COOKBOOK-1 SOLUTIONS

SIDDHANT CHAUDHARY

1). $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{1+y^{2}}{x}, \quad x>0$

Solution. This is seen to be a separable DE. We have

$$
\frac{1}{1+y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{1}{x}
$$

So, integrating both sides with respect to x, we see that

$$
\int \frac{1}{1+y^{2}} \frac{\mathrm{~d} y}{\mathrm{~d} x} \mathrm{~d} x=\int \frac{1}{1+y^{2}} \mathrm{~d} y=\int \frac{1}{x} \mathrm{~d} x=\ln x+K
$$

for some $K \in \mathbb{R}$. Now,

$$
\int \frac{1}{1+y^{2}} \mathrm{~d} y=\arctan y+K^{\prime}
$$

for some $K^{\prime} \in \mathbb{R}$. Combining all of this, we get

$$
\arctan y=\ln x+C
$$

for some $C \in \mathbb{R}$, and this is the general solution of the DE .
2). $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x^{2}+x y+y^{2}}{x^{2}}$.

Solution. This is an example of a homogeneous first order DE. Assume that $x \neq 0$ and put $y=v x$. The equation reduces to

$$
x \frac{\mathrm{~d} v}{\mathrm{~d} x}+v=g(v)=1+v+v^{2}
$$

which is the same as the equation

$$
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=1+v^{2}
$$

This equation is clearly separable. We get

$$
\frac{1}{1+v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x}
$$

This can be easily solved to obtain

$$
\arctan v=\ln x+C
$$

for some constant C. This gives us

$$
\arctan \left(\frac{y}{x}\right)=\ln x+C
$$

3). $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{3 x^{2}-2 x-1}{2(y-1)}, y(3)=1-\sqrt{13}$.

Solution. This is easily seen to be a separable DE. In particular, we have

$$
\begin{equation*}
(2 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x-1 \tag{0.1}
\end{equation*}
$$

Now, consider the function $g(y)=2 y-2$. The antiderivative of $g(y)$ is

$$
\int g(y) \mathrm{d} y=y^{2}-2 y+K
$$

for some $K \in \mathbb{R}$. So, integrating both sides of equation (0.2) with respect to x, we get

$$
\int(2 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x=\int(2 y-2) \mathrm{d} y=\int\left(3 x^{2}-2 x-1\right) \mathrm{d} x
$$

and hence we obtain

$$
y^{2}-2 y=x^{3}-x^{2}-x+C
$$

for some $C \in \mathbb{R}$. Using the initial condition $y(3)=1-\sqrt{13}$, we get

$$
(1-\sqrt{13})^{2}-2(1-\sqrt{13})=27-9-3+C
$$

and from here we obtain $C=-3$. Hence, we obtain the implicit equation

$$
y^{2}-2 y-x^{3}+x^{2}+x+3=0
$$

4). $\quad(1+x) \frac{\mathrm{d} y}{\mathrm{~d} x}+y=1+x, \quad x>0$.

Solution. This is easily seen to be a first order linear DE. Dividing throughout by $(1+x)$ we get

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{1}{(1+x)} y=1
$$

Observe that

$$
\int \frac{1}{(1+x)} \mathrm{d} x=\ln (1+x)+K
$$

for some constant K. So, the integrating factor is

$$
\mu(x)=e^{\ln (1+x)+K}=K^{\prime}(1+x)
$$

where $K^{\prime} \in \mathbb{R}$. So, the solution of the DE is given by

$$
y=\frac{1}{K^{\prime}(1+x)} \int K^{\prime}(1+x) d x=\frac{1}{(1+x)}\left[\frac{(1+x)^{2}}{2}+R\right]
$$

for some constant $R \in \mathbb{R}$.
5). $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-2 x^{3}}{16+2 y^{3}}$

Solution. This is again a separable DE. We get

$$
\left(16+2 y^{3}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=x-2 x^{3}
$$

