRn containing S, and let P be any partition ofR.
Let χS be the characteristic function of S as usual (which we know is integrable
over R since S is acceptable). Then, we know that

L(P, χS) =
∑

R′∈P,R′⊂S

v(R′) ≤ v(S) ≤
∑

R′∈P,R′∩S ̸=ϕ

v(R′) = U(P, χS)

and here we have just invoked the definition of the upper and lower sums. Be-
cause S is acceptable, we know that

sup
P

∑
R′∈P,R′⊂S

v(R′) = inf
P

∑
R′∈P,R′∩S ̸=ϕ

v(R′) = v(S)(⋆)

where the supremumand infimum is taken over all partitionsP ofR. Moreover,
observe that ∑

R′∈P,R′⊂S

v(gi(R
′)) ≤ v(gi(S)) ≤

∑
R′∈P,R′∩S ̸=ϕ

v(gi(R
′))

(need to justify this step above. Ultimately this is just saying out loud that the
total volume of subsets of a set which intersect only along their boundaries is
less than the volume of the set itself) for any partition P of R. By Proposition
6.9, it follows that

|det gi|
∑

R′∈P,R′⊂S

v(R′) ≤ v(gi(S)) ≤ |det gi|
∑

R′∈P,R′∩S ̸=ϕ

v(R′)

and from (⋆) it follows that

v(gi(S)) = |det gi|v(S)

and this completes the proof. ■
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Proposition 6.11. Let g : Rn → Rn be any invertible linear mapping (i.e an iso-
morphism), and letS ⊂ Rn beanacceptable set. Then g(S) is also anacceptable
set.

Proof. It is clear that g(S) is compact, and hence it is enough to show that ∂g(S)
has measure zero. Infact a stronger statement is true, i.e

∂g(S) = g(∂S)

but this is just a property of homeomorphisms; we know that g is a homeomor-
phism (infact a C ∞ diffeomorphism). So, the claim is true (again missing a lot of
details, but again they are not difficult to fill in). ■
Theorem 6.12. Let g : Rn → Rn be an invertible linear map, and let S be any
acceptable set in Rn. Then

v(g(S)) = |det(g)|v(S)

Proof. We know that every invertible map can be written as a product of maps
given in Proposition 6.9 (need to prove this as a separate proposition! This is
just reducing an invertible matrix to row echelon form). So suppose

g = g1 ◦ g2 ◦ ... ◦ gk
where each gi is a map of one of the forms given in Proposition 6.9. Since S is
an acceptable set, we know from Proposition 6.10 that

v(gk(S)) = |det gk|v(S)
Also, byProposition6.11we see that gk(S) is an acceptable set inRn. Repeating
the same procedure now with the set gk(S) and continuing all the way till g1, we
get that

v(g(S)) = v(g1 ◦ ... ◦ gk(S)) = |det g1|...|det gk|v(S) = |det g|v(S)
and this completes the proof. ■

7. Integration On Open Sets

In this section we will see one way of defining the notion of integrable func-
tions on open sets. The most elementary open set in Rn is Rn itself.

7.1. Integration over all ofRn. Let us begin with a simple definition.
Definition 7.1. Let f : Rn → R be a non-negative function. f is said to be inte-
grable on Rn if f is integrable on each rectangle R ⊂ Rn and if

sup
R⊂Rn,R a rectangle

∫
R

f :=

∫
Rn

f < ∞

An analogous definition works when f is everywhere non-positive. A simple
fact about this definition can be proven.

Proposition 7.1. If a non-negative function f : Rn → R is integrable on Rn then
there is a nested sequence S1 ⊂ S2 ⊂ ... of acceptable sets with

⋃∞
i=1 Si = Rn

such that f is integrable on each Si and

lim
i→∞

∫
Si

f =

∫
Rn

f



CALCULUS 23

Proof. First, suppose f is integrable on Rn. Then, by our definition, it is inte-
grable on every rectangle R ⊂ Rn. Moreover,∫

Rn

f = sup
R⊂Rn

∫
R

f < ∞

So, there is a sequence {Ri}i∈N of rectangles in Rn such that

lim
i→∞

∫
Ri

f =

∫
Rn

f

PutR′
1 = R1. Then inductively, letR′

i be any rectangle containing the rectangles
R′

1, ..., R
′
i−1 and Ri. Also, choose the rectangles R′

i so that⋃
i∈N

R′
i = Rn

and this can be easily done by choosing arbitrarily large rectangles. So by our
definition it is clear that

R′
1 ⊂ R′

2 ⊂ ...

and because f is non-negative, we see that∫
R′

i

f ≥
∫
Ri

f

for each i ∈ N, and hence
lim
i→∞

∫
R′

i

f =

∫
Rn

f

Since a rectangle is an acceptable set, we see that Si = R′
i is the required se-

quence of acceptable sets. ■
Definition 7.2. Let f : Rn → R be any function (i.e not necessarily non-negative
or non-positive). f is said to be absolutely integrable if f is integrable on rect-
angles and |f | is integrable on Rn. Define functions f+ and f− by f+ = max{f, 0}
and f− = max{−f, 0}. Then

f = f+ − f−

Proposition 7.2. Let f be an integrable function on a rectangle R ⊂ Rn. Then
f+ and f− as defined above are integrable, and∫

R

f =

∫
R

f+ −
∫
R

f−

Proof. We know that if f is integrable, then |f | is also integrable. The integra-
bility of f+ and f− immediately follow from the formulae

f+ =
1

2
(|f |+ f)

f− =
1

2
(|f | − f)

and the rest of the claim is clear. ■
Definition 7.3. As a result of Proposition 7.2, the integral of any absolutely in-
tegrable function f on Rn is define as∫

Rn

f :=

∫
Rn

f+ −
∫
Rn

f−
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Because f is assumed to be absolutely integrable, both the integrals on the RHS
are finite and hence they exist.

7.2. IntegrationoverarbitraryopensubsetsofRn. In this section, wewill use
a refined version of partitions of unity to define integrability on general open
sets in Rn. First we prove a simple fact.

Proposition 7.3. Let U be any open set in Rn. Then, there is a countable collec-
tion {Ri}i∈N of rectangles contained in U such that the interiors Int(Ri) cover
U .

