HW-3

SIDDHANT CHAUDHARY

1). In this problem we will solve problems 13 and 22 from Cookbook-I.
13 (e"siny — 2ysinz)dz + (e* cosy +2cosz)dy =0

Solution. This equation is equivalent to
5 : . dy
(e”siny — 2ysinx) + (e” cosy + 2cosx)d— =0
x
We now show that this is an exact equation. To see this, observe that
Jd(e*siny — 2y sinz)
dy

=e"cosy — 2sinzx

and that
J(e” cosy + 2cos )
Ox

and the above two equations show that our DE is exact. Now, we need to find P such
that

=e’cosy —2sinx

oP oP
(0.1) — =¢e®siny —2ysinx , — =e“cosy+2cosw

ox dy

So, consider

P(z,y) :/exsiny—stinxdx
= e"siny + 2y cosx + g(y)

for some differentiable function g of y. Clearly, differentiating P(x,y) with respect to
x, we see that P(z,y) satisifies the first half of equation (0.1). Now, differentiating
P(x,y) with respect to y and equating it to the RHS of the second half of equation
(0.1) we get

ap x / x

m =e"cosy+2cosx + g'(y) = e cosy + 2cosx

so that ¢'(y) = 0, i.e g(y) = K for some K € R. We can take K = 0. So, the solution
to our DE is given by the implicit equation

P(z,y) = e"siny + 2y cosx = C
for some C' € R. |
22 2%+ 2y(y) =1
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Solution. We assume that y > 0 at all points where it is defined. Dividing throughout
by 242, this DE becomes
1 WP
29>y
This is a second order equation with the independent variable missing. Putting v = ¢/,
we see that

dv 1 V2

By Yy

which on dividing throughout by v, we rewrite as
dv v 1
a2

This is an example of a Bernoulli equation. We substitute v = v'~-1) = ¢? and get
ldu wu 1
24y

This is a first order linear DE. The integrating factor is

ply) = exp /gdy =exp (2lny + K) = e"y® = K'y?

where K’ € R. So, the solution to the linear DE is

1 , 51 1 y+C
UZK’yQ/Ky?dy:?/dy: y?

for some C' € R. So, it follows that

and hence

s C Vvy+C
y? y
So, we just have to solve the equation

dy _vy+C
de Y
which is clearly a separable DE. We get
y dy ]

VytCOdr

Integrating both sides with respect to x, we get

Yy
= dy = dx = C
/ y—i—C’ Y / r=x+ Cy

for some Cy € R. The integral on the LHS can be solved by substituting t = y + C,
and we get

y t—C / /1 2t L,
—dy= | ——dit = \/Edt—C —dt=——-2Ctz2 +C
/wa Y / Vi Vi3

for some C" € R. So, we get

y 2(y+C)% 1 y
dy=—"—2-2C0y+C)z2 +C
/vy+C y 3 (y )
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and combining all this, we see that the solution to our original DE is

M—zo(wo)ﬂdzﬁa)
which can be rewritten as
M—QC(@rFC)% =+ K
where K = Cy — C' € R. |
2). In this problem we will solve problems 3 and 9 from Cookbook-II.
3 @ —i-G@ +3% — 10y =0, y(0) =2, ¥/(0) = —7 and y"(0) = 47

da? dx? dx
Solution. The characteristic polynomial of the DE is
34+ 6t +3t—10=(t —1)(t +2)(t +5)

and hence this has three distinct roots, each of multiplicity 1. So, the space of solutions
has basis €%, e~2* and e, and hence the general solution is given by

Y= c1e® + coe 2 4 cge

We can calculate the constants cj, ¢y, c3 € R using the given initial conditions. The
condition y(0) = 2 gives us
c1+cyat+c3=2

The condition y'(0) = —7 gives

C1 — 202 — 503 = -7
and the condition y”(0) = 47 gives us

c1 + 402 + 2503 =47
and solving this system of linear equations in three variables, we get

(Cla C2, 03) = (17 _17 2)
and hence

y=e" —e 242

9 y© — 3y 4+ 40y® — 180y + 324y’ — 432y = 0 [Hint: 1+ iv/5 is a root (with
positive multiplicity) of the characteristic polynomial.]