Integrating both sides of the above equation, we can obtain

$$
y^{4}+32 y=x^{2}-x^{4}+C
$$

6). Suppose $y=\varphi(x)$ is a solution of the problem in 5) such that $\varphi\left(x_{0}\right)=y_{0}$, and such that φ is defined as a \mathscr{C}^{1} function in a neighborhood of x_{0}. We find the forbidden values of y_{0}.
Solution. The idea is to use the Implicit Function Theorem. Consider the function

$$
\Phi(x, y)=y^{4}+32 y+x^{4}-x^{2}-C
$$

So, $\left(x_{0}, y_{0}\right) \in M$, where $M=\Phi^{-1}(0)$ and φ is a solution to the implicit equation

$$
\Phi(x, \varphi(x))=0
$$

around the point x_{0}. So, we want

$$
\frac{\partial \Phi}{\partial y}\left(x_{0}, y_{0}\right) \neq 0
$$

This is equivalent to saying

$$
4 y^{3}+32 \neq 0 \quad, \quad \text { at } y=y_{0}
$$

which is equivalent to saying $y_{0}^{3} \neq-8$, and hence $y_{0} \neq-2$.
7). $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x-e^{-x}}{y+e^{y}}$

Solution. This is again a separable DE. We get

$$
\left(y+e^{y}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=x-e^{-x}
$$

By integrating both sides, we can obtain

$$
\frac{y^{2}}{2}+e^{y}=\frac{x^{2}}{2}+e^{-x}+C
$$

where $C \in \mathbb{R}$.
8). $\quad x^{2} y^{\prime}+2 x y-y^{3}=0, \quad x>0$.

Solution. Dividing throughout by x^{2}, we obtain

$$
y^{\prime}+\frac{2}{x} y=\frac{1}{x^{2}} y^{3}
$$

This is an example of a Bernoulli Equation. We substitute $v=y^{1-3}=y^{-2}$ and get

$$
-\frac{1}{2} v^{\prime}+\frac{2}{x} v=\frac{1}{x^{2}}
$$

which is the same as the equation

$$
v^{\prime}-\frac{4}{x} v=-\frac{2}{x^{2}}
$$

and this is a linear first order DE. We have

$$
\int-\frac{4}{x} \mathrm{~d} x=-4 \ln x+K
$$

for some $K \in \mathbb{R}$. So the integrating factor is

$$
\mu(x)=e^{-4 \ln x+K}=\frac{K^{\prime}}{x^{4}}
$$

where $K^{\prime} \in \mathbb{R}$. So, the solution of the linear DE is

$$
v=\frac{x^{4}}{K^{\prime}} \int \frac{K^{\prime}}{x^{4}} \cdot \frac{-2}{x^{2}} \mathrm{~d} x=-2 x^{4}\left(\frac{-5}{x^{5}}+R\right)
$$

where $R \in \mathbb{R}$ is some constant. From this, y can be obtained.
9). $\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y^{2}-4 x^{2}}{2 x y}$

Solution. This is the same as the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{y}{2 x}-\frac{2 x}{y}
$$

This is a homogeneous DE . We assume $x \neq 0$, and we put $y=v x$. The equation becomes

$$
x \frac{\mathrm{~d} v}{\mathrm{~d} x}+v=g(v)=\frac{v}{2}-\frac{2}{v}
$$

which is the same as the equation

$$
x \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{v}{2}-\frac{2}{v}=\frac{v^{2}-4}{2 v}
$$

and this is a separable DE. We get

$$
\frac{2 v}{v^{2}-4} \frac{\mathrm{~d} v}{\mathrm{~d} x}=\frac{1}{x}
$$

Integrating both sides with respect to x, we can solve for v, and hence we can solve for y.
10). $\quad t \ln t \frac{\mathrm{~d} u}{\mathrm{~d} t}+u=t e^{t}, \quad t>1$

Solution. Dividing throughout by $t \ln t$, we get

$$
\frac{\mathrm{d} u}{\mathrm{~d} t}+\frac{1}{t \ln t} u=\frac{e^{t}}{\ln t}
$$

This is a first order linear DE. Observe that

$$
\int \frac{1}{t \ln t} \mathrm{~d} t=\ln \ln t+K
$$

for some $K \in \mathbb{R}$. So, the integrating factor is

$$
e^{\ln \ln t+K}=K^{\prime} \ln t
$$

where $K^{\prime} \in \mathbb{R}$. So, the solution of the DE is

$$
u=\frac{1}{K^{\prime} \ln t} \int K^{\prime} \ln t \frac{e^{t}}{\ln t} \mathrm{~d} t=\frac{1}{\ln t}\left(e^{t}+C\right)
$$

for some $C \in \mathbb{R}$.
11). $\frac{\mathrm{d} y}{\mathrm{~d} x}+y=e^{-2 x}$

