
COOKBOOK-1 SOLUTIONS

SIDDHANT CHAUDHARY

1). dy
dx =

1 + y2

x
, x > 0

Solution. This is seen to be a separable DE. We have
1

1 + y2
dy
dx =

1

x

So, integrating both sides with respect to x, we see that∫
1

1 + y2
dy
dxdx =

∫
1

1 + y2
dy =

∫
1

x
dx = ln x+K

for some K ∈ R. Now, ∫
1

1 + y2
dy = arctan y +K ′

for some K ′ ∈ R. Combining all of this, we get
arctan y = ln x+ C

for some C ∈ R, and this is the general solution of the DE. ■

2). dy
dx =

x2 + xy + y2

x2
.

Solution. This is an example of a homogeneous first order DE. Assume that x ̸= 0
and put y = vx. The equation reduces to

x
dv
dx + v = g(v) = 1 + v + v2

which is the same as the equation

x
dv
dx = 1 + v2

This equation is clearly separable. We get
1

1 + v2
dv
dx =

1

x

This can be easily solved to obtain
arctan v = ln x+ C

for some constant C. This gives us

arctan
(y
x

)
= ln x+ C

■
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3). dy
dx =

3x2 − 2x− 1

2(y − 1)
, y(3) = 1−

√
13.

Solution. This is easily seen to be a separable DE. In particular, we have

(2y − 2)
dy
dx = 3x2 − 2x− 1(0.1)

Now, consider the function g(y) = 2y − 2. The antiderivative of g(y) is∫
g(y)dy = y2 − 2y +K

for some K ∈ R. So, integrating both sides of equation (0.2) with respect to x, we get∫
(2y − 2)

dy
dxdx =

∫
(2y − 2)dy =

∫
(3x2 − 2x− 1)dx

and hence we obtain
y2 − 2y = x3 − x2 − x+ C

for some C ∈ R. Using the initial condition y(3) = 1−
√
13, we get

(1−
√
13)2 − 2(1−

√
13) = 27− 9− 3 + C

and from here we obtain C = −3. Hence, we obtain the implicit equation
y2 − 2y − x3 + x2 + x+ 3 = 0

■

4). (1 + x)
dy
dx + y = 1 + x, x > 0.

Solution. This is easily seen to be a first order linear DE. Dividing throughout by
(1 + x) we get

dy
dx +

1

(1 + x)
y = 1

Observe that ∫
1

(1 + x)
dx = ln(1 + x) +K

for some constant K. So, the integrating factor is
µ(x) = eln(1+x)+K = K ′(1 + x)

where K ′ ∈ R. So, the solution of the DE is given by

y =
1

K ′(1 + x)

∫
K ′(1 + x)dx =

1

(1 + x)

[
(1 + x)2

2
+R

]
for some constant R ∈ R. ■

5). dy
dx =

x− 2x3

16 + 2y3

Solution. This is again a separable DE. We get

(16 + 2y3)
dy
dx = x− 2x3

Integrating both sides of the above equation, we can obtain
y4 + 32y = x2 − x4 + C

■
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6). Suppose y = φ(x) is a solution of the problem in 5) such that φ(x0) = y0, and
such that φ is defined as a C 1 function in a neighborhood of x0. We find the forbidden
values of y0.
Solution. The idea is to use the Implicit Function Theorem. Consider the function

Φ(x, y) = y4 + 32y + x4 − x2 − C

So, (x0, y0) ∈ M , where M = Φ−1(0) and φ is a solution to the implicit equation
Φ(x, φ(x)) = 0

around the point x0. So, we want
∂Φ

∂y
(x0, y0) ̸= 0

This is equivalent to saying
4y3 + 32 ̸= 0 , at y = y0

which is equivalent to saying y30 ̸= −8, and hence y0 ̸= −2. ■

7). dy
dx =

x− e−x

y + ey

Solution. This is again a separable DE. We get

(y + ey)
dy
dx = x− e−x

By integrating both sides, we can obtain
y2

2
+ ey =

x2

2
+ e−x + C

where C ∈ R. ■
8). x2y′ + 2xy − y3 = 0, x > 0.
Solution. Dividing throughout by x2, we obtain

y′ +
2

x
y =

1

x2
y3

This is an example of a Bernoulli Equation. We substitute v = y1−3 = y−2 and get

−1

2
v′ +

2

x
v =

1

x2

which is the same as the equation

v′ − 4

x
v = − 2

x2

and this is a linear first order DE. We have∫
−4

x
dx = −4ln x+K

for some K ∈ R. So the integrating factor is

µ(x) = e−4ln x+K =
K ′

x4

where K ′ ∈ R. So, the solution of the linear DE is

v =
x4

K ′

∫
K ′

x4
· −2

x2
dx = −2x4

(
−5

x5
+R

)
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where R ∈ R is some constant. From this, y can be obtained. ■

