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1). x3 d2y

dx2 − 2xy = 2, x > 0

Solution. Let our interval be (0,∞). First, we convert the given DE to a first or-
der vector valued DE. Observe that the DE is equivalent to the following system of
equations

dy1
dx = y2

dy2
dx =

2y1
x2

+
2

x3

i.e if y⃗ = (y1, y2) is a particular solution to the above vector valued DE on the interval
(0,∞), then its first coordinate, namely y1 is a particular solution of our original DE.
Note that this vector valued DE can be written as

˙⃗y =

[
0 1
2
x2 0

]
y⃗ +

[
0
2
x3

]
(0.1)

Let g⃗(x) =
(
0, 2

x3

)
on (0,∞), so that g⃗ is continuous. So, our vector valued DE

is actually a first order linear DE, and this can be easily solved using variation of
parameters. First, we need to find linearly independent solutions to the homogeneous
DE

˙⃗y =

[
0 1
2
x2 0

]
y⃗(0.2)

which amounts to solving the system of equations
dy1
dx = y2(0.3)

dy2
dx =

2y1
x2

(0.4)

and this is just the DE
d2y

dx2 − 2y

x2
= 0(0.5)

which is the same as
x2

d2y

dx2 − 2y = 0

Putting t = ln x, the above equation is transformed as
d2y

dt2 − dy
dt − 2y = 0

The characteristic polynomial of this DE is
s2 − s− 2 = (s+ 1)(s− 2)
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and hence a pair of linearly independent solutions for this DE is {e−t, e2t}. So, a pair
of linearly independent solutions for the DE (0.5) is {x−1, x2}. So, it follows that a
pair of linearly independent solutions for the vector valued DE (0.2) is {φ⃗1, φ⃗2} where

φ⃗1(x) =

(
1

x
,− 1

x2

)
φ⃗2(x) =

(
x2, 2x

)
and because the space of solutions of (0.2) is two-dimensional, it follows that φ⃗1, φ⃗2

constitute a basis. Now as done in class, put

M =
[
φ⃗1 φ⃗2

]
=

[
1
x

x2

− 1
x2 2x

]
and put

u⃗(x) =

∫
(M−1g⃗)(x)dx =

∫
1

3

[
2x −x2
1
x2

1
x

]
g⃗(x)dx =

∫
1

3

[−2
x
2
x4

]
dx =

1

3

[
−2ln x

−2
3x3

]
+ a⃗0

where a⃗0 = (C1, C2) ∈ R2 is a constant vector. So, a solution of the DE (0.1) is given
by

ψ⃗(x) =M(x)u⃗(x) =
1

3

[−6ln x−2
3x

6ln x−4
3x2

]
+

[
C1

x
+ C2x

2

−C1

x2 + 2C2x

]
So, a general solution of our original DE is the first coordinate of ψ⃗, which is

y =
−6ln x− 2

9x
+
C1

x
+ C2x

2

where C1, C2 ∈ R are constants. To get a particular solution, we can just let C1 =
C2 = 0. ■

2). d2y

dt2 − 2
dy
dt + y =

et

1 + t2

Solution. We will follow a very similar strategy as in problem 1). Let our interval
be R. First, we convert the given DE to a first order vector valued DE. Our DE is
equivalent to the following system of equations

dy1
dt = y2

dy2
dt = 2y2 − y1 +

et

1 + t2

So, if y⃗ = (y1, y2) is a solution to the above vector valued DE on R, then its first
coordinate, namely y1 is a solution of our original DE. The given vector valued DE
can be written as

˙⃗y =

[
0 1
−1 2

]
y⃗ +

[
0
et

1+t2

]
(0.6)

Let g⃗(t) =
(
0, et

1+t2

)
on R, so that g⃗ is continuous. We will now solve this vector

valued DE using variation of parameters. So first consider the homogeneous DE

˙⃗y =

[
0 1
−1 2

]
y⃗(0.7)
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and this amounts to solving the system of equatios
dy1
dt = y2(0.8)

dy2
dt = 2y2 − y1(0.9)

which is just solving the DE

d2y

dt2 − 2
dy
dt + y = 0(0.10)

The characteristic polynomial of this DE is

s2 − 2s+ 1 = (s− 1)2

and hence a pair of linearly independent solutions is {et, tet}. So, it follows that a pair
of linearly independent solutions for the vector valued DE (0.7) is {φ⃗1, φ⃗2}, where