Proof. Let x ∈ U . Then, there is some δx > 0 such that B(x, δx) ⊂ U . Pick a point
px in B(x, δx) having only rational coordinates such that the following can be
done: consider an open squareB(px,∆x) (i.e the square has center px and edge
length ∆x) such that px has only rational coordinates, ∆x is a rational number,
x ∈ B(px,∆x) andB(px,∆x) ⊂ B(x, δx) ⊂ U (the fact that this can be done is easy!
Very similar to Lindelof’s Theorem in R). So,

U =
⋃
x∈U

B(px,∆x)

and clearly the above union is countable, because rational numbers are being
considered. This proves our claim. ■
We now state a stronger version of Theorem 5.1 on partitions of unity without
a proof.

Theorem 7.4. Let U be any open subset of Rn, and let {Ri}i∈N be a collection of
rectangles as in Proposition 7.3. Then, there exists a countable family {φi}i∈N
of continuous functions with compact support such that the following hold.

(1) 0 ≤ φi ≤ 1 for each i ∈ N.
(2) The support of each φi is contained in Int(Ri) (this is where this version

is stronger).
(3) For each x ∈ U , there is a neighborhood Ux of x such that only finitely

many φi are non-zero on Ux.
(4) For every x ∈ U we have ∑

i∈N

φi(x) = 1

Definition 7.4. Let f : U → R be a function where U is an open subset of Rn. Let
{Ri}i∈N be a collection of rectangles as in Proposition 7.3, and let {φi}i∈N be a
partition of unity as in Theorem 7.4. f is said to be absolutely integrable over
U if f |Ri

is integrable for each i ∈ N and∑
i∈N

∫
Ri

φi(x)|f(x)|dx < ∞

and in this case we define∫
U

f(x)dx :=
∑
i∈N

∫
Ri

φi(x)f(x)dx

The above sum exists as the series is absolutely convergent.

It can be shown that (wewon’t do this here) that the above definition is indepen-
dent of the choice of rectangles Ri and the partition of unity φi.
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Proposition 7.5. Suppose U = Rn. Then, Definition 7.4 and Definition 7.3 co-
incide.

Proof. To be completed. ■

7.3. Generalised Change of Variable. We can finally state without proof the
general version of the change of variables theorem.

Theorem 7.6 (General Change of Variables). Let V be any open subset of Rn,
and let γ : V → U be a C 1 map with invertible derivative at every point of V
(equivalently, γ is a diffeomorphism; see Remark 6.3.1). If f is any absolutely
integrable function on U = γ(V ), then the function

t 7→ f(γ(t))|(Jγ)(t)|
is absolutely integrable on V and∫

U

f(x)dx =

∫
V

f(γ(t))|(Jγ)(t)|dt

8. Integration on Chains

8.1. Algebraic Preliminaries. First, we will introduce some common ideas of
multilinear algebra in vector spaces.

Definition8.1. LetV bea vector spaceoverR. Amultilinear functionT : V k → R
is called a k-tensor on V and the set of all k-tensors is denoted by T k(V ). On
the set T k(V ) define addition addition and scalar multiplication as

(S + T )(v1, ..., vk) := S(v1, ..., vk) + T (v1, ..., vk)

(cS)(v1, ..., vk) := cS(v1, ..., vk)

for any S, T ∈ T (V ) and c ∈ R. These definitions make T (V ) into an R-vector
space.

Definition 8.2. Let S ∈ T k(V ) and T ∈ T l(V ), where V is a vector space over
R. Define the tensor product S ⊗ T ∈ T k+l(V ) by

S ⊗ T (v1, ..., vk, vk+1, ..., vk+l) := S(v1, ..., vk) · T (vk+1, ..., vk+l)

Remark 8.0.1. This definition is not the usual definition of tensor products,
which is generally defined on modules. Moreover, observe that by our defi-
nition, the tensor product is not necessarily commutative.

Proposition 8.1. Let V be an R-vector space. Then the following hold.
(1) (S1 + S2)⊗ T = S1 ⊗ T + S2 ⊗ T .
(2) S ⊗ (T1 + T2) = S ⊗ T1 + S × T2.
(3) (aS)⊗ T = S ⊗ (aT ) = a(S ⊗ T ).
(4) S ⊗ (T ⊗ U) = (S ⊗ T )⊗ U .

Proof. For (1),(2) and (3), let v = (v1, ..., vk, vk+1, ..., vk+l) ∈ V k+1 be fixed.
(1) We see that

(S1 + S2)⊗ T (v) = (S1 + S2)(v1, ..., vk) · T (vk+1, ..., vk+l) = S1 ⊗ T (v) + S2 ⊗ T (v)

and this proves (1).
(2) This has a similar proof as in (1).
(3) This has a similar proof as in (1).
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Associativity of the tensor product, i.e (4) is also easy to prove. ■
Remark 8.1.1. In a similar fashion, we can define the n-fold tensor product
T1 ⊗ ...⊗ Tn.

Observe thatT 1(V ) is just the dual space V ∗. The following theorem relates the
dual space to the vector space T k(V ).

Theorem 8.2. Let v1, ..., vn be a basis for V , and let φ1, ..., φn be the dual basis,
i.e φi(vj) = δij . Then, the set of all k-fold tensor products

φi1 ⊗ ...⊗ φik , 1 ≤ i1, ..., ik ≤ n

is a basis for T k(V ), and hence dimT k(V ) = nk.

Proof. First, let us show that these k-fold tensors are linearly independent.∑
(i1,...,ik)∈{1,...,n}k

c(i1,...,ik)φi1 ⊗ ...⊗ φik = 0

where c(i1,...,ik) ∈ R. Fix any element (i1, ..., ik) ∈ {1, ..., n}k, and consider the
element (vi1 , ..., vik) ∈ V k. Then, we see that ∑

(j1,...,jk)∈{1,...,n}k
cj1,...,jkφj1 ⊗ ...⊗ φjk

 (vi1 , ..., vik) = c(i1,...,ik) = 0

and hence this implies linear independence of the given elements. Now, we
show that the given elements spanT k(V ). LetT ∈ T k(V ). Suppose (w1, ..., wk) ∈
V k such that

wi =
n∑

j=1

aijvj

for each 1 ≤ i ≤ n. Then, we see that

T (w1, ..., wk) =
∑

(i1,...,ik)∈{1,...,n}k
a1i1 ...akikT (vi1 , ..., vik)

=
∑

(i1,...,ik)∈{1,...,n}k
T (vi1 , ..., vik)φi1 ⊗ ...⊗ φik(w1, ..., wk)

and hence we see that
T =

∑
(i1,...,ik)∈{1,...,n}k

T (vi1 , ..., vik)φi1 ⊗ ...⊗ φik

implying that the given set spans T k(V ). This completes the proof. ■
Corollary 8.2.1. If V is any vector space over R, then V k ∼= T k(V ).