Solution. The characteristic polynomial of the DE is
t0 — 3t° + 40° — 180t* + 324t — 432
As given in the hint, 1 4 iy/5 is a root, and because it occurs as a conjugate pair we
see that (t — 1 —iv/5)(t — 14+ iv/5) = (t — 1)® + 5 is a factor of the given polynomial.
Using long division, we get
15 — 3t° + 40t® — 180t% + 324t — 432 = ((t — 1)* + 5)(t* — 3 — 8> + 30t — 72)

Now, it can be checked that 3, —4 are roots of the biquadratic factor, i.e (t—3)(t+4) =
t? +t — 12 is a factor of the above biquadratic factor. Again by long division we see

that
th— 1 =812 + 30t — 72 = (t* +t — 12)(t* — 2t + 6)
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Finally, the polynomial t> — 2t + 6 has 1+ iv/5, 1 —i1/5 as its roots. So, it follows that
our original polynomial t5 — 3t° + 40t — 180t + 324t — 432 has the following roots:

1 + 4v/5 with multiplicity 2
1 — iv/5 with multiplicity 2
3 with multiplicity 1

—4 with multiplicity 1

So, it follows that the basis of the space of solutions consists of
e e ePcos (Vbr), ze"cos (Viir), e%sin (V5x), zesin (V)
So, the general solution to this DE is given by
Y = 16 + o6 4 c3e®cos (VBz) + came®cos (V) + esesin (V5z) 4 cgre®sin (Vx)

where ¢y, ¢, c3, C4, C5, c6 € R are constants. [ |

3). Let I be an interval in R and let
(*) E(t) = A(t)E(1) (tel)

be a linear first order DE where A is an n X n matrix of continuous functions on I.
Suppose ¥ (t), ..., Yn(t) are n solutions of the above DE on I. Let

W =Wy, ...¥n) : I = R
be the map given by
W(t) = det[yi (), ..., Un(t)] (tel)

We show that either W is identically zero on [ or it is nowhere vanishing on /. The
main idea that we will be using is the uniqueness of solutions to (x), which has been
proven in Lecture-7.

We need to show that if W (ty) = 0 for some ¢y € I, then W (t) =0 for all t € I. So,
take such a ty € I. This means that

det[#1(to), -, Un(to)] = 0

and hence the vectors @ (to), ..., Yn(to) are linearly dependent. So, there are constants
ai,...,a, € R not all zero such that

alﬁl(to) + ...+ angn(to) =0
Without loss of generality, suppose a; # 0. So, we see that
— CLQ — an —
t = — t R — ¢ 07 t
1 (to) a1y2( 0) aly (o)
i.e ¥ (to) is a linear combination of 4 (ty), ..., Y, (to). Put @y = 71 (to) and consider the

map

an , n
—Yo— ... ——Yo=Y: [ =R
aq aq

Because 4y, ..., ¥, are solutions of (x), ¢ being a linear combination is also a solution
of (x). Moreover, we see that

Yy(to) = H1(to) = do
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So, by the uniqueness of solutions of (x) on the initial condition &(t) = o, it follows
that 4 = 41 on I. In other words, this means that ¥ (¢) is a linear combination of
Yo(t), ..., Yn(t) for each ¢t € I, and hence

W (t) = det[g:i(t), ..., gn(t)] =0

for each t € I, implying that W is identically zero on I. So, it follows that either W is
identically zero on I, or W vanishes at no point of I, and this is what the claim was.

4). Let I be an interval in R, and let A : [ — M,,x(R) and B : I — M ,(R) be
differentiable on /. We will show that the map ¢ — A(t)B(t) gives us a differentiable
map AB : I — M,, ,(R) and

% (A()B(1) = A®)B() + AWB(E) ()

Note that it is enough to show that for any ¢ € I,

LAl +h)B(to + h) — Alte) B(to) _ A(ty)B(to) + A(to) B(to)

h—0 h

where the above limit is taken with respect to the operator norm (or any other norm,
since all are equivalent), and it is interpreted as a one-sided limit if ¢y is a boundary
point of I. Showing this is a straightforward computation.

A(to + h)B(to + h) - A(to)B(tD)

lim

h—0 h

_ limA(tO + h)B(to + h) — A(to) B(to + h) + A(to) B(to + h) — A(to) B(to)
h—0 h

o Bl £ WAGy ) — Alo)] + AGIBy + ) ~ Bto)
h—0 h

_ i Blo+ W[Al + 1) — Alto)] | |, A(t)[B(to + 1) — B(to)]

= lim + lim
h—0 h h—0 h

= A(to)B(to) + A(to)B(to)

where in the last step we have just split the limits into products of limits (the fact
that this can be done was proven in the Analysis-2 course). This completes the proof.
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