φ⃗1(t) =
(
et, et

)
φ⃗2(t) =

(
tet, et + tet

)
and because the space of solutions of (0.7) is two-dimensional, it follows that φ⃗1, φ⃗2

constitute a basis. Now as usual we put

M =
[
φ⃗1 φ⃗2

]
=

[
et tet

et et + tet

]
and we put

u⃗(t) =

∫
(M−1g⃗)(t)dt =

∫
e−t

[
t+ 1 −t
−1 1

]
g⃗(t)dt =

∫ [ −t
1+t2
1

1+t2

]
dt =

[
−1

2
ln (t2 + 1)
arctan t

]
+a⃗0

where a⃗0 = (C1, C2) ∈ R2 is a constant vector. Since we are interested in a particular
solution, we can let a⃗0 = 0⃗. So, a solution of the DE (0.6) is given by

ψ⃗(t) =M(t)u⃗(t) =

[
−etln (t2+1)

2
+ tet arctan t

−etln (t2+1)
2

+ (et + tet) arctan t

]

So, a particular solution of our original DE is the first coordinate of ψ⃗(t), i.e a partic-
ular solution is

y =
−etln (t2 + 1)

2
+ tet arctan t

■

3). (1− x2)
d2y

dx2 − 1

x

dy
dx = x

√
1− x2, 0 < x < 1

Solution. Let our interval be (0, 1). First, we convert the given DE to a first order
vector valued DE. Our DE is equivalent to the following system of equations

dy1
dx = y2

dy2
dx =

y2
x(1− x2)

+
x√

1− x2
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So, if y⃗ = (y1, y2) is a solution to the above vector valued DE on (0, 1), then its first
coordinate, namely y1 is a solution of our original DE. The given vector valued DE
can be written as

˙⃗y =

[
0 1
0 1

x(1−x2)

]
y⃗ +

[
0
x√
1−x2

]
(0.11)

Let g⃗(x) =
(
0, x√

1−x2

)
on (0, 1), so that g⃗ is continuous. We will now solve this vector

valued DE using variation of parameters. So first consider the homogeneous DE

˙⃗y =

[
0 1
0 1

x(1−x2)

]
y⃗(0.12)

and this amounts to solving the system of equatios
dy1
dx = y2(0.13)

dy2
dx =

y2
x(1− x2)

(0.14)

which is just solving the DE
d2y

dx2 − 1

x(1− x2)

dy
dx = 0(0.15)

This is an example of a DE where the dependent variable is missing. Clearly, one
solution to this DE is y ≡ 1 on (0, 1). To get another linearly independent solution,
we put v = y′ in the above equation and get

dv
dx =

1

x(1− x2)
v =⇒ 1

v

dv
dx =

1

x(1− x2)

Integrating both sides with respect to x, we get∫
1

v
dv =

∫
1

x(1− x2)
dx =

∫
1

x
+

1

2(1− x)
− 1

2(1 + x)
dx = ln x− 1

2
ln (1− x2) +K

for some constant K ∈ R. This gives us

ln v = ln x− 1

2
ln (1− x2) +K

which means

v = e
ln x−

1

2
ln (1−x2)+K

= K ′ x√
1− x2

for some K ′ ∈ R. So, integrating again with respect to x, we see that

y =

∫
v dx = −K ′

√
1− x2 + C

where C ∈ R is some constant. Since we need a basis element, we can simply let
K ′ = 1 and C = 0. So, the two linearly independent solutions of (0.15) that we get
are {1,−

√
1− x2} on (0, 1). So, it follows that a pair of linearly independent solutions

for the vector valued DE (0.12) is {φ⃗1, φ⃗2}, where
φ⃗1(x) = (1, 0)

φ⃗2(x) =

(
−
√
1− x2,

x√
1− x2

)
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and because the space of solutions of (0.12) is two-dimensional, it follows that φ⃗1, φ⃗2

constitute a basis. Now as usual we put

M =
[
φ⃗1 φ⃗2

]
=

[
1 −

√
1− x2

0 x√
1−x2

]
and we put

u⃗(x) =

∫
(M−1g⃗)(x)dx

=

∫ [
1 1−x2

x

0
√
1−x2

x

]
g⃗(x)dx

=

∫ [√
1− x2

1

]
dx

=

[
1
2
(x
√
1− x2 + arcsin x)

x

]
+ a⃗0

where a⃗0 = (C1, C2) ∈ R2 is a constant vector. Since we are interested in a particular
solution, we can let a⃗0 = 0⃗. So, a solution of the DE (0.11) is given by

ψ⃗(x) =M(x)u⃗(x) =

[
1
2
(arcsin x− x

√
1− x2)

x2
√
1−x2

]

So, a particular solution of our original DE is the first coordinate of ψ⃗(x), i.e a par-
ticular solution is

y =
1

2
(arcsin x− x

√
1− x2)

■

4). Suppose I = [t0, t1] and let a, b be continuous real valued functions on I. Let
p(t) =

