HW-1

SIDDHANT CHAUDHARY

1). Here we will be solving problems 3 and 24 from Cookbook-I.
$3 \quad \frac{\mathrm{~d} y}{\mathrm{~d} x}=\frac{3 x^{2}-2 x-1}{2(y-1)}, y(3)=1-\sqrt{13}$.
Solution. This is easily seen to be a separable DE. In particular, we have

$$
\begin{equation*}
(2 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x}=3 x^{2}-2 x-1 \tag{0.1}
\end{equation*}
$$

Now, consider the function $g(y)=2 y-2$. The antiderivative of $g(y)$ is

$$
\int g(y) \mathrm{d} y=y^{2}-2 y+K
$$

for some $K \in \mathbb{R}$. So, integrating both sides of equation (0.1) with respect to x, we get

$$
\int(2 y-2) \frac{\mathrm{d} y}{\mathrm{~d} x} \mathrm{~d} x=\int(2 y-2) \mathrm{d} y=\int\left(3 x^{2}-2 x-1\right) \mathrm{d} x
$$

and hence we obtain

$$
y^{2}-2 y=x^{3}-x^{2}-x+C
$$

for some $C \in \mathbb{R}$. Using the initial condition $y(3)=1-\sqrt{13}$, we get

$$
(1-\sqrt{1} 3)^{2}-2(1-\sqrt{1} 3)=27-9-3+C
$$

and from here we obtain $C=-3$. Hence, we obtain the implicit equation

$$
y^{2}-2 y-x^{3}+x^{2}+x+3=0
$$

$24 y^{2} \sqrt{1-x^{2}} y^{\prime}=\arcsin x, y(0)=1$.
Solution. This is another example of a separable DE. In particular, we have

$$
\begin{equation*}
y^{2} y^{\prime}=\frac{\arcsin x}{\sqrt{1-x^{2}}} \tag{0.2}
\end{equation*}
$$

Now, consider the function $g(y)=y^{2}$. An antiderivative of $g(y)$ is easily seen to be

$$
\int g(y) \mathrm{d} y=\frac{y^{3}}{3}+K
$$

for some $K \in \mathbb{R}$. So, integrating both sides of equation (0.2) with respect to x, we get

$$
\int y^{2} y^{\prime} \mathrm{d} x=\int y^{2} \mathrm{~d} y=\int \frac{\arcsin x}{\sqrt{1-x^{2}}} \mathrm{~d} x
$$

$\overline{\text { Date: January } 2021 .}$

Now, the integral on the extreme right hand side in the above equation can be easily calculated by the substitution $t=\arcsin x$, and here we are using the fact that

$$
\arcsin ^{\prime} x=\frac{1}{\sqrt{1-x^{2}}}
$$

for $|x|<1$. So, we get

$$
\int \frac{\arcsin x}{\sqrt{1-x^{2}}} \mathrm{~d} x=\int t \mathrm{~d} t=\frac{t^{2}}{2}+K^{\prime}=\frac{(\arcsin x)^{2}}{2}+K^{\prime}
$$

for some $K^{\prime} \in \mathbb{R}$. Combining everything, we see that

$$
\int y^{2} \mathrm{~d} y=\frac{(\arcsin x)^{2}}{2}+K^{\prime}
$$

and hence we obtain the implicit equation

$$
\frac{y^{3}}{3}=\frac{(\arcsin x)^{2}}{2}+C
$$

for some $C \in \mathbb{R}$. Using the initial condition $y(0)=1$, we get $C=\frac{1}{3}$. So, the equation is

$$
\frac{y^{3}}{3}=\frac{(\arcsin x)^{2}}{2}+\frac{1}{3}
$$

which can be written as

$$
y=\sqrt[3]{\frac{3(\arcsin x)^{2}}{2}+1}
$$

Now, the cube root function is defined on all of \mathbb{R}, and $\arcsin x$ is defined on the interval $[-1,1]$. Since we are looking for an open interval, the interval of existence in this case is $(-1,1)$.
2). Here I will be solving problems 27 and 28 from Cookbook-I.
$27 \alpha y e^{2 x y} \mathrm{~d} x+\left(x e^{2 x y}+y\right) \mathrm{d} y=0$.
Solution. The given DE is equivalent to

$$
\alpha y e^{2 x y}+\left(x e^{2 x y}+y\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