Proof. This is immediate by comparing dimensions. But there is an elementary
proof for this too. ■
Definition 8.3. Let V,W be vector spaces over R, and let f : V → W be a linear
map. Define the transpose f ∗ : T k(W ) → T k(V ) as

f ∗T (v1, ..., vk) = T (f(v1), ..., f(vk))

where T ∈ T k(W ) and (v1, ..., vk) ∈ V k.
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Proposition 8.3. The transpose as defined above is a linear map. Moreover,
for suitable multilinear transformations S, T , we have

f ∗(S ⊗ T ) = f ∗S ⊗ f ∗T

Proof. First, let us show that f ∗ : T k(W ) → T k(V ) is a linear map. Suppose
T1, T2 ∈ T k(W ). Then for any (v1, ..., vk) ∈ V k, we have

f ∗(T1 + T2)(v1, ..., vk) = (T1 + T2)(f(v1), ..., f(vk))

= T1(f(v1), ..., f(vk)) + T2(f(v1), ..., f(vk))

= f ∗T1(v1, ..., vk) + f ∗T2(v1, ..., v)k)

and hence this implies that

f ∗(T1 + T2) = f ∗T1 + f ∗T2

Now if c ∈ R and T ∈ T k(W ), then for any (v1, ..., vk) ∈ V k we have

f ∗(cT )(v1, ..., vk) = (cT )(f(v1), ..., f(vk)) = cT (f(v1), ..., f(vk)) = cf ∗T (v1, ..., vk)

which implies that
f ∗(cT ) = cf ∗T

and hence f ∗ is a linear map.
Now suppose S ∈ T k(W ) and T ∈ T l(W ), so that S ⊗ T ∈ T k+l(W ). For any

(v1, ..., vk, vk+1, ..., vk+1) ∈ V k+l, we have

f ∗(S ⊗ T )(v1, ..., vk, vk+1, ..., vk+l) = (S ⊗ T )(f(v1), ..., f(vk), f(vk+1), ..., f(vk+l))

= S(f(v1), ..., f(vk)) · T (f(vk+1), ..., f(vk+l))

= f ∗S(v1, ..., vk) · f ∗T (vk+1, ..., vk+l)

= (f ∗S ⊗ f ∗T )(v1, ..., vk, vk+1, ..., vk+l)

and this implies that
f ∗(S ⊗ T ) = f ∗S ⊗ f ∗T

and this completes the proof. ■

Definition 8.4. Let V be a vector space over R. An inner product on V is a 2-
tensor T such that T is symmetric, i.e T (v, w) = T (w, v) for all v, w ∈ V . In
addition, such an inner product T is said to be positive definite if T (v, v) > 0 for
all v 6= 0. The usual inner product on Rn will be denoted by 〈, 〉.

Remark8.3.1. This is just the usual definition of an inner product on a real vec-
tor space. However, the terminology of tensors makes it much more simpler.

Theorem 8.4. If T is a positive definite inner product on V , there is a basis
v1, ..., vn for V such that T (vi, vj) = δij . Consequently, there is an isomorphism
f : Rn → V such that T (f(x), f(y)) = 〈x, y〉 for x, y ∈ Rn. In other words, f ∗T =
〈, 〉.

Proof. The first claim is just the existence of an orthonormal basiswhich is just
Gram-Schmidt orthogonalisation, which I will not write the proof for.
Now suppose we are given an orthonormal basis {v1, ..., vn}. The required

isomorphism f : Rn → V is given by ei 7→ vi. This completes the proof. ■
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8.2. Alternating Forms. We will now try to generalise the determinant, which
we know is a multilinear alternating function.

Definition 8.5. A k-tensor ω ∈ T k(V ) is called alternating if
ω(v1, ..., vi, ..., vj, ..., vk) = −ω(v1, ..., vj, ..., vi, ..., vk)

for all (v1, ..., vk) ∈ V k. In simpler terms, interchanging two arguments flips the
sign of the function. The set of all alternating k-tensors is a subspace ofT k(V ),
denoted by Λk(V ).

Definition 8.6. If T ∈ T k(V ), define Alt(T ) ∈ T k(V ) by

Alt(T )(v1, ..., vk) :=
1

k!

∑
σ∈Sk

sgn(σ)T (vσ(1), ..., vσ(k))

where Sk is the permutation group on k elements.

Theorem 8.5. The operator Alt satisfies the following.
(1) If T ∈ T k(V ), then Alt(T ) ∈ Λk(V ), i.e Alt : T k(V ) → Λk(v).
(2) If ω ∈ Λk(V ), then Alt(ω) = ω.
(3) If T ∈ T k(V ), then Alt(Alt(T )) = Alt(T ).

Proof. Let us first prove (1). So, let T ∈ T k(V ). That Alt(T ) is a k-tensor is
clear, and so we only need to show that it is an alternating k-tensor. So let
1 ≤ i < j ≤ n. For any σ ∈ Sk, consider the linear isomorphism σ : V k → V k

given by
σ(v1, ..., vk) = (vσ(1), ..., vσ(k))

Now, let τ be the linear isomorphism that flips the ith and jth coordinates. So we
have the following chain of equations.

Alt(T )(v1, ..., vj, ..., vi, ..., vn) = Alt(T )(τ(v1, ..., vi, ..., vj, ..., vn))

=
1

k!

∑
σ∈Sk

sgn(σ)T (στ(v1, ..., vi, ..., vj, ..., vn))

=
−1

k!

∑
σ∈Sk

sgn(στ)T (στ(v1, ..., vi, ..., vj, ..., vn))

Now we know that the map Sk → Sk given by σ 7→ στ is a bijection. So, the last
sum is equal to −Alt(T )(v1, ..., vi, ..., vj, ..., vn). This shows that Alt(T ) ∈ Λk(V ),
completing the proof of (1).
Now we prove (2). So suppose ω ∈ Λk(V ). So for any σ ∈ Sk, we see that

ω(σ(v1, ..., vn)) = sgn(σ)ω(v1, ..., vn)
because σ can be written as a product of transpositions. Hence, we have

Alt(ω)(v1, ..., vn) =
1

k!

∑
σ∈Sk

sgn(σ)ω(σ(v1, ..., vn))

=
1

k!

∑
σ∈Sk

ω(v1, ..., vn)

= ω(v1, ..., vn)

and this proves (2). (3) follows immediately from (1) and (2), and this completes
the proof. ■
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Definition 8.7. Let ω, η be any two tensors in T k(V ). Define thewedge product
w ∧ η by

w ∧ η =
(k + l)!

k!l!
Alt(ω ⊗ η)

It is clear that ω ∧ η ∈ Λk(V ).
Proposition 8.6. The wedge product satisfies the following properties.