∫ t

t0
a(s)ds. Suppose u : I → R is C 1 and satisfies the inequalities

u̇(t) ≤ a(t)u(t) + b(t)

u(t0) = u0

for all t ∈ I. We will show that

u(t) ≤ u0e
p(t) +

∫ t

t0

ep(t)−p(s)b(s)ds

Observe that we have
u̇(t)− a(t)u(t) ≤ b(t)

for each t ∈ I. Also, by the fundamental theorem of calculus, we know that p′(t) = a(t)
for all t ∈ I. So, multipliying both sides of the above inequality by the integrating
factor e−p(t), we see that

u̇(t)e−p(t) − a(t)e−p(t)u(t) ≤ e−p(t)b(t) , t ∈ I

Note that this inequality can be written as
d
dt(u(t)e

−p(t)) ≤ e−p(t)b(t) , t ∈ I
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Applying the operator
∫ t

t0
ds (where t ∈ I) to both sides, we get

u(t)e−p(t) − u(t0)e
−p(t0) ≤

∫ t

t0

e−p(s)b(s)ds

which means

u(t)e−p(t) ≤ u0 +

∫ t

t0

e−p(s)b(s)ds

and multiplying both sides by ep(t) we get

u(t) ≤ u0e
p(t) +

∫ t

t0

ep(t)−p(s)b(s)ds

and this is what we wanted to show.

5). Let I = [t0, t1] and φ, ψ and α continuous functions on I with α ≥ 0. Suppose

φ(t) ≤ ψ(t) +

∫ t

t0

α(s)φ(s)ds (t ∈ I)(0.16)

Let q(t) =
∫ t

t0
α(s)ds. We show that

φ(t) ≤ ψ(t) +

∫ t

t0

eq(t)−q(s)α(s)ψ(s)ds

First, we multiply both sides of the inequality (0.16) by α(t) (possible because α ≥ 0)
to get

α(t)φ(t) ≤ α(t)ψ(t) + α(t)h(t) (t ∈ I)(0.17)

where h is defined on I by

h(t) =

∫ t

t0

α(s)φ(s)ds (t ∈ I)

With this definition. inequality (0.17) can be rewritten as

h′(t) ≤ α(t)ψ(t) + α(t)h(t) (t ∈ E)

and note that h(t0) = 0. So, by problem 4). we get

h(t) ≤
∫ t

t0

eq(t)−q(s)α(s)ψ(s)ds (t ∈ I)

and this means that ∫ t

t0

α(s)φ(s)ds ≤
∫ t

t0

eq(t)−q(s)α(s)ψ(s)ds

Using this information in the given inequality (0.16) we get

φ(t) ≤ ψ(t) +

∫ t

t0

eq(t)−q(s)α(s)ψ(s)ds

and this proves the claim.
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6). Let Ω, f, t0, I, u and v be as in the problem statement. We will show that

u(t) ≤ v(t) , t ∈ I

For the sake of contradiction, suppose u(t2) > v(t2) for some t2 ∈ I. Clearly, we have
the inequality t0 < t2.

Consider the function u−v, which is clearly C 1 on I. Because u(t0)−v(t0) ≤ 0 and
u(t2) − v(t2) > 0, the Intermediate Value Theorem implies that u(t′) − v(t′) = 0
for some t′ ∈ [t0, t2). This is to say that the set

X := {t ∈ [t0, t2) | u(t)− v(t) = 0}

is non-empty. Clearly, X is also bounded above. So, let t1 = supX, and it is clear that
t1 ∈ [t0, t2]. We claim that t1 < t2. But this is easy to see, because u(t2) − v(t2) > 0
and because u − v is a continuous function, there is some open interval around the
point t2 contained in I such that u − v is positive in this open interval. Also, the
continuity of u− v implies that u(t1)− v(t1) = 0.

Now, consider the interval J = [t1, t2], and above, by our choice of t1, we have shown
that u(t1) = v(t1) and u(t)− v(t) > 0 for every t ∈ J \ {t1}. Now, for every t ∈ J , we
see that

u̇(t)− v̇(t) = u̇(t)− f(t, v(t))

≤ f(t, u(t))− f(t, v(t))

≤ |f(t, u(t))− f(t, v(t))|(‡)
≤ L|u(t)− v(t)|
= L(u(t)− v(t))

and here we have used the fact that f is Lipschitz continuous in the second variable
on Ω. To summarise, we have the following three conditions on J = [t1, t2]:

(1) (u− v)(t1) = 0.
(2) u− v > 0 on J \ {t1}.
(3) ˙(u− v) ≤ L(u− v) on J .

With points (1) and (3) in mind, we apply problem 4). and get

(u− v)(t) ≤ 0 , t ∈ J

which is a contradiction to point number (2) above. So, it follows that u(t) ≤ v(t) for
all t ∈ I, and this completes the proof.

