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1). Here I will solve problems 1 and 12 from Cookbook-I.

1 dy
dx =

1 + y2

x
, x > 0

Solution. This is seen to be a separable DE. We have
1

1 + y2
dy
dx =

1

x

So, integrating both sides with respect to x, we see that∫
1

1 + y2
dy
dxdx =

∫
1

1 + y2
dy =

∫
1

x
dx = ln x+K

for some K ∈ R. Now, ∫
1

1 + y2
dy = arctan y +K ′

for some K ′ ∈ R. Combining all of this, we get

arctan y = ln x+ C

for some C ∈ R, and this is the general solution of the DE. ■

12 sin x
dy
dx + (cos x)y = ex

Solution. For simplicity we assume that x ∈ (0, π). So, dividing throughout by the
sine term, this becomes a linear first order DE.

dy
dx + (cot x)y =

ex

sin x

So, the integrating factor µ(x) in our case is

µ(x) = exp
∫

cot xdx = exp [ln sin x+K]

for some K ∈ R. So, the integrating factor is

µ(x) = eKeln sin x = K ′eln sin x = K ′sin x

So, the general solution to this DE is given by

y = µ(x)−1

∫
µ(x)

ex

sin x
dx =

1

K ′sin x

∫
K ′sin x

ex

sin x
dx =

ex + C

sin x

for some C ∈ R. ■
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2). Here I will be solving problems 2 and 14 from Cookbook-II.

2 9
d2y

dx2
+ 24

dy
dx + 16y = 0

Solution. The characteristic polynomial for this equation is

9t2 + 24t+ 16 = (3t+ 4)2

and hence this polynomial has a real root with multiplicty 2, namely −4/3. So, the
two solutions e

−4
3
x and xe

−4
3
x form a basis of the space of solutions to the given DE,

and hence the general solution is given by

y = c1e
−4
3
x + c2xe

−4
3
x

where c1, c2 ∈ R. ■

14 x2 d2y

dx2
− 2x

dy
dx + 2y = sin (ln x) + x2

Solution. We assume that x > 0. First, by using the substitution t = ln x, we convert
this equation to a more convenient form (as given in Cookbook-II):

d2y

dt2 − 3
dy
dt + 2y = sin t+ e2t(0.1)

Now, we will use the principle of superposition to find the general solution of this DE.
For this, consider the following three DEs:

d2y

dt2 − 3
dy
dt + 2y = 0(0.2)

d2y

dt2 − 3
dy
dt + 2y = sin t(0.3)

d2y

dt2 − 3
dy
dt + 2y = e2t(0.4)

Equation (0.2) is the homogeneous version equation (0.1). If we are able to find
solutions to (0.3) and (0.4), then by adding them we can get a particular solution of
equation (0.1), and here is where we are applying the principle of superposition. Then,
if we are able to find a general solution to equation (0.2), then the general solution
of (0.1) will be the sum of the particular solution found and the general form of the
solution of (0.2) (all of this is given in Cookbook-II). So this will be our strategy.

The characteristic polynomial for the DE in (0.2) is

u2 − 3u+ 2 = (u− 1)(u− 2)

and it has two roots, namely 1, 2 each with multiplicity 1. So, the general solution to
(0.2) is

y = c1e
t + c2e

2t

for c1, c2 ∈ R.
Next, we focus on equation (0.3). Observe that

sin t = e0t (0 · cos(1 · t) + 1 · sin(1 · t))
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and hence as in Cookbook-II, we have α = 0 and β = 1 in this case. Clearly, α+iβ = i
is not a root of the characteristic polynomial, so we are in the non-resonance case. So,
a particular solution of (0.3) is of the form

y = e0·t (A(t)cos(1 · t) +B(t)sin(1 · t))
where A(t), B(t) are polynomials of degree 0, i.e they are constant polynomials. So a
particular solution of (0.3) is of the form

