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1). Let A be the matrix

A =


0 1 0 0 ... 0

0 1 0 ... 0
0 1 ... 0

0 ... 0
... ... ... ... ... ...
a0 a1 a2 a3 ... an−1


i.e the main diagonal consists of only 0s, the super-diagonal consists of 1s and the
bottom row is a0, ..., an−1. We show that the characteristic polynomial of A upto sign
is

tn − an−1t
n−1 − ...− a1t− a0

and we will be using induction on n. To prove the base case, suppose n = 2. In that
case, our matrix is of the form

A =

[
0 1
a0 a1

]
and hence we have that

char(A) = det(tI2 − A) = t2 − a1t− a0

and hence the base case is true. So suppose the statement holds for some n− 1 ∈ N,
and we show it for n. We know that

char(A) = det(tIn − A)

and note that

tIn − A =


te⃗1 − e⃗2

te⃗2 − e⃗3

...
te⃗n−1 − e⃗n

te⃗n − a⃗


where a⃗ = (a0, a1, ..., an−1). So, to calculate the determinant of tIn − A, we expand
along the first column. Put a⃗′ = (a1, a2, ..., an−1). Note that the first column of the
matrix tIn −A is the vector (t, 0, ..., 0,−a0). So expanding the determinant along this
column, we get

det(tIn − A) = tdet


te⃗1 − e⃗2

te⃗2 − e⃗3

...
te⃗n−2 − e⃗n−1

te⃗n−1 − a⃗′

+ (−a0)(−1)n−1det


−1 0 0 ... 0
t −1 0 ... 0
0 t −1 ... 0
... ... ... ... ...
0 0 0 ... −1
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In the second matrix above (which is an (n − 1) × (n − 1) matrix), we have all −1s
in the main diagonal, and we have t directly below the main diagonal. For the first
determinant, we can apply the induction hypothesis to get

tdet


te⃗1 − e⃗2

te⃗2 − e⃗3

...
te⃗n−2 − e⃗n−1

te⃗n−1 − a⃗′

 = t(tn−1 − an−1t
n−2 − ...− a2t− a1)

The second determinant, being a lower triangular matrix, is simply the product of its
diagonal elements, which is (−1)n−1. So, it follows that

det(tIn − A) = tn − an−1t
n−1 − ...− a1t− a0

and hence by induction, the claim has been proven.

2). This is just a straightforward computation. Suppose λ is an eigenvalue of A, and
let (v1, v2, ..., vn) be a corresponding eigenvector. So, we see that

0 1 0 0 ... 0
0 1 0 ... 0

0 1 ... 0
0 ... 0

... ... ... ... ... ...
a0 a1 a2 a3 ... an−1




v1
v2
...
...

vn−1

vn

 =


λv1
λv2
...
...

λvn−1

λvn


Also, by the nature of the matrix A, we see that

0 1 0 0 ... 0
0 1 0 ... 0

0 1 ... 0
0 ... 0

... ... ... ... ... ...
a0 a1 a2 a3 ... an−1




v1
v2
...
...

vn−1

vn

 =


v2
v3
...
...
vn

a0v1 + ...+ an−1vn


and this implies that 

λv1
λv2
...
...

λvn−1

λvn

 =


v2
v3
...
...
vn

a0v1 + ...+ an−1vn


and this implies

vi = λi−1v1 , 1 ≤ i ≤ n

and hence we see that 
v1
v2
...
...

vn−1

vn

 = v1


1
λ
...
...

λn−2

λn−1

 =

and hence this shows that the eigenspace corresponding to λ is one-dimensional and is
spanned by the vector (1, λ, ..., λn−1). Because the number of Jordan blocks associated
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to λ is equal to the geometric multiplicity of λ, this implies that there is precisely one
Jordan block for each distinct eigenvalue of A. This proves the claim.

3). In this exercise, we compute the exponentials of the given matrices.

(a) A =

[
a 0
0 b

]
.

Solution. Since A is a diagonal matrix, we see that

An =

[
an 0
0 bn

]
for every n ∈ N. So, we see that

eA =
∞∑

m=0

Am

m!
=

∞∑
m=0

[
am

m!
0

0 bm

m!