9). dy
dx =

y2 − 4x2

2xy

Solution. This is the same as the equation
dy
dx =

y

2x
− 2x

y

This is a homogeneous DE. We assume x ̸= 0, and we put y = vx. The equation
becomes

x
dv
dx + v = g(v) =

v

2
− 2

v
which is the same as the equation

x
dv
dx =

v

2
− 2

v
=

v2 − 4

2v
and this is a separable DE. We get

2v

v2 − 4

dv
dx =

1

x

Integrating both sides with respect to x, we can solve for v, and hence we can solve
for y. ■

10). t ln t
du
dt + u = tet, t > 1

Solution. Dividing throughout by t ln t, we get
du
dt +

1

t ln t
u =

et

ln t
This is a first order linear DE. Observe that∫

1

t ln t
dt = ln ln t+K

for some K ∈ R. So, the integrating factor is
eln ln t+K = K ′ln t

where K ′ ∈ R. So, the solution of the DE is

u =
1

K ′ln t

∫
K ′ln t

et

ln t
dt = 1

ln t
(et + C)

for some C ∈ R. ■

11). dy
dx + y = e−2x

Solution. This is a clear-cut first order linear DE. We have∫
dx = x+K

for some K ∈ R. Hence, the integrating factor is
µ(x) = ex+K = K ′ex

for some K ′ ∈ R. So the solution of the DE is

y =
1

K ′ex

∫
K ′exe−2xdx =

1

ex
(−e−x + C)
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for some C ∈ R. ■

12). sin x
dy
dx + (cosx)y = ex

Solution. For simplicity we assume that x ∈ (0, π). So, dividing throughout by the
sine term, this becomes a linear first order DE.

dy
dx + (cot x)y =

ex

sin x

So, the integrating factor µ(x) in our case is

µ(x) = exp
∫

cot xdx = exp [ln sin x+K]

for some K ∈ R. So, the integrating factor is
µ(x) = eKeln sin x = K ′eln sin x = K ′sin x

So, the general solution to this DE is given by

y = µ(x)−1

∫
µ(x)

ex

sin x
dx =

1

K ′sin x

∫
K ′sin x

ex

sin x
dx =

ex + C

sin x

for some C ∈ R. ■
13). (ex sin y − 2y sin x)dx+ (ex cos y + 2 cosx)dy = 0

Solution. This equation is equivalent to

(ex sin y − 2y sin x) + (ex cos y + 2 cosx)dy
dx = 0

We now show that this is an exact equation. To see this, observe that
∂(ex sin y − 2y sin x)

∂y
= ex cos y − 2 sin x

and that
∂(ex cos y + 2 cosx)

∂x
= ex cos y − 2 sin x

and the above two equations show that our DE is exact. Now, we need to find P such
that

∂P

∂x
= ex sin y − 2y sin x ,

∂P

∂y
= ex cos y + 2 cosx(0.2)

So, consider

P (x, y) =

∫
ex sin y − 2y sin xdx

= ex sin y + 2y cosx+ g(y)

for some differentiable function g of y. Clearly, differentiating P (x, y) with respect to
x, we see that P (x, y) satisifies the first half of equation (0.2). Now, differentiating
P (x, y) with respect to y and equating it to the RHS of the second half of equation
(0.2) we get

∂P

∂y
= ex cos y + 2 cosx+ g′(y) = ex cos y + 2 cosx

so that g′(y) = 0, i.e g(y) = K for some K ∈ R. We can take K = 0. So, the solution
to our DE is given by the implicit equation

P (x, y) = ex sin y + 2y cosx = C
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for some C ∈ R. ■

14). (1 + x)
dy
dx + y = 1 + x, x > 0

Solution. This is the same as problem 4). ■

15). xy′ = y + x2sin x, y(π) = 0

Solution. Dividing throughout by x, we get the equation

y′ − 1

x
y = x sin x

This is a first order linear DE. Observe that∫
1

x
dx = ln x+K

for some K ∈ R. So the integrating factor is
µ(x) = eln x+K = K ′x

where K ′ ∈ R. So, the solution of our DE is

y =
1

K ′x

∫
K ′x2sin xdx =

1

x
(2x sin x− (x2 − 2)cosx+ C)

for some C ∈ R. Using the fact that y(π) = 0 we can get the value of C. ■

16). dy
dx +

2

x
y =

y3

x2

Solution. This is the same as problem 8). ■

17). y cosx+ 2xey + (sin x+ x2ey − 1)y′ = 0

Solution. This is an example of an exact DE. To show this, observe that
∂(y cosx+ 2xey)

∂y
= cosx+ 2xey

and
∂(sin x+ x2ey − 1)