(1) (ω1 + ω2) ∧ η = ω1 ∧ η + ω2 ∧ η.
(2) ω ∧ (η1 + η2) = ω ∧ η1 + ω ∧ η2.
(3) aω ∧ η = ω ∧ aη = a(ω ∧ η).
(4) ω ∧ η = (−1)klη ∧ ω.
(5) f ∗(ω ∧ η) = f ∗(ω) ∧ f ∗(η).

Proof. The first three properties are immediate from the basic fact that Alt is a
linear map. So I won’t prove those.
Sowe prove (4) first. Let k, l be positive integers and let ω ∈ T k(V ), η ∈ T l(V ).

Now let τ ∈ Sk+l be the permutation given by
{1, ..., k, k + 1, ..., k + l} 7→ {k + 1, ..., k + l, 1, ..., k}

It is not hard to see that τ can be written as a product of kl transpositions, and
hence

sgn(τ) = (−1)kl

We now have the following chain of equations.
(k + l)!

k!l!
Alt(ω ⊗ η)(v1, ..., vk,vk+1, ..., vk+l) =

(k + l)!

k!l!

1

(k + l)!

∑
σ∈Sk+l

sgn(σ)(ω ⊗ η)(σ(v1, ..., vk+l))

=
1

k!l!

∑
σ∈Sk+l

sgn(σ)ω(vσ(1), ...., vσ(k))η(vσ(k+1), ..., vσ(k+l))

=
1

k!l!

∑
σ∈Sk+l

sgn(σ)η(vσ(k+1), ..., vσ(k+l))ω(vσ(1), ...., vσ(k))

=
1

k!l!

∑
σ∈Sk+l

sgn(σ)(η ⊗ ω)(στ(v1, ..., vk+l))

=
(−1)kl

k!l!

∑
σ∈Sk+l

sgn(στ)(η ⊗ ω)(στ(v1, ..., vk+l))

= (−1)kl
(k + l)!

k!l!
Alt(η ⊗ ω)(v1, ..., vk+l)

and hence this proves that
ω ∧ η = (−1)klη ∧ ω

and this completes the proof of (4). (5) can also be proven from first principles
and I am skipping the proof (I may want to complete this proof sometime later.)

■
Theorem 8.7. The following hold.

(1) If S ∈ T k(V ) and T ∈ T l(V ) and Alt(S) = 0 then
Alt(S ⊗ T ) = Alt(T ⊗ S) = 0

(2) Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ) = Alt(ω ⊗ Alt(η ⊗ θ)).
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(3) If ω ∈ Λk(V ), η ∈ Λl(V ) and θ ∈ Λm(V ) then

(ω ∧ η) ∧ θ = ω ∧ (η ∧ θ) =
(k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ)

Proof. Let us prove (1) first. We have the following. Let G be the subgroup of
Sk+l of all permutations that leave {k + 1, ..., k + l} fixed (so that G ∼= Sk). Now,
all right cosets of G partition Sk+l into disjoint subsets. So, the sum

Alt(S ⊗ T )(v1, ..., vk, vk+1, ..., vk+l) =
1

(k + l)!

∑
σ∈Sk+l

sgn(σ)(S ⊗ T )(v1, ..., vk+l)

can be split into sumsover the right cosets ofG. So, it is enough to show that the
sum over any right coset is zero. So, let Gσ0 be any right coset. First consider
the case when σ0 ∈ G. In that case, we see that Gσ0 = G. Now, observe that

1

(k + l)!

∑
σ∈Gσ0

sgn(σ)(S ⊗ T )(v1, ..., vk+l) =
1

(k + l)!

∑
σ∈G

sgn(σ)(S ⊗ T )(v1, ..., vk+l)

=
T (vk+1, ..., vk+l)

(k + l)!

∑
σ∈G

sgn(σ)S(vσ(1), ..., vσ(k))

= 0

because we assumed that Alt(S) = 0. In the second case, suppose σ0 /∈ G
and consider the coset Gσ0, which is not equal to G in this case. Now suppose
(v1, ..., vk+l) ∈ V k+l, and let

(vσ0(1), ..., vσ0(k+l)) = (w1, ..., wk+l)

So, we have
1

(k + l)!

∑
σ∈Gσ0

sgn(σ)(S ⊗ T )(v1, ..., vk+l) =
sgn(σ0)

(k + l)!

∑
σ∈G

sgn(σ)(S ⊗ T )(wσ(1), ..., wσ(k+l))

=
sgn(σ0)T (wk+1, ..., wk+l)

(k + l)!

∑
σ∈G

sgn(σ)S(wσ(1), ..., wσ(k))

= 0

Hence, we conclude that Alt(S ⊗ T ) = 0. By taking permutations which fix the
set {1, ..., l}, we can similarly show that Alt(T ⊗S) = 0. This completes the proof
of (1).
Next, we prove (2). Observe that

Alt[Alt(ω ⊗ η)− ω ⊗ η]

which follows by part (3) of Theorem 8.5 and the fact that Alt itself is a linear
map. So by (1) of the current theorem, we see that

Alt[(Alt(ω ⊗ η)− ω ⊗ η)⊗ θ] = 0 = Alt[Alt(ω ⊗ η)⊗ θ − ω ⊗ η ⊗ θ]

where abovewehave just used the distributivity of the tensor product inPropo-
sition 8.1. Again using the fact that Alt itself is a linear map, we see that

Alt(Alt(ω ⊗ η)⊗ θ) = Alt(ω ⊗ η ⊗ θ)

and similarly, the other equality in (2) can be proven. This completes the proof
of (2).
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Finally we prove (3). Wewill be using properties of the wedge product proven
in Proposition 8.6.

(ω ∧ η) ∧ θ =
(k + l)!

k!l!
Alt(ω ⊗ η) ∧ θ

=
(k + l)!

k!l!

(k + l +m)!

(k + l)!m!
Alt((ω ⊗ η)⊗ θ)

=
(k + l +m)!

k!l!m!
Alt(ω ⊗ η ⊗ θ)

where in the last step we used (2). This completes the proof. ■
Remark 8.7.1. The main point of this theorem is that wedge products are as-
sociative. This, as we see by the proof, is not a trivial fact.

Theorem 8.8. Let V be any R-vector space with basis v1, ..., vn. Let φ1, ..., φn be
the corresponding dual basis. Then, the set of all

φi1 ∧ φi2 ∧ ... ∧ φik , 1 ≤ i1 < i2 < ... < ik ≤ n

is a basis for Λk(V ), and hence

dimΛk(V ) =
n!

k!(n− k)!

