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SIDDHANT CHAUDHARY

1). In this problem we will solve problems 13 and 22 from Cookbook-I.

13 (ex sin y − 2y sin x)dx+ (ex cos y + 2 cosx)dy = 0

Solution. This equation is equivalent to

(ex sin y − 2y sin x) + (ex cos y + 2 cosx)dy
dx = 0

We now show that this is an exact equation. To see this, observe that
∂(ex sin y − 2y sin x)

∂y
= ex cos y − 2 sin x

and that
∂(ex cos y + 2 cosx)

∂x
= ex cos y − 2 sin x

and the above two equations show that our DE is exact. Now, we need to find P such
that

∂P

∂x
= ex sin y − 2y sin x ,

∂P

∂y
= ex cos y + 2 cosx(0.1)

So, consider

P (x, y) =

∫
ex sin y − 2y sin xdx

= ex sin y + 2y cosx+ g(y)

for some differentiable function g of y. Clearly, differentiating P (x, y) with respect to
x, we see that P (x, y) satisifies the first half of equation (0.1). Now, differentiating
P (x, y) with respect to y and equating it to the RHS of the second half of equation
(0.1) we get

∂P

∂y
= ex cos y + 2 cosx+ g′(y) = ex cos y + 2 cosx

so that g′(y) = 0, i.e g(y) = K for some K ∈ R. We can take K = 0. So, the solution
to our DE is given by the implicit equation

P (x, y) = ex sin y + 2y cosx = C

for some C ∈ R. ■

22 2y2y′′ + 2y(y′)2 = 1
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Solution. We assume that y > 0 at all points where it is defined. Dividing throughout
by 2y2, this DE becomes

y′′ =
1

2y2
− (y′)2

y
This is a second order equation with the independent variable missing. Putting v = y′,
we see that

v
dv
dy =

1

2y2
− v2

y
which on dividing throughout by v, we rewrite as

dv
dy +

v

y
=

1

2y2
v−1

This is an example of a Bernoulli equation. We substitute u = v1−(−1) = v2 and get
1

2

du
dy +

u

y
=

1

2y2

This is a first order linear DE. The integrating factor is

µ(y) = exp
∫

2

y
dy = exp (2 ln y +K) = eKy2 = K ′y2

where K ′ ∈ R. So, the solution to the linear DE is

u =
1

K ′y2

∫
K ′y2

1

y2
dy =

1

y2

∫
dy =

y + C

y2

for some C ∈ R. So, it follows that

v2 =
y + C

y2

and hence

v =

√
y + C

y2
=

√
y + C

y

So, we just have to solve the equation
dy
dx =

√
y + C

y

which is clearly a separable DE. We get
y√

y + C

dy
dx = 1

Integrating both sides with respect to x, we get∫
y√

y + C
dy =

∫
dx = x+ C0

for some C0 ∈ R. The integral on the LHS can be solved by substituting t = y + C,
and we get∫

y√
y + C

dy =

∫
t− C√

t
dt =

∫ √
tdt− C

∫
1√
t

dt = 2t
3
2

3
− 2Ct

1
2 + C ′

for some C ′ ∈ R. So, we get∫
y√

y + C
dy =

2(y + C)
3
2

3
− 2C(y + C)

1
2 + C ′
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and combining all this, we see that the solution to our original DE is
2(y + C)

3
2

3
− 2C(y + C)

1
2 + C ′ = x+ C0

which can be rewritten as
2(y + C)

3
2

3
− 2C(y + C)

1
2 = x+K

where K = C0 − C ′ ∈ R. ■

2). In this problem we will solve problems 3 and 9 from Cookbook-II.

3 d3y

dx3
+ 6

d2y

dx2
+ 3

dy
dx − 10y = 0, y(0) = 2, y′(0) = −7 and y′′(0) = 47

Solution. The characteristic polynomial of the DE is
t3 + 6t2 + 3t− 10 = (t− 1)(t+ 2)(t+ 5)

and hence this has three distinct roots, each of multiplicity 1. So, the space of solutions
has basis ex, e−2x and e−5x, and hence the general solution is given by

y = c1e
x + c2e

−2x + c3e
−5x

We can calculate the constants c1, c2, c3 ∈ R using the given initial conditions. The
condition y(0) = 2 gives us

c1 + c2 + c3 = 2

The condition y′(0) = −7 gives
c1 − 2c2 − 5c3 = −7

and the condition y′′(0) = 47 gives us
c1 + 4c2 + 25c3 = 47

and solving this system of linear equations in three variables, we get
(c1, c2, c3) = (1,−1, 2)

and hence
y = ex − e−2x + 2e−5x

■

9 y(6) − 3y(5) + 40y(3) − 180y′′ + 324y′ − 432y = 0 [Hint: 1 + i
√
5 is a root (with

positive multiplicity) of the characteristic polynomial.]
Solution. The characteristic polynomial of the DE is

t6 − 3t5 + 40t3 − 180t2 + 324t− 432

As given in the hint, 1 + i
√
5 is a root, and because it occurs as a conjugate pair we

see that (t− 1− i
√
5)(t− 1 + i

√
5) = (t− 1)2 + 5 is a factor of the given polynomial.