7). The proof of this result in the new set of hypothesis is exactly the same as in
problem 6). There is only one new change, which I will now mention. The construction
of the interval J = [t1, t2] remains the same. So, it is still true that u(t1) = v(t1) and
that u− v > 0 on J \ {t1}. Infact, the chain of reasoning in (‡) is also valid; note that
u(t) ≥ v(t) for every t ∈ J . Also, we know that (t, v(t)) ∈ V for all t ∈ I, and hence
it follows that (t, u(t)) ∈ V for all t ∈ J by the given property of V . So, the exact
reasoning as in (‡) goes through, and hence this proves the claim.

8). In this problem, we will prove the Fundamental Estimate. Let Ω, v, L, φ⃗, ψ⃗ and I
be as in the problem statement.

As given in the problem, we define the following function on I.

u(t) = ||φ⃗(t)− ψ⃗(t)||2
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Also, define the function v⃗ on I by the formula

v(t) =

(
δeL|t−t0| +

ϵ1 + ϵ2
L

(eL|t−t0| − 1)

)2

So to prove the claim, it is enough to show that

u(t) ≤ v(t) , t ∈ I

To simplify our work, we will show this inequality in the interval (t0,∞) ∩ I, and a
similar argument will show that the inequality holds in the interval (−∞, t0) ∩ I as
well. The condition ||φ⃗(t0)− ψ⃗(t0)||2 ≤ δ2 shows that u(t0) ≤ v(t0).

First we show that

u̇ ≤ 2Lu+ 2ϵ
√
u(0.18)

Note that u can be written as the composition || · ||2 ◦ (φ⃗− ψ⃗). So by the chain rule,
the derivative of u is given by

u̇(t) = 2⟨φ⃗(t)− ψ⃗(t), ˙⃗φ(t)− ˙⃗
ψ(t)⟩ , t ∈ I

where ⟨, ⟩ is the usual inner product. So by the Cauchy-Schwarz inequality we have

u̇(t) ≤ 2||φ⃗(t)− ψ⃗(t)|| · || ˙⃗φ(t)− ˙⃗
ψ(t)||

= 2
√
u(t)|| ˙⃗φ(t)− v(t, φ⃗(t)) + v(t, φ⃗(t))− v(t, ψ⃗(t)) + v(t, ψ⃗(t))− ˙⃗

ψ(t)||

≤ 2
√
u(t)

(
|| ˙⃗φ(t)− v(t, φ⃗(t))||+ ||v(t, φ⃗(t))− v(t, ψ⃗(t))||+ || ˙⃗ψ(t)− v(t, ψ⃗(t))||

)
≤ 2

√
u(t)

(
ϵ1 + L||φ⃗(t)− ψ⃗(t)||+ ϵ2

)
= 2

√
u(t)(ϵ+ L

√
u(t))

= 2Lu(t) + 2ϵ
√
u(t)

and in the third last step, we have used the fact that φ⃗ is an ϵ1-approximation, ψ⃗ is
an ϵ2-approximation and that v⃗ is Lipschitz continuous. This proves inequality (0.18).

Next, define the function f : R× [0,∞) → R by the formula

f(t, x) = 2Lx+ 2ϵ
√
x

where ϵ = ϵ1 + ϵ2. Observe that for x ∈ (0,∞) we have
∂f

∂x
= 2L+

ϵ√
x

Now, suppose x ∈ [δ2,∞). Then we have

0 <
∂f

∂x
≤ 2L+

ϵ

δ

and hence ∂f/∂x is bounded for x ∈ [δ2,∞). So, it follows that f is Lipschitz con-
tinuous with respect to the second variable on V = R × [δ2,∞). Also, observe that
V has the property mentioned in problem 7). Clearly, we have that v(t) ≥ δ2 for all
t ∈ I, so that (t, v(t)) ∈ V for each t ∈ I and also (t, u(t)) ∈ R× [0,∞) for each t ∈ I
as well. Now the inequality (0.18) implies that

u̇(t) ≤ f(t, u(t)) , t ∈ I
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Also for t ∈ (t0,∞) ∩ I we see that

v̇(t) = 2

(
LδeL(t−t0) +

ϵ1 + ϵ2
L

(LeL(t−t0))

)(
δeL(t−t0) +

ϵ1 + ϵ2
L

(eL(t−t0) − 1)

)
= 2L

(√
v(t) +

ϵ1 + ϵ2
L

)√
v(t)

= 2Lv(t) + 2ϵ
√
v(t)

= f(t, v(t))

The inequality u(t0) ≤ v(t0) follows from the condition ||φ⃗(t0) − ψ⃗(t0)||2 ≤ δ2. So,
problem 7). implies that

u(t) ≤ v(t) , t ∈ (t0,∞) ∩ I
As remarked above, we can prove the same inequality on (t0,∞) ∩ I. This completes
the proof of the claim.
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