HW-3

SIDDHANT CHAUDHARY

1). In this problem we will solve problems 13 and 22 from Cookbook-I.

$13 \quad\left(e^{x} \sin y-2 y \sin x\right) \mathrm{d} x+\left(e^{x} \cos y+2 \cos x\right) \mathrm{d} y=0$

Solution. This equation is equivalent to

$$
\left(e^{x} \sin y-2 y \sin x\right)+\left(e^{x} \cos y+2 \cos x\right) \frac{\mathrm{d} y}{\mathrm{~d} x}=0
$$

We now show that this is an exact equation. To see this, observe that

$$
\frac{\partial\left(e^{x} \sin y-2 y \sin x\right)}{\partial y}=e^{x} \cos y-2 \sin x
$$

and that

$$
\frac{\partial\left(e^{x} \cos y+2 \cos x\right)}{\partial x}=e^{x} \cos y-2 \sin x
$$

and the above two equations show that our DE is exact. Now, we need to find P such that

$$
\begin{equation*}
\frac{\partial P}{\partial x}=e^{x} \sin y-2 y \sin x \quad, \quad \frac{\partial P}{\partial y}=e^{x} \cos y+2 \cos x \tag{0.1}
\end{equation*}
$$

So, consider

$$
\begin{aligned}
P(x, y) & =\int e^{x} \sin y-2 y \sin x \mathrm{~d} x \\
& =e^{x} \sin y+2 y \cos x+g(y)
\end{aligned}
$$

for some differentiable function g of y. Clearly, differentiating $P(x, y)$ with respect to x, we see that $P(x, y)$ satisifies the first half of equation (0.1). Now, differentiating $P(x, y)$ with respect to y and equating it to the RHS of the second half of equation (0.1) we get

$$
\frac{\partial P}{\partial y}=e^{x} \cos y+2 \cos x+g^{\prime}(y)=e^{x} \cos y+2 \cos x
$$

so that $g^{\prime}(y)=0$, i.e $g(y)=K$ for some $K \in \mathbb{R}$. We can take $K=0$. So, the solution to our DE is given by the implicit equation

$$
P(x, y)=e^{x} \sin y+2 y \cos x=C
$$

for some $C \in \mathbb{R}$.
$22 \quad 2 y^{2} y^{\prime \prime}+2 y\left(y^{\prime}\right)^{2}=1$

Date: 26 January 2021.

Solution. We assume that $y>0$ at all points where it is defined. Dividing throughout by $2 y^{2}$, this DE becomes

$$
y^{\prime \prime}=\frac{1}{2 y^{2}}-\frac{\left(y^{\prime}\right)^{2}}{y}
$$

This is a second order equation with the independent variable missing. Putting $v=y^{\prime}$, we see that

$$
v \frac{\mathrm{~d} v}{\mathrm{~d} y}=\frac{1}{2 y^{2}}-\frac{v^{2}}{y}
$$

which on dividing throughout by v, we rewrite as

$$
\frac{\mathrm{d} v}{\mathrm{~d} y}+\frac{v}{y}=\frac{1}{2 y^{2}} v^{-1}
$$

This is an example of a Bernoulli equation. We substitute $u=v^{1-(-1)}=v^{2}$ and get

$$
\frac{1}{2} \frac{\mathrm{~d} u}{\mathrm{~d} y}+\frac{u}{y}=\frac{1}{2 y^{2}}
$$

This is a first order linear DE. The integrating factor is

$$
\mu(y)=\exp \int \frac{2}{y} \mathrm{~d} y=\exp (2 \ln y+K)=e^{K} y^{2}=K^{\prime} y^{2}
$$

where $K^{\prime} \in \mathbb{R}$. So, the solution to the linear DE is

$$
u=\frac{1}{K^{\prime} y^{2}} \int K^{\prime} y^{2} \frac{1}{y^{2}} \mathrm{~d} y=\frac{1}{y^{2}} \int \mathrm{~d} y=\frac{y+C}{y^{2}}
$$

for some $C \in \mathbb{R}$. So, it follows that

$$
v^{2}=\frac{y+C}{y^{2}}
$$

and hence

$$
v=\sqrt{\frac{y+C}{y^{2}}}=\frac{\sqrt{y+C}}{y}
$$

So, we just have to solve the equation

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\sqrt{y+C}}{y}
$$

which is clearly a separable DE . We get

$$
\frac{y}{\sqrt{y+C}} \frac{\mathrm{~d} y}{\mathrm{~d} x}=1
$$

Integrating both sides with respect to x, we get

$$
\int \frac{y}{\sqrt{y+C}} \mathrm{~d} y=\int \mathrm{d} x=x+C_{0}
$$

for some $C_{0} \in \mathbb{R}$. The integral on the LHS can be solved by substituting $t=y+C$, and we get