Solution. This is a clear-cut first order linear DE. We have

$$
\int \mathrm{d} x=x+K
$$

for some $K \in \mathbb{R}$. Hence, the integrating factor is

$$
\mu(x)=e^{x+K}=K^{\prime} e^{x}
$$

for some $K^{\prime} \in \mathbb{R}$. So the solution of the DE is

$$
y=\frac{1}{K^{\prime} e^{x}} \int K^{\prime} e^{x} e^{-2 x} \mathrm{~d} x=\frac{1}{e^{x}}\left(-e^{-x}+C\right)
$$

for some $C \in \mathbb{R}$.
12). $\quad \sin x \frac{\mathrm{~d} y}{\mathrm{~d} x}+(\cos x) y=e^{x}$

Solution. For simplicity we assume that $x \in(0, \pi)$. So, dividing throughout by the sine term, this becomes a linear first order DE.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}+(\cot x) y=\frac{e^{x}}{\sin x}
$$

So, the integrating factor $\mu(x)$ in our case is

$$
\mu(x)=\exp \int \cot x \mathrm{~d} x=\exp [\ln \sin x+K]
$$

for some $K \in \mathbb{R}$. So, the integrating factor is

$$
\mu(x)=e^{K} e^{\ln \sin x}=K^{\prime} e^{\ln \sin x}=K^{\prime} \sin x
$$

So, the general solution to this DE is given by

$$
y=\mu(x)^{-1} \int \mu(x) \frac{e^{x}}{\sin x} \mathrm{~d} x=\frac{1}{K^{\prime} \sin x} \int K^{\prime} \sin x \frac{e^{x}}{\sin x} \mathrm{~d} x=\frac{e^{x}+C}{\sin x}
$$

for some $C \in \mathbb{R}$.
13). $\quad\left(e^{x} \sin y-2 y \sin x\right) \mathrm{d} x+\left(e^{x} \cos y+2 \cos x\right) \mathrm{d} y=0$

Solution. This equation is equivalent to

$$
\left(e^{x} \sin y-2 y \sin x\right)+\left(e^{x} \cos y+2 \cos x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

We now show that this is an exact equation. To see this, observe that

$$
\frac{\partial\left(e^{x} \sin y-2 y \sin x\right)}{\partial y}=e^{x} \cos y-2 \sin x
$$

and that

$$
\frac{\partial\left(e^{x} \cos y+2 \cos x\right)}{\partial x}=e^{x} \cos y-2 \sin x
$$

and the above two equations show that our DE is exact. Now, we need to find P such that

$$
\begin{equation*}
\frac{\partial P}{\partial x}=e^{x} \sin y-2 y \sin x \quad, \quad \frac{\partial P}{\partial y}=e^{x} \cos y+2 \cos x \tag{0.2}
\end{equation*}
$$

So, consider

$$
\begin{aligned}
P(x, y) & =\int e^{x} \sin y-2 y \sin x \mathrm{~d} x \\
& =e^{x} \sin y+2 y \cos x+g(y)
\end{aligned}
$$

for some differentiable function g of y. Clearly, differentiating $P(x, y)$ with respect to x, we see that $P(x, y)$ satisifies the first half of equation (0.2). Now, differentiating $P(x, y)$ with respect to y and equating it to the RHS of the second half of equation (0.2) we get

$$
\frac{\partial P}{\partial y}=e^{x} \cos y+2 \cos x+g^{\prime}(y)=e^{x} \cos y+2 \cos x
$$

so that $g^{\prime}(y)=0$, i.e $g(y)=K$ for some $K \in \mathbb{R}$. We can take $K=0$. So, the solution to our DE is given by the implicit equation

$$
P(x, y)=e^{x} \sin y+2 y \cos x=C
$$

for some $C \in \mathbb{R}$.
14). $\quad(1+x) \frac{\mathrm{d} y}{\mathrm{~d} x}+y=1+x, \quad x>0$