Proof. Let ω ∈ Λk(V ). As we saw in Theorem 8.2, we can write

ω =
∑

(i1,...,ik)∈{1,...,n}k
ω(vi1 , ..., vik)φi1 ⊗ ...⊗ φik

Applying the Alt operator to both sides, we see that

ω = Alt(ω) =
∑

(i1,...,ik)∈{1,...,n}k
ω(vi1 , ..., vik)Alt(φi1 ⊗ ...⊗ φik)

Now, each Alt(φi1 ⊗ ...⊗φik) is some constant times φi1 ∧ ...∧φik , where i1 < i2 <
... < ik which follows from (4) of Proposition 8.6 and (3) of Theorem 8.7. Linear
independence is straightforward to prove, and hence the claim follows. ■
Theorem 8.9. Let v1, ..., vn be a basis for V , and let ω ∈ Λn(V ). If wi =

∑n
j=1 aijvj

are n vectors in V , then
ω(w1, .., wn) = det(aij) · ω(v1, ..., vn)

Remark 8.9.1. This can be looked at in a different way. If V is an n-dimensional
overR, then Theorem8.8 shows thatΛn(V ) is a 1-dimensional space, and hence
it is spanned by any non-zero element. The determinant is such a function in
Λn(Rn), and hence we find it in this formula.

Proof. To be completed. ■
Definition8.8. Let ω ∈ Λn(V ), where V is an n-dimensional vector space overR.
Then, ω splits the bases of V into two equivalence classes; for a basis {v1, ..., vn}
of V , its class is determined by the sign of ω(v1, ..., vn). Any such equivalence
class is called an orientation of V , and the orientation of a basis {v1, ..., vn} is
denoted by [v1 v2 ... vn]. The standard orientation of Rn is defined as the orien-
tation [e1 e2 ... en].
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Remark 8.9.2. Let V be a vector space over R. Note that any two bases of V
are related by an invertible matrix, the so called change-of-basis matrix. So
we can define the orientation of a basis independent of any ω ∈ Λn(V ). By The-
orem 8.9, note that two bases have the same orientation if and only if thematrix
that relates them has positive determinant. We can take this as an equivalent
definition of orientation.

8.3. Vector Fields, 1-Forms and Differential Forms. For simplicity we will as-
sume that all maps in consideration are C ∞. We define Λ0(V ) := R, Λ1(V ) := V ∗

and Λk(V ) is defined as usual.

Definition8.9. Let V be a real vector space of dimension n, and letU be an open
subset. A vector field is a C ∞ map F : U → V . A 0-form on U is a map from U
to Λ0(V ) = R, i.e a real valued function. A k-form is a map ω : U → Λk(V ); the
degree of such an ω is k.

Definition 8.10. Let {e1, ..., en} be a basis for V and let {φ1, ..., φn} be the corre-
sponding dual basis of V ∗. The coordinate functions x1, ..., xn are defined by

xi = φi

In particular, these functionsare 0-formss.txi(p) is the ith coordinate of p (where
coordinates are taken w.r.t {e1, ..., en}).

Definition 8.11. Let V and U be as above. Let ω be a k-form, and let η be an
l-form. Define a k + l-form ω ∧ η by

(ω ∧ η)(p) = ω(p) ∧ η(p)

for any p ∈ U .

Definition 8.12. Let f be a function on U . Define the exterior derivative df to be
the 1-form defined by

df(p)[u] = Df(p)[u]

where Df(p) is the derivative of f at p. So, df(p)[u] is the directional derivative
of f at p along the vector u. Note that df is a 1-form because it maps every p ∈ U
to some linear map in V ∗, namely the derivative of f at p (which we know is a
linear map).

Proposition 8.10. Let xi be the ith coordinate function. Then

dxi(p) = φi

for any p ∈ U . So, dxi is a constant 1-form taking the value φi at all p ∈ U .

Proof. Let p ∈ U . By definition, we know that

dxi(p)[u] = Dxi(p)[u] , u ∈ V

Now observe that xi is a linear map, and hence it is its own derivative. So this
means thatDxi(p) = xi for all p ∈ U . So, it follows that

dxi(p) = xi = φi

for all p ∈ U . ■



CALCULUS 33

Proposition 8.11. Let U, V be as in Definition 8.9, and let f be a C ∞ function
(equivalently a 0-form) on U . Then for any p ∈ U and u ∈ V

df(p)[u] =
∑
i

∂f

∂xi
(p)dxi(p)[u] =

∑
i

∂f

∂xi
φi[u]

The above equation is written classically as

df =
∑
i

∂f

∂xi
dxi

Observe that each ∂f

∂xi
is a 0-form and each dxi is a 1-form.

Proof. We know that

df(p)[u] = Df(p)[u] =
∑
i

∂f

∂xi
(p)φi[u]

because Df(p) is a 1 × n matrix which is the row vector ∇f(p). The rest of the
claim is immediate. ■
Corollary 8.11.1. If f is a C 1 map on U (equivalently a 0-form), then df is also
C ∞.

Proof. df is the sum
df =

∑
i

∂f

∂xi
φi

and every term in the sum is a C ∞ function times a constant 1-form. ■
Definition 8.13. We can extend the notion of the exterior derivative k-forms on
U , i.e for any k-form ω, we can define its differential dωwhichwill be a k+1-form
such that the following are satisfied.

(1) d(df) = 0 for any function f .
(2) Given a k-form ω and an l-form η,

d(ω ∧ η) = dω ∧ η + (−1)kω ∧ dη

Let ω be any k-form on U . Then ω(p) ∈ Λk(V ) for every p ∈ U , and hence by
Theorem 8.8 ω can be uniquely written in the form

ω(p) =
∑

1≤i1<i2<...<ik≤n

ωi1,...,ik(p)dx
i1 ∧ dxi2 ∧ ... ∧ dxik

where ωi1,...,ik(p) ∈ R. Regarding ωi1,...,ik as a 0-form on U , we see that

ω =
∑

1≤i1<...<ik≤n

ωi1,...,ikdx
i1 ∧ dxi2 ∧ ... ∧ dxik

So, (1) and (2) together force the formula

dω =
∑

1≤i1<...<ik≤n

dωi1,...,ikdx
i1 ∧ ... ∧ dxik

=
∑

1≤i1<...<ik≤n,1≤j≤n

∂ωi1,...,ik

∂xj
dxj ∧ dxi1 ∧ ... ∧ dxik

So, we can define the differential dω by the above formula, and it turs out that
this definition satisfies properties (1) and (2) above.
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Proposition 8.12. We have
d(ω + η) = d(ω) + d(η)

for any k-forms ω, η. Moreover, for any k-form ω, d(dω) = 0. Briefly, this is
written as d2 = 0.