Using long division, we get
t6 − 3t5 + 40t3 − 180t2 + 324t− 432 = ((t− 1)2 + 5)(t4 − t3 − 8t2 + 30t− 72)

Now, it can be checked that 3,−4 are roots of the biquadratic factor, i.e (t−3)(t+4) =
t2 + t − 12 is a factor of the above biquadratic factor. Again by long division we see
that

t4 − t3 − 8t2 + 30t− 72 = (t2 + t− 12)(t2 − 2t+ 6)



4 SIDDHANT CHAUDHARY

Finally, the polynomial t2− 2t+6 has 1+ i
√
5, 1− i

√
5 as its roots. So, it follows that

our original polynomial t6 − 3t5 + 40t3 − 180t2 + 324t− 432 has the following roots:

1 + i
√
5 with multiplicity 2

1− i
√
5 with multiplicity 2
3 with multiplicity 1

−4 with multiplicity 1

So, it follows that the basis of the space of solutions consists of

e3x, e−4x, excos (
√
5x), xexcos (

√
5x), exsin (

√
5x), xexsin (

√
5x)

So, the general solution to this DE is given by

y = c1e
3x + c2e

−4x + c3e
xcos (

√
5x) + c4xe

xcos (
√
5x) + c5e

xsin (
√
5x) + c6xe

xsin (
√
5x)

where c1, c2, c3, c4, c5, c6 ∈ R are constants. ■

3). Let I be an interval in R and let
˙⃗x(t) = A(t)x⃗(t) (t ∈ I)(∗)

be a linear first order DE where A is an n × n matrix of continuous functions on I.
Suppose y⃗1(t), ..., y⃗n(t) are n solutions of the above DE on I. Let

W = W (y⃗1, ..., y⃗n) : I → R

be the map given by
W (t) = det[y⃗1(t), ..., y⃗n(t)] (t ∈ I)

We show that either W is identically zero on I or it is nowhere vanishing on I. The
main idea that we will be using is the uniqueness of solutions to (∗), which has been
proven in Lecture-7.

We need to show that if W (t0) = 0 for some t0 ∈ I, then W (t) = 0 for all t ∈ I. So,
take such a t0 ∈ I. This means that

det[y⃗1(t0), ..., y⃗n(t0)] = 0

and hence the vectors y⃗1(t0), ..., y⃗n(t0) are linearly dependent. So, there are constants
a1, ..., an ∈ R not all zero such that

a1y⃗1(t0) + ...+ any⃗n(t0) = 0

Without loss of generality, suppose a1 6= 0. So, we see that

y⃗1(t0) = −a2
a1

y⃗2(t0)− ...− an
a1

y⃗n(t0)

i.e y⃗1(t0) is a linear combination of y⃗2(t0), ..., y⃗n(t0). Put a⃗0 = y⃗1(t0) and consider the
map

−a2
a1

y⃗2 − ...− an
a1

y⃗n = y⃗ : I → Rn

Because y⃗2, ..., y⃗n are solutions of (∗), y⃗ being a linear combination is also a solution
of (∗). Moreover, we see that

y⃗(t0) = y⃗1(t0) = a⃗0
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So, by the uniqueness of solutions of (∗) on the initial condition x⃗(t0) = a⃗0, it follows
that y⃗ = y⃗1 on I. In other words, this means that y⃗1(t) is a linear combination of
y⃗2(t), ..., y⃗n(t) for each t ∈ I, and hence

W (t) = det[y⃗1(t), ..., y⃗n(t)] = 0

for each t ∈ I, implying that W is identically zero on I. So, it follows that either W is
identically zero on I, or W vanishes at no point of I, and this is what the claim was.
4). Let I be an interval in R, and let A : I → Mm,k(R) and B : I → Mk,n(R) be
differentiable on I. We will show that the map t 7→ A(t)B(t) gives us a differentiable
map AB : I → Mm,n(R) and

d
dt (A(t)B(t)) = Ȧ(t)B(t) + A(t)Ḃ(t) (t ∈ I)

Note that it is enough to show that for any t0 ∈ I,

lim
h→0

A(t0 + h)B(t0 + h)− A(t0)B(t0)

h
= Ȧ(t0)B(t0) + A(t0)Ḃ(t0)

where the above limit is taken with respect to the operator norm (or any other norm,
since all are equivalent), and it is interpreted as a one-sided limit if t0 is a boundary
point of I. Showing this is a straightforward computation.

lim
h→0

A(t0 + h)B(t0 + h)− A(t0)B(t0)

h

= lim
h→0

A(t0 + h)B(t0 + h)− A(t0)B(t0 + h) + A(t0)B(t0 + h)− A(t0)B(t0)

h

= lim
h→0

B(t0 + h)[A(t0 + h)− A(t0)] + A(t0)[B(t0 + h)−B(t0)]

h

= lim
h→0

B(t0 + h)[A(t0 + h)− A(t0)]

h
+ lim

h→0

A(t0)[B(t0 + h)−B(t0)]

h

= Ȧ(t0)B(t0) + A(t0)Ḃ(t0)

where in the last step we have just split the limits into products of limits (the fact
that this can be done was proven in the Analysis-2 course). This completes the proof.
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