y = k1cos t+ k2sin t

where k1, k2 ∈ R. We now compute k1, k2 from equation (0.3). We get

(−k1cos t− k2sin t)− 3(−k1sin t+ k2cos t) + 2(k1cos t+ k2sin t) = sin t

and this implies that

(k1 − 3k2)cos t+ (k2 + 3k1)sin t = sin t

and we obtain k2 = 1/10 and k1 = 3/10. So, a particular solution of (0.3) is

y =
3cos t

10
+

sin t

10

Finally, we focus on (0.4). Observe that

e2t = e2t (1 · cos(0 · t) + 1 · sin(0 · t))
and hence in this case α = 2 and β = 0. Now, note that α + iβ = 2 is a root of the
characteristic polynomial and it is multiplicity 1. So, a particular solution of (0.4) is
of the form

y = te2t(A(t)cos(0 · t) +B(t)sin(0 · t))
where A(t), B(t) are polynomials of degree 0, i.e they are constant polynomials. So a
particular solution of (0.4) is of the form

y = kte2t

where k ∈ R is some constant. We can compute k from equation (0.4).

4ke2t + 4kte2t − 3[ke2t + 2kte2t] + 2kte2t = e2t

and this equation implies
ke2t = e2t

and we get k = 1. So, a particular solution of (0.4) is

y = te2t

Combining solutions to (0.2), (0.3) and (0.4) we see that the general solution to (0.1)
is

y = c1e
t + c2e

2t +
3cos t

10
+

sin t

10
+ te2t

for some c1, c2 ∈ R. Finally, using our original substitution t = ln x, we see that the
general solution to our DE is

y = c1x+ c2x
2 +

3cos(ln x)

10
+

sin(ln x)

10
+ x2ln x

■
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3). The equation we have is
t2y′′ + 4ty′ − 10y = 0

Suppose y = tr is a solution to this DE. Then, we have
t2(r(r − 1)tr−2) + 4t(rtr−1)− 10tr = 0

which implies that
tr[r(r − 1) + 4r − 10] = 0

and hence
r2 + 3r − 10 = (r + 5)(r − 2) = 0

and hence the values of r which satisfy the equation are r = −5, 2.

4). Consider the DE
y(n)(x) + p1(x)y

(n−1)(x) + ...+ pn(x)y(x) = 0

in the interval (a, b), where each pi is continuous on (a, b). We show that the space of
solutions of this DE is an R-vector space of dimension n. We will be using Theorem
1 as mentioned in the homework sheet.

Let t0 ∈ (a, b) be the midpoint of the interval (a, b), and let S be the space of
solutions of the given DE. We will produce a vector space isomorphism φ : S → Rn

which is defined as follows: for any y ∈ S, we define the map φ as
φ(y) = (y(t0), y

(1)(t0), y
(2)(t0), ..., y

(n−1)(t0))

First, we show that this map preserves addition and scalar multiplication. So, let
y1, y2 ∈ S and let c ∈ R. It is clear that y1 + y2 and cy1 are solutions of the given DE,
because the derivative as an operator is a linear operator. Also, observe that

φ(y1 + y2) = ((y1 + y2)(t0), (y1 + y2)
(1)(t0), ..., (y1 + y2)

(n−1)(t0))

= (y1(t0) + y2(t0), y
(1)
1 (t0) + y

(1)
2 (t0), ..., y

(n−1)
1 (t0) + y

(n−1)
2 (t0))

= (y1(t0), ..., y
(n−1)(t0)) + (y2(t0), ..., y

(n−1)
2 (t0))

= φ(y1) + φ(y2)

and that
φ(cy1) = ((cy1)(t0), ..., (cy1)

(n−1)(t0))

= (cy1(t0), ..., cy
(n−1)
1 (t0))

= c(y1(t0), ..., y
(n−1)
1 (t0))

= cφ(y1)

and hence this shows that φ is indeed a linear map. Next, suppose y1, y2 ∈ S are such
that

φ(y1) = φ(y2)

for some y1, y2 ∈ S. This implies that
(y1(t0), ..., y

(n−1)
1 (t0)) = (y2(t0), ..., y

(n−1)
2 (t0))

By the uniqueness condition in Theorem 1, it follows that y1 = y2, i.e they are the
same solution. So, the map φ is one-one. Finally, suppose (α0, ..., αn−1) ∈ Rn is any
point. By the existence part of Theorem 1, there is some y ∈ S with

φ(y) = (α0, ..., αn−1)
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and hence this means that φ is a surjective map. So, it follows that φ is an isomor-
phism, i.e S ∼= Rn as vector spaces. This completes the proof.