Solution. This is the same as problem 4).
15). $\quad x y^{\prime}=y+x^{2} \sin x, \quad y(\pi)=0$

Solution. Dividing throughout by x, we get the equation

$$
y^{\prime}-\frac{1}{x} y=x \sin x
$$

This is a first order linear DE. Observe that

$$
\int \frac{1}{x} \mathrm{~d} x=\ln x+K
$$

for some $K \in \mathbb{R}$. So the integrating factor is

$$
\mu(x)=e^{\ln x+K}=K^{\prime} x
$$

where $K^{\prime} \in \mathbb{R}$. So, the solution of our DE is

$$
y=\frac{1}{K^{\prime} x} \int K^{\prime} x^{2} \sin x \mathrm{~d} x=\frac{1}{x}\left(2 x \sin x-\left(x^{2}-2\right) \cos x+C\right)
$$

for some $C \in \mathbb{R}$. Using the fact that $y(\pi)=0$ we can get the value of C.
16). $\frac{\mathrm{d} y}{\mathrm{~d} x}+\frac{2}{x} y=\frac{y^{3}}{x^{2}}$

Solution. This is the same as problem 8).
17). $y \cos x+2 x e^{y}+\left(\sin x+x^{2} e^{y}-1\right) y^{\prime}=0$

Solution. This is an example of an exact DE. To show this, observe that

$$
\frac{\partial\left(y \cos x+2 x e^{y}\right)}{\partial y}=\cos x+2 x e^{y}
$$

and

$$
\frac{\partial\left(\sin x+x^{2} e^{y}-1\right)}{\partial x}=\cos x+2 x e^{y}
$$

and hence

$$
\frac{\partial\left(y \cos x+2 x e^{y}\right)}{\partial y}=\frac{\partial\left(\sin x+x^{2} e^{y}-1\right)}{\partial x}
$$

Now, put

$$
P(x, y)=\int y \cos x+2 x e^{y} \mathrm{~d} x=y \sin x+x^{2} e^{y}+g(y)
$$

where g is some differentiable function of y. Now, we have

$$
\frac{\partial P(x, y)}{\partial y}=\sin x+2 x e^{y}+g^{\prime}(y)
$$

Now, put

$$
\sin x+2 x e^{y}+g^{\prime}(y)=\sin x+2 x e^{y}-1
$$

and hence we obtain $g^{\prime}(y)=-1$, which gives us $g(y)=-y+C$, for some constant C. We take $C=0$. So,

$$
P(x, y)=y \sin x+x^{2} e^{y}-y
$$

So, our DE is

$$
y \sin x+x^{2} e^{y}-y=C
$$

where $C \in \mathbb{R}$ is some constant.
18). $\quad x^{2} y^{\prime \prime}+2 x y^{\prime}-1=0, \quad x>0$

Solution. This is a second order DE with the dependent variable missing. Note that the DE is equivalent to

$$
y^{\prime \prime}=\frac{-2}{x} y^{\prime}+\frac{1}{x^{2}}
$$

Putting $v=y^{\prime}$, we get the equation

$$
v^{\prime}=\frac{-2}{x} v+\frac{1}{x^{2}}
$$

which is the same as the equation

$$
v^{\prime}+\frac{2}{x} v=\frac{1}{x^{2}}
$$

This is a first order linear DE. Observe that

$$
\int \frac{2}{x} \mathrm{~d} x=2 \ln x+K
$$

for some $K \in \mathbb{R}$. So the integrating factor is

$$
\mu(x)=e^{2 \ln x+K}=K^{\prime} x^{2}
$$

and hence the solution to the linear DE is

$$
v=\frac{1}{K^{\prime} x^{2}} \int K^{\prime} x^{2} \frac{1}{x^{2}} \mathrm{~d} x=\frac{1}{x^{2}}\left(x+C_{1}\right)
$$

for some $C_{1} \in \mathbb{R}$. So, we get

$$
y=\int v \mathrm{~d} x=\int \frac{1}{x^{2}}\left(x+C_{1}\right) \mathrm{d} x=\ln x-\frac{C_{1}}{x^{2}}+C_{2}
$$

where $C_{2} \in \mathbb{R}$.
19). $\quad x y^{\prime}+y=\sqrt{x}, \quad x>0$

Solution.
20).