Proof. The first formula is immediate. If

ω =
∑

1≤i1<...<ik≤n

ωi1,...,ikdx
i1 ∧ ... ∧ dxik

then we have

dω =
∑

1≤i1<...<ik≤n,1≤j≤n

∂ωi1,...,ik

∂xj
dxj ∧ dxi1 ∧ ... ∧ dxik

So, we have that

d(dω) =
∑

1≤i1<...<ik≤n,1≤j≤n,1≤m≤n

∂2ωi1,...,ik

∂xm∂xj
dxm ∧ dxj ∧ dxi1 ∧ ... ∧ dxik

Now in the above formula, terms of the form
∂2ωi1,...,ik

∂xm∂xj
dxm ∧ dxj ∧ dxi1 ∧ ... ∧ dxik ,

∂2ωi1,...,ik

∂xj∂xm
dxj ∧ dxm ∧ dxi1 ∧ ... ∧ dxik

will cancel pairwise. This completes the proof. ■

8.4. Pull-Backs. Suppose we are given a C ∞ map Φ : Ũ → U of open sets, with
U ⊂ V , Ũ ⊂ Ṽ where V, Ṽ are finite dimensional vector spaces of dimension
n and m respectively. Given a point p̃ ∈ Ũ , the differential DΦ(p̃) gives a linear
map Ṽ → V . Using Φ, given any C ∞ function on U , a C ∞ on Ũ can be defined by
simply composing with Φ. We call this map Φ∗

0, which is defined as follows.

Φ∗
0 : {C ∞ functions on U} → {C ∞ functions on Ũ}

f 7→ Φ∗
0(f) = f ◦ Φ

This can be extended to k-forms, andwewill call the correspondingmapΦ∗
k and

we will extend it so that this new map satisfies two additional properties. So

Φ∗
k : {C ∞ k forms on U} → {C ∞ k forms on Ũ}

η 7→ Φ∗
k(η)

is a map which satisfies the following two properties:

Φ∗
k+1dω = dΦ∗

kω(†)
Φ∗

k+l(ω ∧ η) = Φ∗
kω ∧ Φ∗

l η(‡)

From here on, we will omit the subscript k and simply write Φ∗ in place of Φ∗
k.

Proposition8.13. LetΦ : Ũ → U be as above. Let bases of V and Ṽ be fixed, and
suppose x1, ..., xn and t1, ..., tm are the respective coordinate functions. Then

Φ∗dxi =
m∑
j=1

∂(xi ◦ Φ)
∂tj

dtj
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Proof. By property (†), we have
Φ∗dxi = dΦ∗xi = d(xi ◦ Φ)

where Φ∗xi = xi ◦ Φ because xi is a 0-form (equivalently a C ∞ function). By
Proposition 8.11, we know that

d(xi ◦ Φ) =
m∑
j=1

∂(xi ◦ Φ)
∂ti

dti

■
Proposition 8.14. Let η be a 1-form on U . Let p̃ ∈ Ũ , and let p = Φ(p̃) ∈ U . Then
the following equation relates Φ∗η(p) and η(p):

Φ∗η(p̃)[u] = η(p) [DΦ(p̃)[u]]

Proof. Again, let bases x1, ..., xn and t1, ..., tm of V and Ṽ be fixed, and let x1, ..., xn

and t1, ..., tm be the respective coordinate functions. Since η is a 1-form on U ,
we can write

η =
n∑

i=1

ηidx
i

where each ηi is a function (equivalently a 0-form) on U . So by the additivity
(need to prove this! Update: it turns out that thismust be assumedasaproperty
of Φ∗) of Φ∗, we see that

Φ∗η =
n∑

i=1

Φ∗(ηidx
i)

Writing ηidx
i = ηi ∧ dxi, we see that Φ∗(ηidx

i) = Φ∗ηi ∧Φ∗dxi. Now ηi is a function
and Φ∗dxi can be computed as in Proposition 8.13. So, we have

Φ∗ηi ∧ Φ∗dxi = (ηi ◦ Φ) ∧
m∑
j=1

∂(xi ◦ Φ)
∂tj

dtj =
m∑
j=1

(ηi ◦ Φ)
∂(xi ◦ Φ)

∂tj
dtj

So, we have

Φ∗η =
n∑

i=1

m∑
j=1

(ηi ◦ Φ)
∂(xi ◦ Φ)

∂tj
dtj

The above equation means that for any p̃ ∈ Ũ , u ∈ Ṽ and p = Φ(p),

Φ∗η(p̃)[u] =
n∑

i=1

m∑
j=1

(ηi ◦ Φ)(p̃)
∂(xi ◦ Φ)(p̃)

∂tj
dtj(p̃)[u]

=
n∑

i=1

ηi(p)
m∑
j=1

∂(xi ◦ Φ)(p̃)
∂tj

tj[u]

=
n∑

i=1

ηi(p)x
i[DΦ(p̃)[u]]

=
n∑

i=1

ηi(p)dx
i(p)[DΦ(p̃)[u]]

= η(p)[DΦ(p̃)[u]]

and this proves the claim. ■
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Proposition 8.15. Letm = n, and let x1, ..., xn be a basis for V and let t1, ..., tn be
a basis for Ṽ . Then

Φ∗dx1 ∧ ... ∧ dxn = JΦdt
1 ∧ ... ∧ dtn

where JΦ is the determinant of the Jacobian of Φ.

Proof. This is a rather straightforward computation.

Φ∗dx1 ∧ ... ∧ dxn = Φ∗dx1 ∧ ... ∧ Φ∗dxn

= dΦ∗x1 ∧ ... ∧ dΦ∗xn

= d(x1 ◦ Φ) ∧ ... ∧ d(xn ◦ Φ)

=

(
n∑

i=1

∂(x1 ◦ Φ)
∂ti

dti

)
∧ ... ∧

(
n∑

i=1

∂(xn ◦ Φ)
∂ti

dti

)

=
n∑

i1=1

...
n∑

in=1

∂(x1 ◦ Φ)
∂ti1

...
∂(xn ◦ Φ)

∂tin
dti1 ∧ ... ∧ dtin

=
∑
σ∈Sn

∂(x1 ◦ Φ)
∂tσ(1)

...
∂(xn ◦ Φ)
∂tσ(n)

sgn(σ)dt1 ∧ ... ∧ dtn

= JΦdt
1 ∧ ... ∧ dtn

Above, we used two crucial properties of wedge products. ■

Example 8.1. (Exterior Calculus in R3). Let x, y, z denote the standard coordi-
nate functions in R3. We will investigate the formulae for differentials in this
setting.