∂x
= cosx+ 2xey

and hence
∂(y cosx+ 2xey)

∂y
=

∂(sin x+ x2ey − 1)

∂x
Now, put

P (x, y) =

∫
y cosx+ 2xey dx = y sin x+ x2ey + g(y)

where g is some differentiable function of y. Now, we have
∂P (x, y)

∂y
= sin x+ 2xey + g′(y)

Now, put
sin x+ 2xey + g′(y) = sin x+ 2xey − 1

and hence we obtain g′(y) = −1, which gives us g(y) = −y +C, for some constant C.
We take C = 0. So,

P (x, y) = y sin x+ x2ey − y
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So, our DE is
y sin x+ x2ey − y = C

where C ∈ R is some constant. ■

18). x2y′′ + 2xy′ − 1 = 0, x > 0

Solution. This is a second order DE with the dependent variable missing. Note that
the DE is equivalent to

y′′ =
−2

x
y′ +

1

x2

Putting v = y′, we get the equation

v′ =
−2

x
v +

1

x2

which is the same as the equation

v′ +
2

x
v =

1

x2

This is a first order linear DE. Observe that∫
2

x
dx = 2 ln x+K

for some K ∈ R. So the integrating factor is
µ(x) = e2 ln x+K = K ′x2

and hence the solution to the linear DE is

v =
1

K ′x2

∫
K ′x2 1

x2
dx =

1

x2
(x+ C1)

for some C1 ∈ R. So, we get

y =

∫
v dx =

∫
1

x2
(x+ C1)dx = ln x− C1

x2
+ C2

where C2 ∈ R. ■

19). xy′ + y =
√
x, x > 0

Solution. ■

20).

Solution. This is another first order linear DE. We have

y′ +
1

x
y =

1√
x

We obtain that the integration factor of this is
µ(x) = K ′x

for some constant K ′ ∈ R. So, the solution to our DE is

y =
1

K ′x

∫
K ′x

1√
x

dx =
1

x
(
2

3
x3/2 + C)

for some C ∈ R. ■
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21). yy′′ − (y′)3 = 0

Solution. This is an example of a DE with the independent variable missing. We
have

y′′ =
(y′)3

y

We put v = y′, and this gives us the DE

v
dv
dy =

v3

y

which is clearly a separable DE. We have
1

v2
dv
dy =

1

y

which, on integrating both sides, gives us
−1

v
= ln y + C

for some C ∈ R. So, we get
dy
dx = v(y) =

−1

ln y + C

This one is a separable DE. We get

−(ln y + C)
dy
dx = 1

and hence this gievs us
−(yln y − y + Cy) = x+ C ′

where C,C ′ ∈ R. ■

22). 2y2y′′ + 2y(y′)2 = 1

Solution. We assume that y > 0 at all points where it is defined. Dividing throughout
by 2y2, this DE becomes

y′′ =
1

2y2
− (y′)2

y

This is a second order equation with the independent variable missing. Putting v = y′,
we see that

v
dv
dy =

1

2y2
− v2

y

which on dividing throughout by v, we rewrite as
dv
dy +

v

y
=

1

2y2
v−1

This is an example of a Bernoulli equation. We substitute u = v1−(−1) = v2 and get
1

2

du
dy +

u

y
=

1

2y2

This is a first order linear DE. The integrating factor is

µ(y) = exp
∫

2

y
dy = exp (2 ln y +K) = eKy2 = K ′y2
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where K ′ ∈ R. So, the solution to the linear DE is

u =
1

K ′y2

∫
K ′y2

1

y2
dy =

1

y2

∫
dy =

y + C

y2

for some C ∈ R. So, it follows that

v2 =
y + C

y2

and hence

v =

√
y + C

y2
=

√
y + C

y

So, we just have to solve the equation
dy
dx =

√
y + C

y

which is clearly a separable DE. We get
y√

y + C

dy
dx = 1

Integrating both sides with respect to x, we get∫
y√

y + C
dy =

∫
dx = x+ C0

for some C0 ∈ R. The integral on the LHS can be solved by substituting t = y + C,
and we get∫

y√
y + C

dy =

∫
t− C√

t
dt =

∫ √
tdt− C

∫
1√
t

dt = 2t
3
2

3
− 2Ct

1
2 + C ′

for some C ′ ∈ R. So, we get∫
y√

y + C
dy =

2(y + C)
3
2

3
− 2C(y + C)

1
2 + C ′

and combining all this, we see that the solution to our original DE is
2(y + C)

3
2

3
− 2C(y + C)

1
2 + C ′ = x+ C0

which can be rewritten as
2(y + C)

3
2

3
− 2C(y + C)

1
2 = x+K

where K = C0 − C ′ ∈ R. ■

23). y′ = (1− 2x)y2, y(0) =
−1

6

Solution. This is a separable DE. We have
1

y2
y′ = (1− 2x)

Integrating both sides, we get
1

y2
dy =

∫
1− 2xdx
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and this gives us
−1

y
= x− x2 + C

where C ∈ R is some constant. Using the given initial condition, we get C = 6. Hence,
the solution of the DE is

y =
1

x2 − x− 6
This is defined on R minus the roots of the given polynomial. ■

24). y2
√
1− x2y′ = arcsin x, y(0) = 1.