$$
\int \frac{y}{\sqrt{y+C}} \mathrm{~d} y=\int \frac{t-C}{\sqrt{t}} \mathrm{~d} t=\int \sqrt{t} \mathrm{~d} t-C \int \frac{1}{\sqrt{t}} \mathrm{~d} t=\frac{2 t^{\frac{3}{2}}}{3}-2 C t^{\frac{1}{2}}+C^{\prime}
$$

for some $C^{\prime} \in \mathbb{R}$. So, we get

$$
\int \frac{y}{\sqrt{y+C}} \mathrm{~d} y=\frac{2(y+C)^{\frac{3}{2}}}{3}-2 C(y+C)^{\frac{1}{2}}+C^{\prime}
$$

and combining all this, we see that the solution to our original DE is

$$
\frac{2(y+C)^{\frac{3}{2}}}{3}-2 C(y+C)^{\frac{1}{2}}+C^{\prime}=x+C_{0}
$$

which can be rewritten as

$$
\frac{2(y+C)^{\frac{3}{2}}}{3}-2 C(y+C)^{\frac{1}{2}}=x+K
$$

where $K=C_{0}-C^{\prime} \in \mathbb{R}$.
2). In this problem we will solve problems $\mathbf{3}$ and $\mathbf{9}$ from Cookbook-II.
$3 \quad \frac{\mathrm{~d}^{3} y}{\mathrm{~d} x^{3}}+6 \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+3 \frac{\mathrm{~d} y}{\mathrm{~d} x}-10 y=0, y(0)=2, y^{\prime}(0)=-7$ and $y^{\prime \prime}(0)=47$
Solution. The characteristic polynomial of the DE is

$$
t^{3}+6 t^{2}+3 t-10=(t-1)(t+2)(t+5)
$$

and hence this has three distinct roots, each of multiplicity 1 . So, the space of solutions has basis $e^{x}, e^{-2 x}$ and $e^{-5 x}$, and hence the general solution is given by

$$
y=c_{1} e^{x}+c_{2} e^{-2 x}+c_{3} e^{-5 x}
$$

We can calculate the constants $c_{1}, c_{2}, c_{3} \in \mathbb{R}$ using the given initial conditions. The condition $y(0)=2$ gives us

$$
c_{1}+c_{2}+c_{3}=2
$$

The condition $y^{\prime}(0)=-7$ gives

$$
c_{1}-2 c_{2}-5 c_{3}=-7
$$

and the condition $y^{\prime \prime}(0)=47$ gives us

$$
c_{1}+4 c_{2}+25 c_{3}=47
$$

and solving this system of linear equations in three variables, we get

$$
\left(c_{1}, c_{2}, c_{3}\right)=(1,-1,2)
$$

and hence

$$
y=e^{x}-e^{-2 x}+2 e^{-5 x}
$$

$9 y^{(6)}-3 y^{(5)}+40 y^{(3)}-180 y^{\prime \prime}+324 y^{\prime}-432 y=0[$ Hint: $1+i \sqrt{5}$ is a root (with positive multiplicity) of the characteristic polynomial.]

Solution. The characteristic polynomial of the DE is

$$
t^{6}-3 t^{5}+40 t^{3}-180 t^{2}+324 t-432
$$

As given in the hint, $1+i \sqrt{5}$ is a root, and because it occurs as a conjugate pair we see that $(t-1-i \sqrt{5})(t-1+i \sqrt{5})=(t-1)^{2}+5$ is a factor of the given polynomial. Using long division, we get

$$
t^{6}-3 t^{5}+40 t^{3}-180 t^{2}+324 t-432=\left((t-1)^{2}+5\right)\left(t^{4}-t^{3}-8 t^{2}+30 t-72\right)
$$

Now, it can be checked that $3,-4$ are roots of the biquadratic factor, i.e $(t-3)(t+4)=$ $t^{2}+t-12$ is a factor of the above biquadratic factor. Again by long division we see that

$$
t^{4}-t^{3}-8 t^{2}+30 t-72=\left(t^{2}+t-12\right)\left(t^{2}-2 t+6\right)
$$

