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1). Here we will be solving problems 3 and 24 from Cookbook-I.

3 dy
dx =

3x2 − 2x− 1

2(y − 1)
, y(3) = 1−

√
13.

Solution. This is easily seen to be a separable DE. In particular, we have

(2y − 2)
dy
dx = 3x2 − 2x− 1(0.1)

Now, consider the function g(y) = 2y − 2. The antiderivative of g(y) is∫
g(y)dy = y2 − 2y +K

for some K ∈ R. So, integrating both sides of equation (0.1) with respect to x, we get∫
(2y − 2)

dy
dxdx =

∫
(2y − 2)dy =

∫
(3x2 − 2x− 1)dx

and hence we obtain
y2 − 2y = x3 − x2 − x+ C

for some C ∈ R. Using the initial condition y(3) = 1−
√
13, we get

(1−
√
13)2 − 2(1−

√
13) = 27− 9− 3 + C

and from here we obtain C = −3. Hence, we obtain the implicit equation
y2 − 2y − x3 + x2 + x+ 3 = 0

■

24 y2
√
1− x2y′ = arcsin x, y(0) = 1.

Solution. This is another example of a separable DE. In particular, we have

y2y′ =
arcsin x√
1− x2

(0.2)

Now, consider the function g(y) = y2. An antiderivative of g(y) is easily seen to be∫
g(y)dy =

y3

3
+K

for some K ∈ R. So, integrating both sides of equation (0.2) with respect to x, we get∫
y2y′dx =

∫
y2dy =

∫ arcsin x√
1− x2

dx
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Now, the integral on the extreme right hand side in the above equation can be easily
calculated by the substitution t = arcsin x, and here we are using the fact that

arcsin′ x =
1√

1− x2

for |x| < 1. So, we get∫ arcsin x√
1− x2

dx =

∫
tdt = t2

2
+K ′ =

(arcsin x)2

2
+K ′

for some K ′ ∈ R. Combining everything, we see that∫
y2dy =

(arcsin x)2

2
+K ′

and hence we obtain the implicit equation
y3

3
=

(arcsin x)2

2
+ C

for some C ∈ R. Using the initial condition y(0) = 1, we get C = 1
3
. So, the equation

is
y3

3
=

(arcsin x)2

2
+

1

3
which can be written as

y =
3

√
3(arcsin x)2

2
+ 1

Now, the cube root function is defined on all of R, and arcsin x is defined on the
interval [−1, 1]. Since we are looking for an open interval, the interval of existence in
this case is (−1, 1). ■

2). Here I will be solving problems 27 and 28 from Cookbook-I.

27 αye2xydx+ (xe2xy + y)dy = 0.

Solution. The given DE is equivalent to

αye2xy + (xe2xy + y)
dy
dx = 0

First we have
∂(αye2xy)

∂y
= αe2xy + α2xye2xy = αe2xy(1 + 2xy)

Next, we have
∂(xe2xy + y)

∂x
= e2xy + 2xye2xy = e2xy(1 + 2xy)

Now for the DE to be exact, the right hand sides of the above two equations must be
equal, i.e

αe2xy(1 + 2xy) = e2xy(1 + 2xy)

and hence α = 1 makes the given DE exact. ■

28 (x+ y)y2dx+ (x2y + αxy2)dy = 0.
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Solution. We follow a similar strategy as above. The given DE is equivalent to

(x+ y)y2 + (x2y + αxy2)
dy
dx = 0

First we have
∂((x+ y)y2)

∂y
= 2xy + 3y2

Next, we have
∂(x2y + αxy2)

∂x
= 2xy + αy2

Now for the DE to be exact, the right hand sides of the above two equations must be
equal, i.e

2xy + 3y2 = 2xy + αy2

and hence α = 3 makes the given DE exact. ■

3). Here I will be solving problems 1 and 5 from Cookbook-II.

1. 2y′′ + 3y′ − 2y = 0.

Solution. The characteristic equation for this differential equation is the quadratic
2t2 + 3t− 2 = 0

Using the quadratic formula, we can easily obtain that the roots of the quadratic are
−2, 1/2, and clearly each has multiplicity 1. So, we see that e−2x and ex/2 are two
linearly independent solutions of this equation. Also, as given in the Cookbook-II,
these two elements span the space of solutions of this DE. So, the general solution of
this DE is

y(x) = c1e
−2x + c2e

x
2

where c1, c2 ∈ R. ■

5. 2x2 d2y

dx2
+ 5x

dy
dx − 2y = 0.