(1) Given a function f ,

df =
∂f

∂x
dx+

∂f

∂y
dy +

∂f

∂z
dz

(2) Given a 1-form ω = ωxdx+ωydy+ωzdz where each ωx, ωy, ωz is a function,
we have the following.

dω = dωx ∧ dx+ dωy ∧ dy + dωz ∧ dz

=

(
∂ωx

∂x
dx ∧ dx+

∂ωx

∂y
dy ∧ dx+

∂ωx

∂z
dz ∧ dx

)
+(

∂ωy

∂x
dx ∧ dy +

∂ωy

∂y
dy ∧ dy +

∂ωy

∂z
dz ∧ dy

)
+(

∂ωz

∂x
dx ∧ dz +

∂ωz

∂y
dy ∧ dz +

∂ωz

∂z
dz ∧ dz

)
=

(
∂ωy

∂x
− ∂ωx

∂y

)
dx ∧ dy +

(
∂ωz

∂y
− ∂ωy

∂z

)
dy ∧ dz +

(
∂ωx

∂z
− ∂ωz

∂x

)
dz ∧ dx
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(3) Given a 2-form η = ηxydx∧dy+ηyzdy∧dz+ηzxdz∧dxwehave the following.
dη = dηxy ∧ dx ∧ dy + dηyz ∧ dy ∧ dz + dηzx ∧ dz ∧ dx

=

(
∂ηxy
∂x

dx+
∂ηxy
∂y

dy +
∂ηxy
∂z

dz

)
∧ dx ∧ dy+(

∂ηyz
∂x

dx+
∂ηyz
∂y

dy +
∂ηyz
∂z

dz

)
∧ dy ∧ dz+(

∂ηzx
∂x

dx+
∂ηzx
∂y

dy +
∂ηzx
∂z

dz

)
∧ dz ∧ dx

=

(
∂ηxy
∂z

+
∂ηyz
∂x

+
∂ηzx
∂y

)
dx ∧ dy ∧ dz

(4) If we are given a 1-form ρ = ρxyzdx ∧ dy ∧ dz, then we easily see that
dρ = 0.

Example 8.2. (Exterior Calculus in R2). Let x, y denote the standard coordinate
functions in R2. Here we will investigate the formulae for differentials.

(1) Given a function f , we have

df =
∂f

∂x
dx+

∂f

∂y
dy

(2) Given a 1-form ω = ωxdx+ ωydy, we have the following.
dω = dωx ∧ dx+ dωy ∧ dy

=

(
∂ωx

∂x
dx+

∂ωx

∂y
dy

)
∧ dx+

(
∂ωy

∂x
dx+

∂ωy

∂y
dy

)
∧ dy

=

(
∂ωy

∂x
− ∂ωx

∂y

)
dx ∧ dy

(3) If we are given a 2-form η = ηxydx∧dy thenwe can easily see that dη = 0.

Theorem 8.16. Let ω be any 1-form in R2 such that dω = 0. Then, there is a
function f such that df = ω.

Remark 8.16.1. 1-forms ω for which dω = 0 are called closed forms. Those ω
for which ω = dη for some function η are called exact forms.

Proof. Let ω be a 1-form on R2 where
ω = ω1dx+ ω2dy

such that dω = 0, i.e ω is a closed 1-form (here ω1, ω2 are C ∞ real valued maps
on R2). Let f : R2 → R be the function defined by

f(x, y) =

∫ 1

0

(xω1(xt, yt) + yω2(xt, yt))dt

By Leibniz’ Rule, we have that

D1f(x, y) =

∫ 1

0

ω1(xt, yt) + xtD1ω1(xt, yt) + ytD1ω2(xt, yt)dt

Because ω is a closed form, we have
D1ω2 = D2ω1
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So, we see that

D1f(x, y) =

∫ 1

0

ω1(xt, yt) + xtD1ω1(xt, yt) + ytD1ω2(xt, yt)dt

=

∫ 1

0

ω1(xt, yt) + xtD1ω1(xt, yt) + ytD2ω1(xt, yt)dt

=

∫ 1

0

d

dt
[tω1(xt, yt)]dt

= tω1(xt, yt)|10
= ω1(x, y)

where in the last step we used the fundamental theorem of calculus. Similarly,
we can show that

D2f(x, y) = ω2(x, y)

and hence it follows that ω = df , completing the proof. ■
Remark 8.16.2. Observe that the same proof will work if ω was a 1-form on an
open set U , where U is star shaped, i.e 0 ∈ U and for any (x, y) ∈ U , the line
t(x, y) for 0 ≤ t ≤ 1 is contained in U .

8.5. SingularCubical Chains. Let S be any set. The free Z-module over the set
S is the set of all maps n : S → Z such that n(c) 6= 0 for only finitely many c ∈ S.
This set clearly is a Z-module with a basis, and hence it is free. Any element n
of this module is written as ∑

c∈S

n(c)c

where the above sum only includes those c ∈ S for which n(c) 6= 0.

Definition 8.14. Let A be any topological space. A singular n-cube in A is a
continuous map c : [0, 1]n → A. Most of the time A will be an open subset of Rm

for somem ∈ N.
A singular cubical n-chain in A is an element of the free Z-module generated

by n-cubes in A. Informally, it is a finite sum∑
i

nici

where ni ∈ Z and ci is an n-cube in A.

Example 8.3. A 0-cube is a map c : {0} → A, and we identify it with its image.
So, a 0-chain is just the free Z-module generated by the set.

Definition 8.15. For an n-cube c, the boundary of the cube, denoted by ∂c, is
defined as an (n−1)-chain whose definition we will see below for n = 1, 2. Once
this is defined, the boundary of an n-chain is defined by linearity as

∂

(∑
i

nici

)
:=
∑
i

ni∂ci

(1) For a 1-cube γ : [0, 1] → A, we define
∂γ = γ(1)− γ(0)

where the RHS is an element of the free Z-module generated by A.
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(2) Consider the identity 1-cube I2 : [0, 1]2 → [0, 1]2, i.e I2 is the identity map.
We define ∂I2 to be the four edges of the cube inR2 in counter-clockwise
orientation, i.e

∂I2 = −I2(1,0) + I2(1,1) + I2(2,0) − I2(2,1)

where each term on the RHS is a 1-cube, each mapping the interval [0, 1]
to an edge of the square [0, 1]2.