First we have

$$
\frac{\partial\left(\alpha y e^{2 x y}\right)}{\partial y}=\alpha e^{2 x y}+\alpha 2 x y e^{2 x y}=\alpha e^{2 x y}(1+2 x y)
$$

Next, we have

$$
\frac{\partial\left(x e^{2 x y}+y\right)}{\partial x}=e^{2 x y}+2 x y e^{2 x y}=e^{2 x y}(1+2 x y)
$$

Now for the DE to be exact, the right hand sides of the above two equations must be equal, i.e

$$
\alpha e^{2 x y}(1+2 x y)=e^{2 x y}(1+2 x y)
$$

and hence $\alpha=1$ makes the given DE exact.
$28 \quad(x+y) y^{2} \mathrm{~d} x+\left(x^{2} y+\alpha x y^{2}\right) \mathrm{d} y=0$.

Solution. We follow a similar strategy as above. The given DE is equivalent to

$$
(x+y) y^{2}+\left(x^{2} y+\alpha x y^{2}\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

First we have

$$
\frac{\partial\left((x+y) y^{2}\right)}{\partial y}=2 x y+3 y^{2}
$$

Next, we have

$$
\frac{\partial\left(x^{2} y+\alpha x y^{2}\right)}{\partial x}=2 x y+\alpha y^{2}
$$

Now for the DE to be exact, the right hand sides of the above two equations must be equal, i.e

$$
2 x y+3 y^{2}=2 x y+\alpha y^{2}
$$

and hence $\alpha=3$ makes the given DE exact.
3). Here I will be solving problems 1 and 5 from Cookbook-II.

1. $2 y^{\prime \prime}+3 y^{\prime}-2 y=0$.

Solution. The characteristic equation for this differential equation is the quadratic

$$
2 t^{2}+3 t-2=0
$$

Using the quadratic formula, we can easily obtain that the roots of the quadratic are $-2,1 / 2$, and clearly each has multiplicity 1 . So, we see that $e^{-2 x}$ and $e^{x / 2}$ are two linearly independent solutions of this equation. Also, as given in the Cookbook-II, these two elements span the space of solutions of this DE. So, the general solution of this DE is

$$
y(x)=c_{1} e^{-2 x}+c_{2} e^{\frac{x}{2}}
$$

where $c_{1}, c_{2} \in \mathbb{R}$.
5. $2 x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+5 x \frac{\mathrm{~d} y}{\mathrm{~d} x}-2 y=0$.

Solution. This is an example of an Euler equation, where we assume $x>0$. First, note that this equation is equivalent to

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\frac{5}{2} x \frac{\mathrm{~d} y}{\mathrm{~d} x}-y=0
$$

Making the substitution $t=\ln x$, then as mentioned in Cookbook-II we get the DE

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\left(\frac{5}{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} t}-y=0
$$

which is the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{3}{2} \frac{\mathrm{~d} y}{\mathrm{~d} t}-y=0
$$

Now this can be solved as before. The characteristic equation is

$$
u^{2}+\frac{3}{2} u-1=0
$$

It is easily seen that the roots of the polynomial are $-2,1 / 2$, and clearly each root has multiplicity 1 . So, we see that $e^{-2 t}$ and $e^{t / 2}$ are two linearly independent solutions
of this equation. Also, as given in Cookbook-II, these two elements span the space of solutions of this DE. So, the general solution of this DE is

$$
y(t)=c_{1} e^{-2 t}+c_{2} e^{\frac{t}{2}}
$$

where $c_{1}, c_{2} \in \mathbb{R}$. So, to get y in terms of x, we just substitute $t=\ln x$ in the above equation, and we get

$$
y(x)=c_{1} e^{-2 \ln x}+c_{2} e^{\frac{\ln x}{2}}=c_{1} x^{-2}+c_{2} x^{\frac{1}{2}}
$$

and this is the general solution to this equation.