Solution. This is another first order linear DE. We have

$$
y^{\prime}+\frac{1}{x} y=\frac{1}{\sqrt{x}}
$$

We obtain that the integration factor of this is

$$
\mu(x)=K^{\prime} x
$$

for some constant $K^{\prime} \in \mathbb{R}$. So, the solution to our DE is

$$
y=\frac{1}{K^{\prime} x} \int K^{\prime} x \frac{1}{\sqrt{x}} \mathrm{~d} x=\frac{1}{x}\left(\frac{2}{3} x^{3 / 2}+C\right)
$$

for some $C \in \mathbb{R}$.
21). $\quad y y^{\prime \prime}-\left(y^{\prime}\right)^{3}=0$

Solution. This is an example of a DE with the independent variable missing. We have

$$
y^{\prime \prime}=\frac{\left(y^{\prime}\right)^{3}}{y}
$$

We put $v=y^{\prime}$, and this gives us the DE

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} y}=\frac{v^{3}}{y}
$$

which is clearly a separable DE. We have

$$
\frac{1}{v^{2}} \frac{\mathrm{~d} v}{\mathrm{~d} y}=\frac{1}{y}
$$

which, on integrating both sides, gives us

$$
\frac{-1}{v}=\ln y+C
$$

for some $C \in \mathbb{R}$. So, we get

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=v(y)=\frac{-1}{\ln y+C}
$$

This one is a separable DE. We get

$$
-(\ln y+C) \frac{\mathrm{d} y}{\mathrm{~d} x}=1
$$

and hence this gievs us

$$
-(y \ln y-y+C y)=x+C^{\prime}
$$

where $C, C^{\prime} \in \mathbb{R}$.
22). $2 y^{2} y^{\prime \prime}+2 y\left(y^{\prime}\right)^{2}=1$

Solution. We assume that $y>0$ at all points where it is defined. Dividing throughout by $2 y^{2}$, this DE becomes

$$
y^{\prime \prime}=\frac{1}{2 y^{2}}-\frac{\left(y^{\prime}\right)^{2}}{y}
$$

This is a second order equation with the independent variable missing. Putting $v=y^{\prime}$, we see that

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} y}=\frac{1}{2 y^{2}}-\frac{v^{2}}{y}
$$

which on dividing throughout by v, we rewrite as

$$
\frac{\mathrm{d} v}{\mathrm{~d} y}+\frac{v}{y}=\frac{1}{2 y^{2}} v^{-1}
$$

This is an example of a Bernoulli equation. We substitute $u=v^{1-(-1)}=v^{2}$ and get

$$
\frac{1}{2} \frac{\mathrm{~d} u}{\mathrm{~d} y}+\frac{u}{y}=\frac{1}{2 y^{2}}
$$

This is a first order linear DE. The integrating factor is

$$
\mu(y)=\exp \int \frac{2}{y} \mathrm{~d} y=\exp (2 \ln y+K)=e^{K} y^{2}=K^{\prime} y^{2}
$$

where $K^{\prime} \in \mathbb{R}$. So, the solution to the linear DE is

$$
u=\frac{1}{K^{\prime} y^{2}} \int K^{\prime} y^{2} \frac{1}{y^{2}} \mathrm{~d} y=\frac{1}{y^{2}} \int \mathrm{~d} y=\frac{y+C}{y^{2}}
$$

for some $C \in \mathbb{R}$. So, it follows that

$$
v^{2}=\frac{y+C}{y^{2}}
$$

and hence

$$
v=\sqrt{\frac{y+C}{y^{2}}}=\frac{\sqrt{y+C}}{y}
$$

So, we just have to solve the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{y+C}}{y}
$$

which is clearly a separable DE. We get

$$
\frac{y}{\sqrt{y+C}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1
$$

Integrating both sides with respect to x, we get

$$
\int \frac{y}{\sqrt{y+C}} \mathrm{~d} y=\int \mathrm{d} x=x+C_{0}
$$

for some $C_{0} \in \mathbb{R}$. The integral on the LHS can be solved by substituting $t=y+C$, and we get