Finally, the polynomial $t^{2}-2 t+6$ has $1+i \sqrt{5}, 1-i \sqrt{5}$ as its roots. So, it follows that our original polynomial $t^{6}-3 t^{5}+40 t^{3}-180 t^{2}+324 t-432$ has the following roots:
$1+i \sqrt{5}$ with multiplicity 2
$1-i \sqrt{5}$ with multiplicity 2
3 with multiplicity 1
-4 with multiplicity 1

So, it follows that the basis of the space of solutions consists of

$$
e^{3 x}, e^{-4 x}, e^{x} \cos (\sqrt{5} x), x e^{x} \cos (\sqrt{5} x), e^{x} \sin (\sqrt{5} x), x e^{x} \sin (\sqrt{5} x)
$$

So, the general solution to this DE is given by
$y=c_{1} e^{3 x}+c_{2} e^{-4 x}+c_{3} e^{x} \cos (\sqrt{5} x)+c_{4} x e^{x} \cos (\sqrt{5} x)+c_{5} e^{x} \sin (\sqrt{5} x)+c_{6} x e^{x} \sin (\sqrt{5} x)$ where $c_{1}, c_{2}, c_{3}, c_{4}, c_{5}, c_{6} \in \mathbb{R}$ are constants.
3). Let I be an interval in \mathbb{R} and let

$$
\begin{equation*}
\dot{\overrightarrow{\boldsymbol{x}}}(t)=A(t) \overrightarrow{\boldsymbol{x}}(t) \quad(t \in I) \tag{*}
\end{equation*}
$$

be a linear first order DE where A is an $n \times n$ matrix of continuous functions on I. Suppose $\overrightarrow{\boldsymbol{y}}_{1}(t), \ldots, \overrightarrow{\boldsymbol{y}}_{n}(t)$ are n solutions of the above DE on I. Let

$$
W=W\left(\overrightarrow{\boldsymbol{y}}_{1}, \ldots, \overrightarrow{\boldsymbol{y}}_{n}\right): I \rightarrow \mathbb{R}
$$

be the map given by

$$
W(t)=\operatorname{det}\left[\overrightarrow{\boldsymbol{y}}_{1}(t), \ldots, \overrightarrow{\boldsymbol{y}}_{n}(t)\right] \quad(t \in I)
$$

We show that either W is identically zero on I or it is nowhere vanishing on I. The main idea that we will be using is the uniqueness of solutions to $(*)$, which has been proven in Lecture-7.

We need to show that if $W\left(t_{0}\right)=0$ for some $t_{0} \in I$, then $W(t)=0$ for all $t \in I$. So, take such a $t_{0} \in I$. This means that

$$
\operatorname{det}\left[\overrightarrow{\boldsymbol{y}}_{1}\left(t_{0}\right), \ldots, \overrightarrow{\boldsymbol{y}}_{n}\left(t_{0}\right)\right]=0
$$

and hence the vectors $\overrightarrow{\boldsymbol{y}}_{1}\left(t_{0}\right), \ldots, \overrightarrow{\boldsymbol{y}}_{n}\left(t_{0}\right)$ are linearly dependent. So, there are constants $a_{1}, \ldots, a_{n} \in \mathbb{R}$ not all zero such that

$$
a_{1} \overrightarrow{\boldsymbol{y}}_{1}\left(t_{0}\right)+\ldots+a_{n} \overrightarrow{\boldsymbol{y}}_{n}\left(t_{0}\right)=0
$$

Without loss of generality, suppose $a_{1} \neq 0$. So, we see that

$$
\overrightarrow{\boldsymbol{y}}_{1}\left(t_{0}\right)=-\frac{a_{2}}{a_{1}} \overrightarrow{\boldsymbol{y}}_{2}\left(t_{0}\right)-\ldots-\frac{a_{n}}{a_{1}} \overrightarrow{\boldsymbol{y}}_{n}\left(t_{0}\right)
$$

i.e $\overrightarrow{\boldsymbol{y}}_{1}\left(t_{0}\right)$ is a linear combination of $\overrightarrow{\boldsymbol{y}}_{2}\left(t_{0}\right), \ldots, \overrightarrow{\boldsymbol{y}}_{n}\left(t_{0}\right)$. Put $\overrightarrow{\boldsymbol{a}}_{0}=\overrightarrow{\boldsymbol{y}}_{1}\left(t_{0}\right)$ and consider the map

$$
-\frac{a_{2}}{a_{1}} \overrightarrow{\boldsymbol{y}}_{2}-\ldots-\frac{a_{n}}{a_{1}} \overrightarrow{\boldsymbol{y}}_{n}=\overrightarrow{\boldsymbol{y}}: I \rightarrow \mathbb{R}^{n}
$$