5). Consider the following equation
˙⃗x(t) = A(t)x⃗(t)(∗)

where A(t) is a matrix as in the homework sheet. We show that the solutions to the
equation (∗) form an n-dimensional real vector space. Let t0 ∈ (a, b) be any point, and
let S be the space of solutions to (∗). We will produce a vector space isomorphism
φ : S → Rn as follows: for any x⃗ ∈ S, define

φ(x⃗) = x⃗(t0)

Suppose x⃗1, x⃗2 ∈ S and let c ∈ R. Then, it is clear that x⃗1 + x⃗2 and cx⃗1 are also
solutions to (∗), because the derivative as an operator is a linear operator and because
matrix multiplication is distributive over addition. Also observe that

φ(x⃗1 + x⃗2) = (x⃗1 + x⃗2)(t0) = x⃗1(t0) + x⃗2(t0) = φ(x⃗1) + φ(x⃗2)

and that
φ(cx⃗1) = (cx⃗1)(t0) = cx⃗1(t0) = cφ(x⃗1)

and hence φ is a linear map indeed. Next, suppose φ(x⃗1) = φ(x⃗2) for some x⃗1, x⃗2 ∈
S. This implies that x⃗1 and x⃗2 are solutions of (∗) with x⃗1(t0) = x⃗2(t0). By the
uniqueness condition in Theorem 2 as mentioned in the homework sheet, it follows
that x⃗1 = x⃗2, i.e they are the same map. This shows that φ is an injective map.
Finally, if α⃗ ∈ Rn is any point, then by the existence part of Theorem 2 there is
some x⃗ ∈ S with φ(x⃗) = x⃗(t0) = α⃗, and this implies that φ is a surjective map. So,
S ∼= Rn, and this completes our proof.

6). For this problem, let A be a constant matrix, and let (a, b) = R. Then, our DE
becomes

˙⃗x(r) = Ax⃗(r) , r ∈ R(†)
We want to show that g(s + t) = g(s)g(t) for any s, t ∈ R, where the right hand side
is function composition. In particular, we want to show that for every α⃗ ∈ Rn, the
equation

g(s+ t)(α⃗) = g(s) ◦ g(t)(α⃗)

holds. To show this, let x⃗0 be the unique solution to (†) with x⃗0(0) = α⃗. So, we see
that g(s+ t)(α⃗) = x⃗0(s+ t). Also, we see that g(t)(α⃗) = x⃗0(t), and hence

g(s) ◦ g(t)(α⃗) = g(s)(x⃗0(t))

Let x⃗1 be the unique solution to (†) with x⃗1(0) = x⃗0(t). So, it follows that g(s)(x⃗0(t)) =
x⃗1(s). Now, consider the map x⃗2 : R → Rn defined by

x⃗2(r) = x⃗0(r + t)

From the above definition, we see that
˙⃗x2(r) = ˙⃗x0(r + t) = Ax⃗0(r + t) = Ax⃗2(r)

So, it follows that x⃗2 is a solution of (†) with x⃗2(0) = x⃗0(t). So by uniqueness, it
follows that x⃗2 = x⃗1, i.e

x⃗1(r) = x⃗0(r + t)

for every r ∈ R. So, we see that
x⃗1(s) = x⃗0(s+ t)
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All of this implies that
g(s+ t)(α⃗) = g(s) ◦ g(t)(α⃗)

Since s, r ∈ R and α⃗ ∈ Rn were arbitrary, it follows that
g(s+ t) = g(s)g(t)

and this completes our proof.
Next, we will show that g(0) is the identity map, i.e g(0)(α⃗) = α⃗ for every α⃗ ∈ Rn.