Solution. This is another example of a separable DE. In particular, we have

y2y′ =
arcsin x√
1− x2

(0.3)

Now, consider the function g(y) = y2. An antiderivative of g(y) is easily seen to be∫
g(y)dy =

y3

3
+K

for some K ∈ R. So, integrating both sides of equation (0.3) with respect to x, we get∫
y2y′dx =

∫
y2dy =

∫ arcsin x√
1− x2

dx

Now, the integral on the extreme right hand side in the above equation can be easily
calculated by the substitution t = arcsin x, and here we are using the fact that

arcsin′ x =
1√

1− x2

for |x| < 1. So, we get∫ arcsin x√
1− x2

dx =

∫
tdt = t2

2
+K ′ =

(arcsin x)2

2
+K ′

for some K ′ ∈ R. Combining everything, we see that∫
y2dy =

(arcsin x)2

2
+K ′

and hence we obtain the implicit equation
y3

3
=

(arcsin x)2

2
+ C

for some C ∈ R. Using the initial condition y(0) = 1, we get C = 1
3
. So, the equation

is
y3

3
=

(arcsin x)2

2
+

1

3
which can be written as

y =
3

√
3(arcsin x)2

2
+ 1

Now, the cube root function is defined on all of R, and arcsin x is defined on the
interval [−1, 1]. Since we are looking for an open interval, the interval of existence in
this case is (−1, 1). ■
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25). xyex
2y + x2ex

2yy′ = 0

Solution. First, let us check whether this DE is exact. We have
∂(xyex

2y)

∂y
= xex

2y + x3yex
2y

and
∂(x2ex

2y)

∂x
= 2xex

2y + 2x3yex
2y

So, this DE is not exact. ■

26). 3x2y sin(x+ y)+x3y cos(x+ y)+ y sec2(xy)+ (x3 sin(x+ y)+x3y cos(x+ y)+
x sec2(xy))y′ = 0

Solution. First, let’s check if this DE is exact. We have
∂(3x2y sin(x+ y) + x3y cos(x+ y) + y sec2(xy))

∂y
= 3x2 sin(x+ y) + 3x2y cos(x+ y)+

x3 cos(x+ y)− x3y sin(x+ y) + sec2(xy) + 2xy sec2(xy)tan(xy)
and also

∂(x3 sin(x+ y) + x3y cos(x+ y) + x sec2(xy))
∂x

= 3x2 sin(x+ y) + x3 cos(x+ y)+

3x2y cos(x+ y)− x3y sin(x+ y) + sec2(xy) + 2xy sec2(xy)tan(xy)
and hence we see that
∂(3x2y sin(x+ y) + x3y cos(x+ y) + y sec2(xy))

∂y
=

∂(x3 sin(x+ y) + x3y cos(x+ y) + x sec2(xy))
∂x

so that the given DE is exact. Now, let

P (x, y) =

∫
x3 sin(x+ y) + x3y cos(x+ y) + x sec2(xy)dx

Complete this computation!
■

27). αye2xydx+ (xe2xy + y)dy = 0.

Solution. The given DE is equivalent to

αye2xy + (xe2xy + y)
dy
dx = 0

First we have
∂(αye2xy)

∂y
= αe2xy + α2xye2xy = αe2xy(1 + 2xy)

Next, we have
∂(xe2xy + y)

∂x
= e2xy + 2xye2xy = e2xy(1 + 2xy)

Now for the DE to be exact, the right hand sides of the above two equations must be
equal, i.e

αe2xy(1 + 2xy) = e2xy(1 + 2xy)

and hence α = 1 makes the given DE exact. ■
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28). (x+ y)y2dx+ (x2y + αxy2)dy = 0.
Solution. We follow a similar strategy as above. The given DE is equivalent to

(x+ y)y2 + (x2y + αxy2)
dy
dx = 0

First we have
∂((x+ y)y2)

∂y
= 2xy + 3y2

Next, we have
∂(x2y + αxy2)

∂x
= 2xy + αy2

Now for the DE to be exact, the right hand sides of the above two equations must be
equal, i.e

2xy + 3y2 = 2xy + αy2

and hence α = 3 makes the given DE exact. ■
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