Solution. This is an example of an Euler equation, where we assume x > 0. First,
note that this equation is equivalent to

x2 d2y

dx2
+

5

2
x

dy
dx − y = 0

Making the substitution t = lnx, then as mentioned in Cookbook-II we get the DE
d2y

dt2 +

(
5

2
− 1

) dy
dt − y = 0

which is the equation
d2y

dt2 +
3

2

dy
dt − y = 0

Now this can be solved as before. The characteristic equation is

u2 +
3

2
u− 1 = 0

It is easily seen that the roots of the polynomial are −2, 1/2, and clearly each root
has multiplicity 1. So, we see that e−2t and et/2 are two linearly independent solutions
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of this equation. Also, as given in Cookbook-II, these two elements span the space of
solutions of this DE. So, the general solution of this DE is

y(t) = c1e
−2t + c2e

t
2

where c1, c2 ∈ R. So, to get y in terms of x, we just substitute t = lnx in the above
equation, and we get

y(x) = c1e
−2lnx + c2e

lnx
2 = c1x

−2 + c2x
1
2

and this is the general solution to this equation. ■

Before solving problems 4) and 5), let us first write down all the DEs.
˙⃗x = v⃗(x⃗) , x⃗(t0) = x⃗0(∗)

˙⃗x = −v⃗(x⃗) , x⃗(t0) = x⃗0(∗tr)
˙⃗x = v⃗sr(x⃗) , x⃗(t0) = −x⃗0(∗sr)

where the map v⃗ : Ω → Rn is C 1 and the map v⃗sr : −Ω → Rn is given by
v⃗sr(x⃗) = −v⃗(−x⃗)

4). (For this problem, we drop the bold and arrow notation since we are living in
dimension 1, but the proof remains valid in higher dimensions as well) Let φ : (a, b) →
R be a solution of (∗), and let φtr, φsr be the state and time reversals of φ respectively.
We show that φtr and φsr are solutions of (∗tr) and (∗sr) respectively.

First, note that φtr : (2t0 − b, 2t0 − a) → Ω is defined by
φtr(t) = φ(2t0 − t) , 2t0 − b < t < 2t0 − a

Now, observe that
φtr(t0) = φ(2t0 − t0) = φ(t0) = x0

and so the boundary condition is satisfied. By the chain rule, we see that
(φtr)′(t) = −φ′(2t0 − t) = −v(φ(2t0 − t)) = −v(φtr(t))

and written in dot notation, this implies that
φ̇tr(t) = −v(φtr(t)) , 2t0 − b < t < 2t0 − a

and combined with the boundary condition, we conclude that φtr satisfies the equation
(∗tr).

Next, let us focus on φsr, the state reversal of φ. Note that φsr : (a, b) → −Ω is
defined by

φsr(t) = −φ(t) , t ∈ (a, b)

This immediately gives us the boundary condition
φsr(t0) = −φ(t0) = −x0

By simple differentiation, for any t ∈ (a, b) we have
(φsr)′(t) = −φ′(t) = −v(φ(t)) = vsr(−φ(t)) = vsr(φsr(t))

Using the dot notation, this equation can be written as
φ̇sr(t) = vsr(φsr(t)) , t ∈ (a, b)

and combining this with the boundary condition, we conclude that φsr satisfies the
equation (∗sr). This completes the solution to our problem.
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5). We show the given identities.

(a). (φ⃗tr)tr = φ⃗. Since φ⃗tr is defined on the interval (2t0 − b, 2t0 − a), we see that
(φ⃗tr)tr is defined on the interval

(2t0 − 2t0 + a, 2t0 − 2t0 + b) = (a, b)

So, let t ∈ (a, b). We have
(φ⃗tr)tr(t) = φ⃗tr(2t0 − t) = φ⃗(2t0 − (2t0 − t)) = φ⃗(t)

and this proves the given equality.
(b). (φ⃗sr)sr = φ⃗. Because φ⃗sr is defined on the interval (a, b), it follows that (φ⃗sr)sr is
also defined on (a, b). So, let t ∈ (a, b). By the definition of state reversal, we see that

(φ⃗sr)sr(t) = −φ⃗sr(t) = −(−φ⃗(t)) = φ⃗(t)

and hence this proves the desired equality.

(c). (φ⃗sr)tr = (φ⃗tr)sr. First, observe that φ⃗sr is defined on the interval (a, b), and
hence it follows that (φ⃗sr)tr is defined on the interval (2t0 − b, 2t0 − a). Similarly, φ⃗tr

is defined on the interval (2t0 − b, 2t0 − a), and hence (φ⃗tr)sr is defined on the interval
(2t0 − b, 2t0 − a). So, we’ve shown that the domains of the functions match. Now, let
t ∈ (2t0 − b, 2t0 − a). So, we have the following chain of equalities.

(φ⃗sr)tr(t) = φ⃗sr(2t0 − t) = −φ⃗(2t0 − t) = −φ⃗tr(t) = (φ⃗tr)sr(t)

and this proves the desired equality. So, this completes the solution to the problem.
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