$$
\int \frac{y}{\sqrt{y+C}} \mathrm{~d} y=\int \frac{t-C}{\sqrt{t}} \mathrm{~d} t=\int \sqrt{t} \mathrm{~d} t-C \int \frac{1}{\sqrt{t}} \mathrm{~d} t=\frac{2 t^{\frac{3}{2}}}{3}-2 C t^{\frac{1}{2}}+C^{\prime}
$$

for some $C^{\prime} \in \mathbb{R}$. So, we get

$$
\int \frac{y}{\sqrt{y+C}} \mathrm{~d} y=\frac{2(y+C)^{\frac{3}{2}}}{3}-2 C(y+C)^{\frac{1}{2}}+C^{\prime}
$$

and combining all this, we see that the solution to our original DE is

$$
\frac{2(y+C)^{\frac{3}{2}}}{3}-2 C(y+C)^{\frac{1}{2}}+C^{\prime}=x+C_{0}
$$

which can be rewritten as

$$
\frac{2(y+C)^{\frac{3}{2}}}{3}-2 C(y+C)^{\frac{1}{2}}=x+K
$$

where $K=C_{0}-C^{\prime} \in \mathbb{R}$.
23). $\quad y^{\prime}=(1-2 x) y^{2}, \quad y(0)=\frac{-1}{6}$

Solution. This is a separable DE. We have

$$
\frac{1}{y^{2}} y^{\prime}=(1-2 x)
$$

Integrating both sides, we get

$$
\frac{1}{y^{2}} \mathrm{~d} y=\int 1-2 x \mathrm{~d} x
$$

and this gives us

$$
\frac{-1}{y}=x-x^{2}+C
$$

where $C \in \mathbb{R}$ is some constant. Using the given initial condition, we get $C=6$. Hence, the solution of the DE is

$$
y=\frac{1}{x^{2}-x-6}
$$

This is defined on \mathbb{R} minus the roots of the given polynomial.
24). $\quad y^{2} \sqrt{1-x^{2}} y^{\prime}=\arcsin x, y(0)=1$.

Solution. This is another example of a separable DE. In particular, we have

$$
\begin{equation*}
y^{2} y^{\prime}=\frac{\arcsin x}{\sqrt{1-x^{2}}} \tag{0.3}
\end{equation*}
$$

Now, consider the function $g(y)=y^{2}$. An antiderivative of $g(y)$ is easily seen to be

$$
\int g(y) \mathrm{d} y=\frac{y^{3}}{3}+K
$$

for some $K \in \mathbb{R}$. So, integrating both sides of equation (0.3) with respect to x, we get

$$
\int y^{2} y^{\prime} \mathrm{d} x=\int y^{2} \mathrm{~d} y=\int \frac{\arcsin x}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

Now, the integral on the extreme right hand side in the above equation can be easily calculated by the substitution $t=\arcsin x$, and here we are using the fact that

$$
\arcsin ^{\prime} x=\frac{1}{\sqrt{1-x^{2}}}
$$

for $|x|<1$. So, we get

$$
\int \frac{\arcsin x}{\sqrt{1-x^{2}}} \mathrm{~d} x=\int t \mathrm{~d} t=\frac{t^{2}}{2}+K^{\prime}=\frac{(\arcsin x)^{2}}{2}+K^{\prime}
$$

for some $K^{\prime} \in \mathbb{R}$. Combining everything, we see that

$$
\int y^{2} \mathrm{~d} y=\frac{(\arcsin x)^{2}}{2}+K^{\prime}
$$

and hence we obtain the implicit equation

$$
\frac{y^{3}}{3}=\frac{(\arcsin x)^{2}}{2}+C
$$

for some $C \in \mathbb{R}$. Using the initial condition $y(0)=1$, we get $C=\frac{1}{3}$. So, the equation is

$$
\frac{y^{3}}{3}=\frac{(\arcsin x)^{2}}{2}+\frac{1}{3}
$$

which can be written as

$$
y=\sqrt[3]{\frac{3(\arcsin x)^{2}}{2}+1}
$$

Now, the cube root function is defined on all of \mathbb{R}, and $\arcsin x$ is defined on the interval $[-1,1]$. Since we are looking for an open interval, the interval of existence in this case is $(-1,1)$.
25). $\quad x y e^{x^{2} y}+x^{2} e^{x^{2} y} y^{\prime}=0$