Before solving problems 4) and 5), let us first write down all the DEs.

$$
\begin{array}{rll}
\dot{\overrightarrow{\boldsymbol{x}}}=\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{x}}) & , \overrightarrow{\boldsymbol{x}}\left(t_{0}\right)=\overrightarrow{\boldsymbol{x}_{\mathbf{0}}} \tag{*}\\
\dot{\overrightarrow{\boldsymbol{x}}}=-\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{x}}) & , & \overrightarrow{\boldsymbol{x}}\left(t_{0}\right)=\overrightarrow{\boldsymbol{x}_{\mathbf{0}}} \\
\dot{\overrightarrow{\boldsymbol{x}}}=\overrightarrow{\boldsymbol{v}^{\mathrm{s}}}(\overrightarrow{\boldsymbol{x}}) & , & \overrightarrow{\boldsymbol{x}}\left(t_{0}\right)=-\overrightarrow{\boldsymbol{x}_{\mathbf{0}}}
\end{array}
$$

$\left(*_{\text {tr }}\right)$
(*sr)
where the map $\overrightarrow{\boldsymbol{v}}: \Omega \rightarrow \mathbb{R}^{n}$ is \mathscr{C}^{1} and the map $\overrightarrow{\boldsymbol{v}^{\mathrm{sr}}}:-\boldsymbol{\Omega} \rightarrow \mathbb{R}^{n}$ is given by

$$
\overrightarrow{\boldsymbol{v}^{\mathrm{sr}}}(\overrightarrow{\boldsymbol{x}})=-\overrightarrow{\boldsymbol{v}}(-\overrightarrow{\boldsymbol{x}})
$$

4). (For this problem, we drop the bold and arrow notation since we are living in dimension 1, but the proof remains valid in higher dimensions as well) Let $\varphi:(a, b) \rightarrow$ \mathbb{R} be a solution of $(*)$, and let $\varphi^{\mathrm{tr}}, \varphi^{\mathrm{sr}}$ be the state and time reversals of φ respectively. We show that φ^{tr} and φ^{sr} are solutions of $\left(*_{\mathrm{tr}}\right)$ and $\left(*_{\mathrm{sr}}\right)$ respectively.

First, note that $\varphi^{\text {tr }}:\left(2 t_{0}-b, 2 t_{0}-a\right) \rightarrow \boldsymbol{\Omega}$ is defined by

$$
\varphi^{\operatorname{tr}}(t)=\varphi\left(2 t_{0}-t\right) \quad, \quad 2 t_{0}-b<t<2 t_{0}-a
$$

Now, observe that

$$
\varphi^{\operatorname{tr}}\left(t_{0}\right)=\varphi\left(2 t_{0}-t_{0}\right)=\varphi\left(t_{0}\right)=x_{0}
$$

and so the boundary condition is satisfied. By the chain rule, we see that

$$
\left(\varphi^{\operatorname{tr} r}\right)^{\prime}(t)=-\varphi^{\prime}\left(2 t_{0}-t\right)=-v\left(\varphi\left(2 t_{0}-t\right)\right)=-v\left(\varphi^{\operatorname{tr}}(t)\right)
$$

and written in dot notation, this implies that

$$
\varphi^{\operatorname{tr}}(t)=-v\left(\varphi^{\operatorname{tr}}(t)\right) \quad, \quad 2 t_{0}-b<t<2 t_{0}-a
$$

and combined with the boundary condition, we conclude that $\varphi^{\operatorname{tr}}$ satisfies the equation $\left(*_{\text {tr }}\right)$.
Next, let us focus on φ^{sr}, the state reversal of φ. Note that $\varphi^{\mathrm{sr}}:(a, b) \rightarrow-\boldsymbol{\Omega}$ is defined by

$$
\varphi^{\mathrm{sr}}(t)=-\varphi(t) \quad, \quad t \in(a, b)
$$

This immediately gives us the boundary condition

$$
\varphi^{\mathrm{sr}}\left(t_{0}\right)=-\varphi\left(t_{0}\right)=-x_{0}
$$

By simple differentiation, for any $t \in(a, b)$ we have

$$
\left(\varphi^{\mathrm{sr}}\right)^{\prime}(t)=-\varphi^{\prime}(t)=-v(\varphi(t))=v^{\mathrm{sr}}(-\varphi(t))=v^{\mathrm{sr}}\left(\varphi^{s r}(t)\right)
$$