But this is easy to see: let α⃗ ∈ Rn be any point, and let x⃗ be the unique solution of
(†) with x⃗(0) = α⃗. Then, we have

g(0)(α⃗) = x⃗(0) = α⃗

and thus g(0) is indeed the identity mapping. This completes our proof.

7). We will now show that each g(s) is an invertible linear transformation. First, we
show that g(s) is a linear transformation. So, let α⃗, β⃗ ∈ Rn be given and let c ∈ R. Let
x⃗α, x⃗β and x⃗α+β be unique solutions of the DE (†) with that x⃗α(0) = α⃗, x⃗β(0) = β⃗

and x⃗α+β(0) = α⃗+ β⃗. Consider the map x⃗0 on R given by
x⃗0(t) = x⃗α(t) + x⃗β(t) , t ∈ R

Then, note that x⃗0(0) = α⃗+ β⃗, and that
˙⃗x0(t) = ˙⃗xα(t) + ˙⃗xβ(t) = Ax⃗α(t) + Ax⃗β(t) = Ax⃗0(t)

and hence x⃗0 is a solution of (†). So by uniqueness, it follows that x⃗0 = x⃗α+β, i.e
x⃗α+β = x⃗α + x⃗β

So, it follows that

g(s)(α⃗+ β⃗) = x⃗α+β(s) = x⃗α(s) + x⃗β(s) = g(s)(α⃗) + g(s)(β⃗)

so that g(s) preserves addition.
Now, let x⃗cα be the unique solution of (†) with x⃗cα(0) = cα. Again, let x⃗1 be the

map on R given by
x⃗1(t) = cx⃗α(t) , t ∈ R

Clearly, x⃗1(0) = cα⃗, and also
˙⃗x1(t) = c ˙⃗xα(t) = cAx⃗α(t) = Ax⃗1(t)

which implies that x⃗1 is a solution of (†). So by uniquness, we see that x⃗1 = x⃗cα, i.e
x⃗cα = cx⃗α

So, we see that
g(s)(cα⃗) = x⃗cα(s) = cx⃗α(s) = cg(s)(α⃗)

and hence it follows that g(s) in indeed a linear map.
Now, suppose g(s)(α⃗) = g(s)(β⃗) for some α⃗, β⃗ ∈ Rn, and let the maps x⃗α, x⃗β have

the same meaning as above. This implies that x⃗α(s) = x⃗β(s) = γ⃗. Now, we know
that s ∈ R and that both x⃗α and x⃗β are solutions of (†). So, applying the uniqueness
part Theorem 2 with the initial condition x⃗(s) = γ⃗, it follows that x⃗α = x⃗β. In
particular, we have

α⃗ = x⃗α(0) = x⃗β(0) = β⃗

and so this implies that g(s) is an injective map.
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To show surjectivity, we know by Theorem 2 that for any α⃗ ∈ Rn there is a solution
x⃗ of (†) such that x⃗(s) = α⃗. Let γ = x⃗(0). In this case, we see that

g(s)(γ⃗) = x⃗(s) = α⃗

and hence g(s) is a surjective map. So, it follows that g(s) is an invertible linear
transformation, and this completes our proof.

8). We identify linear endomorphisms of Rn with n × n matrices, and let g be as
above. We will show that

lim
t→0

g(t)− g(0)

t
= A

We know that g(t) is an invertible n × n matrix for every t ∈ R. Moreover, the ith

column of the matrix g(t) is given by g(t)(e⃗i), where e⃗1, ..., e⃗n are the standard basis
vectors of Rn. So, let 1 ≤ i ≤ n be fixed. Let x⃗i be the unique solution of (†) with
x⃗i(0) = e⃗i. So, we see that

g(t)(e⃗i) = x⃗i(t) , t ∈ R
Now suppose x⃗i = (x1i, ..., xni) are the component functions of x⃗i, and hence the ith

column of g(t) is 
x1i(t)
x2i(t)
...

xni(t)


Also from the equality x⃗i(0) = e⃗i we have

x1i(0)
x2i(0)
...

xii(0)
...

xni(0)

 =


0
0
...
1
...
0


Moreover, writing equation (†) in coordinate form translates to

ẋ1i(t)
ẋ2i(t)
...