I2(1,0)(t) = (0, t)

I2(1,1)(t) = (1, t)

I2(2,0)(t) = (t, 0)

I2(2,1)(t) = (t, 1)

The boundary ∂c of an arbitrary 2-cube c : [0, 1]2 → A is defined as

∂c = c ◦ ∂I2 := −c ◦ I2(1,0) + c ◦ I2(1,1) + c ◦ I2(2,0) − c ◦ I2(2,1)
In general, once we know that definition of ∂In, we can define ∂c for any n-cube
c by ∂c = c ◦ ∂In.

Proposition 8.17. For any 2-cube c, ∂(∂c) = 0.

Proof. Let c : [0, 1]2 → [0, 1]2 be any arbitrary 2-cube. Then, we have the follow-
ing.

∂(∂c) = ∂(−c ◦ I2(1,0) + c ◦ I2(1,1) + c ◦ I2(2,0) − c ◦ I2(2,1))
= −∂(c ◦ I2(1,0)) + ∂(c ◦ I2(1,1)) + ∂(c ◦ I2(2,0))− ∂(c ◦ I2(2,1))
= −(c(0, 1)− c(0, 0)) + (c(1, 1)− c(1, 0)) + (c(1, 0)− c(0, 0))− (c(1, 1)− c(0, 1))

= 0

and this completes the proof. ■

Remark 8.17.1. This fact is true for general n-cubes as well.
8.6. Stokes Theorem in One Dimension. Let’s start with a discussion of this
theorem in one dimension. Let ω̃ be a 1-form defined on an open interval I con-
taining [0, 1]. Let t denote the natural coordinate in R. So, ω̃ = ω̃tdt for some
function ω̃t on I . We define ∫

[0,1]

ω :=

∫ 1

0

ω̃(t)dt

where the integral on the RHS is the ordinary Riemann Integral.
Let ω be a C ∞ 1-form on an open set U in R. Consider a singular 1-cube, i.e a

C ∞ map γ : [0, 1] → U . To say that γ is C ∞ just means that γ extends as a C ∞

map on an open interval Ĩ containing [0, 1]. Let x denote the natural coordinate
function on U and let t be the natural coordinate function on Ĩ . Then we have
the following.

(1) ω = ωxdx for a unique function ωx on U .
(2) γ∗ω = γ∗(ωxdx) = γ∗ωx ∧ dγ∗x = (ωx ◦ γ)

d(x ◦ γ)
dt

dt
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So we define ∫
γ

ω :=

∫
[0,1]

γ∗ω =

∫ 1

0

(ωx ◦ γ)(t)
d(x ◦ γ)(t)

dt
dt

Now, suppose ω = df for some function f on U . Then,∫
γ

df =

∫ 1

0

df

dt
(γ(t))

dγ(t)

dt
dt = f(γ(1))− f(γ(0))

Observe that ∂γ is the 0-chain γ(1)−γ(0). So, the above equation can be written
as ∫

γ

df =

∫
∂γ

f

For a 1-chain, we define∫
∑

i niγi

ω :=
∑
i

ni

∫
γi

ω =
∑
i

ni

∫
[0,1]

γ∗ω

and so we see that for a function f on U ,∫
∑

i niγi

df =
∑
i

ni

∫
γi

df =
∑
i

ni

∫
∂γi

f =:

∫
∂(

∑
i niγi)

f

8.7. StokesTheoremwithproof indimensiontwo. Thegeneral versionofStokes’
Theorem is as follows.

Theorem 8.18 (Stokes’ Theorem). Let η be a k − 1-form on an open set U ⊂ V ,
where V is an n-dimensional real vector space. Let

∑
i nici be a k-chain in U .

Then ∫
∑

nici

dη =

∫
∂(

∑
i nici)

η

Proof. Proof for k = 1 is above, and for k = 2 it is given in the lecture notes. ■

Example 8.4. Here is an interesting example. Consider the 1-form η on R2 \
{(0, 0)}.

η =
−y

x2 + y2
dx+

x

x2 + y2
dy

(1) Let us first compute dη. We have

dη =

(
y2 − x2

(x2 + y2)2
− y2 − x2

(x2 + y2)2

)
dx ∧ dy = 0

(2) Let Φ : {(r, θ) | r > 0} → R2 \ {(0, 0)} be the map

Φ(r, θ) = (r cos θ, r sin θ)
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We show that Φ∗η = dθ. We have the following chain of equations.

Φ∗η = Φ∗
(

−y

x2 + y2

)
∧ Φ∗dx+ Φ∗

(
x

x2 + y2

)
∧ Φ∗dy

=

(
−y

x2 + y2

)
◦ Φ ∧ d(x ◦ Φ) +

(
x

x2 + y2

)
◦ Φ ∧ d(y ◦ Φ)

=

(
−r sin θ

r2

)
∧ d(r cos θ) +

(
r cos θ

r2

)
∧ d(r sin θ)

=
−r sin θ

r2
[cos θdr − r sin θdθ] + r cos θ

r2
[sin θdr + r cos θdθ]

= dθ

(3) For n ∈ Z, let γn be the 1-cube in R2 \ {(0, 0)} given by
γn(t) = (cos 2πnt, sin 2πnt)

We show that ∫
γ

η = 2πn

Observe that ∫
γ

η =

∫
[0,1]

γ∗η

Now,

γ∗η = γ∗
(

−y

x2 + y2

)
∧ γ∗dx+ γ∗

(
x

x2 + y2

)
∧ γ∗dy

= − sin 2πnt ∧ d(x ◦ γ) + cos 2πnt ∧ d(y ◦ γ)
= − sin 2πnt ∧ d(cos 2πnt) + cos 2πnt ∧ d(sin 2πnt)
= (2πn) sin2 2πntdt+ (2πn) cos2 2πntdt
= 2πndt

and hence ∫
γ

η =

∫ 1

0

2πndt = 2πn

(4) So, we see that there is no 2-chain c in R2 \ {(0, 0)} such that ∂c = η, and
this is an easy consequence of Stokes Theorem 8.18 because we have
already computed that dη = 0.

(5) From this, we can also conclude that there is no function θ such that
dθ = η. To see this, if there was such a function, then we would get by
Stokes Theorem 8.18 ∫

γ

η =

∫
γ

dθ =

∫
∂γ

θ

However, because γ(1) − γ(0) = 0, it follows that ∂γ = 0 which implies
that the integral on the extreme right side is zero, a contradiction.
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