Solution. First, let us check whether this DE is exact. We have

$$
\frac{\partial\left(x y e^{x^{2} y}\right)}{\partial y}=x e^{x^{2} y}+x^{3} y e^{x^{2} y}
$$

and

$$
\frac{\partial\left(x^{2} e^{x^{2} y}\right)}{\partial x}=2 x e^{x^{2} y}+2 x^{3} y e^{x^{2} y}
$$

So, this DE is not exact.
26). $\quad 3 x^{2} y \sin (x+y)+x^{3} y \cos (x+y)+y \sec ^{2}(x y)+\left(x^{3} \sin (x+y)+x^{3} y \cos (x+y)+\right.$ $\left.x \sec ^{2}(x y)\right) y^{\prime}=0$

Solution. First, let's check if this DE is exact. We have

$$
\begin{array}{r}
\frac{\partial\left(3 x^{2} y \sin (x+y)+x^{3} y \cos (x+y)+y \sec ^{2}(x y)\right)}{\partial y}=3 x^{2} \sin (x+y)+3 x^{2} y \cos (x+y)+ \\
x^{3} \cos (x+y)-x^{3} y \sin (x+y)+\sec ^{2}(x y)+2 x y \sec ^{2}(x y) \tan (x y)
\end{array}
$$

and also

$$
\begin{array}{r}
\frac{\partial\left(x^{3} \sin (x+y)+x^{3} y \cos (x+y)+x \sec ^{2}(x y)\right)}{\partial x}=3 x^{2} \sin (x+y)+x^{3} \cos (x+y)+ \\
3 x^{2} y \cos (x+y)-x^{3} y \sin (x+y)+\sec ^{2}(x y)+2 x y \sec ^{2}(x y) \tan (x y)
\end{array}
$$

and hence we see that

$$
\frac{\partial\left(3 x^{2} y \sin (x+y)+x^{3} y \cos (x+y)+y \sec ^{2}(x y)\right)}{\partial y}=\frac{\partial\left(x^{3} \sin (x+y)+x^{3} y \cos (x+y)+x \sec ^{2}(x y)\right)}{\partial x}
$$

so that the given DE is exact. Now, let

$$
P(x, y)=\int x^{3} \sin (x+y)+x^{3} y \cos (x+y)+x \sec ^{2}(x y) \mathrm{d} x
$$

Complete this computation!
27). $\quad \alpha y e^{2 x y} \mathrm{~d} x+\left(x e^{2 x y}+y\right) \mathrm{d} y=0$.

Solution. The given DE is equivalent to

$$
\alpha y e^{2 x y}+\left(x e^{2 x y}+y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

First we have

$$
\frac{\partial\left(\alpha y e^{2 x y}\right)}{\partial y}=\alpha e^{2 x y}+\alpha 2 x y e^{2 x y}=\alpha e^{2 x y}(1+2 x y)
$$

Next, we have

$$
\frac{\partial\left(x e^{2 x y}+y\right)}{\partial x}=e^{2 x y}+2 x y e^{2 x y}=e^{2 x y}(1+2 x y)
$$

Now for the DE to be exact, the right hand sides of the above two equations must be equal, i.e

$$
\alpha e^{2 x y}(1+2 x y)=e^{2 x y}(1+2 x y)
$$

and hence $\alpha=1$ makes the given DE exact.
28). $\quad(x+y) y^{2} \mathrm{~d} x+\left(x^{2} y+\alpha x y^{2}\right) \mathrm{d} y=0$.

Solution. We follow a similar strategy as above. The given DE is equivalent to

$$
(x+y) y^{2}+\left(x^{2} y+\alpha x y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

First we have

$$
\frac{\partial\left((x+y) y^{2}\right)}{\partial y}=2 x y+3 y^{2}
$$

Next, we have

$$
\frac{\partial\left(x^{2} y+\alpha x y^{2}\right)}{\partial x}=2 x y+\alpha y^{2}
$$

Now for the DE to be exact, the right hand sides of the above two equations must be equal, i.e

$$
2 x y+3 y^{2}=2 x y+\alpha y^{2}
$$

and hence $\alpha=3$ makes the given DE exact.