Using the dot notation, this equation can be written as

$$
\dot{\left.\varphi^{\mathrm{sr}}(t)=v^{\mathrm{sr}}\left(\varphi^{\mathrm{sr}}(t)\right) \quad, \quad t \in(a, b)\right) .}
$$

and combining this with the boundary condition, we conclude that φ^{sr} satisfies the equation $\left(*_{\mathrm{sr}}\right)$. This completes the solution to our problem.
5). We show the given identities.
(a). $\left(\overrightarrow{\boldsymbol{\varphi}^{\mathrm{rr}}}\right)^{\operatorname{tr}}=\overrightarrow{\boldsymbol{\varphi}}$. Since $\overrightarrow{\boldsymbol{\varphi}^{\mathrm{tr}}}$ is defined on the interval $\left(2 t_{0}-b, 2 t_{0}-a\right)$, we see that $\left(\overrightarrow{\varphi^{\operatorname{Tr}}}\right)^{\operatorname{tr}}$ is defined on the interval

$$
\left(2 t_{0}-2 t_{0}+a, 2 t_{0}-2 t_{0}+b\right)=(a, b)
$$

So, let $t \in(a, b)$. We have

$$
\left(\overrightarrow{\boldsymbol{\varphi}^{\operatorname{tr}}}\right)^{\operatorname{tr}}(t)=\overrightarrow{\boldsymbol{\varphi}^{\operatorname{tr}}}\left(2 t_{0}-t\right)=\overrightarrow{\boldsymbol{\varphi}}\left(2 t_{0}-\left(2 t_{0}-t\right)\right)=\overrightarrow{\boldsymbol{\varphi}}(t)
$$

and this proves the given equality.
(b). $\left(\overrightarrow{\boldsymbol{\varphi}^{\mathrm{sr}}}\right)^{\mathrm{sr}}=\overrightarrow{\boldsymbol{\varphi}}$. Because $\overrightarrow{\boldsymbol{\varphi}^{\mathrm{sr}}}$ is defined on the interval (a, b), it follows that $\left(\overrightarrow{\boldsymbol{\varphi}^{\mathrm{sr}}}\right)^{\mathrm{sr}}$ is also defined on (a, b). So, let $t \in(a, b)$. By the definition of state reversal, we see that

$$
\left(\overrightarrow{\left.\boldsymbol{\varphi}^{\mathrm{sr}}\right)^{\mathrm{sr}}}(t)=-\overrightarrow{\boldsymbol{\varphi}^{\mathrm{sr}}}(t)=-(-\overrightarrow{\boldsymbol{\varphi}}(t))=\overrightarrow{\boldsymbol{\varphi}}(t)\right.
$$

and hence this proves the desired equality.
 hence it follows that $\left(\overrightarrow{\boldsymbol{\varphi}^{\mathrm{sr}}}\right)^{\operatorname{tr}}$ is defined on the interval $\left(2 t_{0}-b, 2 t_{0}-a\right)$. Similarly, $\overrightarrow{\boldsymbol{\varphi}^{\mathrm{tr}}}$ is defined on the interval $\left(2 t_{0}-b, 2 t_{0}-a\right)$, and hence $\left(\overrightarrow{\boldsymbol{\varphi}^{\mathrm{tr}}}\right)^{\text {sr }}$ is defined on the interval $\left(2 t_{0}-b, 2 t_{0}-a\right)$. So, we've shown that the domains of the functions match. Now, let $t \in\left(2 t_{0}-b, 2 t_{0}-a\right)$. So, we have the following chain of equalities.
and this proves the desired equality. So, this completes the solution to the problem.