ẋni(t)

 = A


x1i(t)
x2i(t)
...

xni(t)

 , t ∈ R

Putting t = 0 above, this means
ẋ1i(0)
ẋ2i(0)
...

ẋni(0)

 = A


x1i(0)
x2i(0)
...

xni(0)

 = Ae⃗i

Writing the above equation in terms of limits, we see that

lim
t→0



x1i(t)− x1i(0)

t
x2i(t)− x2i(0)

t
...

xni(t)− xni(0)

t

 = lim
t→0

1

t


x1i(t)− x1i(0)
x2i(t)− x2i(0)

...
xni(t)− xni(0)

 = lim
t→0

g(t)(e⃗i)− e⃗i

t
= Ae⃗i
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Now, note that in the above equation Ae⃗i is the ith column of the matrix A, and e⃗i

is the ith column of the identity matrix I. So, because the last equation is true for all
1 ≤ i ≤ n, it follows that

lim
t→0

g(t)− I

t
= A

Also, we know that g(0) = I since g(0) is the identity map. So, we get

lim
t→0

g(t)− g(0)

t
= A

and this completes the proof.

9). Consider the n-th order linear differential equation

y(n)(t) + p1(t)y
(n−1)(t) + ...+ pn(t)y(t) = 0(∗∗)

where each pi is a continuous function on (a, b), and let t0 ∈ (a, b) be a point, and a
set of initial conditions

y(i)(t0) = αi , 0 ≤ i ≤ n− 1

where α⃗ = (α0, ..., αn−1) ∈ Rn is a point. We will show that this equation is equivalent
to a first order linear Rn-valued differential equation of the form (∗) on (a, b). To show
this, consider the following matrix of functions: let

λ⃗(t) = (pn(t), pn−1(t), ...., p1(t)) , t ∈ (a, b)

and let A(t) be the n× n matrix of functions given by

A(t) =


e⃗2

e⃗3

...
e⃗n

−λ⃗(t)


So, consider a DE of the form

˙⃗x(t) = A(t)x⃗(t)

along with the initial condition x⃗(t0) = α⃗. Suppose x⃗ is a solution of this DE and let
x⃗ = (x1, ..., xn) where each xi is an R-valued function on (a, b). We will show that x1

is a solution of the DE (∗∗), and that will complete the proof.
Written in coordinate form, the differential equation above becomes the following.

ẋ1(t)
ẋ2(t)
...

ẋn−1(t)
ẋn(t)

 =


x2(t)
x3(t)
...

xn(t)
−pn(t)x1(t)− ...− p1(t)xn(t)

 , t ∈ (a, b)

So, it follows that xi(t) = x
(i−1)
1 (t) for each 2 ≤ i ≤ n and t ∈ (a, b), and also

ẋn(t) = x
(n)
1 (t) = −pn(t)x1(t)− pn−1(t)x2(t)− ...− p1(t)xn(t)

and the above equation implies that

x
(n)
1 (t) + p1(t)x

(n−1)(t) + ...+ pn(t)x1(t) = 0
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and so x1 is a solution of the DE (∗∗). Also, the initial condition in coordinate form
is written as

(x1(t0), ..., xn(t0)) = (α0, ..., αn−1)

and this implies that x
(i)
1 (t0) = αi for each 1 ≤ i ≤ n− 1.

Conversely, if the function x1 is the solution to (∗∗) along with the condition
x
(i)
1 (t0) = αi for 1 ≤ i ≤ n− 1, then by putting x⃗ = (x1, x

(1)
1 , ..., x

(n−1)
1 ) and reversing

all the steps we did above, we see that x⃗ satisfies the equation
˙⃗x(t) = A(t)x⃗(t) , t ∈ (a, b)

where A(t) is the matrix of functions constructed above, and that x⃗(t0) = α⃗. So,
this shows the uniqueness of the solution to (∗∗), because Theorem 2 guarantees the
uniqueness of the solution to (∗).

So, it follows that Theorem 1 is a special case of Theorem 2, if we take the map
g(t) in Theorem 1 to be identically zero.
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