Because $\overrightarrow{\boldsymbol{y}}_{2}, \ldots, \overrightarrow{\boldsymbol{y}}_{n}$ are solutions of $(*), \overrightarrow{\boldsymbol{y}}$ being a linear combination is also a solution of $(*)$. Moreover, we see that

$$
\overrightarrow{\boldsymbol{y}}\left(t_{0}\right)=\overrightarrow{\boldsymbol{y}}_{1}\left(t_{0}\right)=\overrightarrow{\boldsymbol{a}}_{0}
$$

So, by the uniqueness of solutions of $(*)$ on the initial condition $\overrightarrow{\boldsymbol{x}}\left(t_{0}\right)=\overrightarrow{\boldsymbol{a}}_{0}$, it follows that $\overrightarrow{\boldsymbol{y}}=\overrightarrow{\boldsymbol{y}}_{1}$ on I. In other words, this means that $\overrightarrow{\boldsymbol{y}}_{1}(t)$ is a linear combination of $\overrightarrow{\boldsymbol{y}}_{2}(t), \ldots, \overrightarrow{\boldsymbol{y}}_{n}(t)$ for each $t \in I$, and hence

$$
W(t)=\operatorname{det}\left[\overrightarrow{\boldsymbol{y}}_{1}(t), \ldots, \overrightarrow{\boldsymbol{y}}_{n}(t)\right]=0
$$

for each $t \in I$, implying that W is identically zero on I. So, it follows that either W is identically zero on I, or W vanishes at no point of I, and this is what the claim was.
4). Let I be an interval in \mathbb{R}, and let $A: I \rightarrow M_{m, k}(\mathbb{R})$ and $B: I \rightarrow M_{k, n}(\mathbb{R})$ be differentiable on I. We will show that the map $t \mapsto A(t) B(t)$ gives us a differentiable $\operatorname{map} A B: I \rightarrow M_{m, n}(\mathbb{R})$ and

$$
\frac{\mathrm{d}}{\mathrm{~d} t}(A(t) B(t))=\dot{A}(t) B(t)+A(t) \dot{B}(t) \quad(t \in I)
$$

Note that it is enough to show that for any $t_{0} \in I$,

$$
\lim _{h \rightarrow 0} \frac{A\left(t_{0}+h\right) B\left(t_{0}+h\right)-A\left(t_{0}\right) B\left(t_{0}\right)}{h}=\dot{A}\left(t_{0}\right) B\left(t_{0}\right)+A\left(t_{0}\right) \dot{B}\left(t_{0}\right)
$$

where the above limit is taken with respect to the operator norm (or any other norm, since all are equivalent), and it is interpreted as a one-sided limit if t_{0} is a boundary point of I. Showing this is a straightforward computation.

$$
\begin{aligned}
& \lim _{h \rightarrow 0} \frac{A\left(t_{0}+h\right) B\left(t_{0}+h\right)-A\left(t_{0}\right) B\left(t_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{A\left(t_{0}+h\right) B\left(t_{0}+h\right)-A\left(t_{0}\right) B\left(t_{0}+h\right)+A\left(t_{0}\right) B\left(t_{0}+h\right)-A\left(t_{0}\right) B\left(t_{0}\right)}{h} \\
& =\lim _{h \rightarrow 0} \frac{B\left(t_{0}+h\right)\left[A\left(t_{0}+h\right)-A\left(t_{0}\right)\right]+A\left(t_{0}\right)\left[B\left(t_{0}+h\right)-B\left(t_{0}\right)\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{B\left(t_{0}+h\right)\left[A\left(t_{0}+h\right)-A\left(t_{0}\right)\right]}{h}+\lim _{h \rightarrow 0} \frac{A\left(t_{0}\right)\left[B\left(t_{0}+h\right)-B\left(t_{0}\right)\right]}{h} \\
& =\dot{A}\left(t_{0}\right) B\left(t_{0}\right)+A\left(t_{0}\right) \dot{B}\left(t_{0}\right)
\end{aligned}
$$

where in the last step we have just split the limits into products of limits (the fact that this can be done was proven in the Analysis-2 course). This completes the proof.