]
=

[
ea 0
0 eb

]
and this is the required matrix. ■

(b) A =

[
0 θ
−θ 0

]
, where θ ∈ R.

Solution. The first couple of powers of A are[
1 0
0 1

]
,

[
0 θ
−θ 0

]
,

[
−θ2 0
0 −θ2

]
,

[
0 −θ3

θ3 0

] [
θ4 0
0 θ4

]
,

[
0 θ5

−θ5 0

]
, ...

So, we see that

eA =
∞∑

m=0

Am

m!
=

[
1− θ2

2!
+ θ4

4!
− ... θ − θ3

3!
+ θ5

5!
− ...

−θ + θ3

3!
− θ5

5!
+ ... 1− θ2

2!
+ θ4

4!
− ...

]
=

[
cos θ sin θ
−sin θ cos θ

]
and this is the required exponential matrix. ■

4). Let a, b ∈ R and let

M =

[
a −b
b a

]
Let A be the 2n× 2n real matrix

A =


M I2 0

M I2

M
. . .
. . . I2

M


We compute etA. Let P,Q be the matrices given by

P =


M

M
M

. . .
M

 , Q =


0 I2

0 I2

0
. . .
. . . I2

0





4 SIDDHANT CHAUDHARY

i.e P is the matrix where in block form, all 2 × 2 diagonal matrices are all M , and
Q is the matrix where in block form all the diagonal 2 × 2 matrices are 0s and the
super-diagonal 2× 2 matrices are all I2. So, we see that

A = P +Q

Also, it is easy to see that PQ = QP , because

PQ = QP =


0 M

0 M

0
. . .
. . . M

0


So, we see that

etA = etP+tQ = etP etQ

First, observe that

P k =


Mk

Mk

Mk

. . .
Mk

 , k ∈ N

So, we see that

etP =
∞∑

m=0

tmPm

m!

=
∞∑

m=0


tmMm

m!
tmMm

m!
tmMm

m! . . .
tmMm

m!



=


∑∞

m=0
tmMm

m! ∑∞
m=0

tmMm

m! ∑∞
m=0

tmMm

m! . . . ∑∞
m=0

tmMm

m!



=


etM

etM

etM

. . .
etM


Now, we compute etQ. Before we do that, we introduce some notation. For each
1 ≤ i ≤ n, let Vi be the 2× 2n matrix given by

Vi =
[
0 0 ... I2 ... 0

]
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where above, each 0 is the 2× 2 zero matrix, and the ith 2× 2 block matrix above is
I2. Similarly, for 1 ≤ i ≤ n let Wi be the 2n× 2 matrix given by

Wi =


0
0
...
I2
...
0


where above each 0 is the zero 2× 2 matrix, and the ith 2× 2 block matrix is I2. With
this notation, we can multiply each Vi with Wj in the usual dot product way. Now, I
claim that for each 1 ≤ k < n,

Qk =



Vk+1

Vk+2

...
Vn

0
0
...
0


where above, each 0 is the 2× 2n zero matrix. We prove the claim by induction on k.
When k = 1, the claim is clear because

Q1 = Q =


V2

V3

...
Vn

0


Suppose the claim is true for some 1 ≤ k < n− 1, and we prove it for k + 1. Observe
that we also have

Q =
[
0 W1 W2 ... Wn−1

]
where above, the 0 is the 2n× 2 zero matrix. So, we see that

Qk+1 = QkQ =



Vk+1

Vk+2

...
Vn

0
0
...
0


[
0 W1 W2 ... Wn−1

]
=



Vk+2

Vk+3

...
Vn

0
0
...
0


and this proves the claim. In particular, we have that

Qn−1 =


Vn

0
...
0
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where above, each 0 is the 2 × 2n zero matrix. This means that Qn = 0, i.e Q is a
nilpotent matrix. So, we have

etQ =
∞∑

m=0

tmQm

m!

=
n−1∑
m=0

tmQm

m!

= I2n +
t

1!


V2

V3

...

...
Vn

0

+
t2

2!


V3

V4

...
Vn

0
0

+ ...+
tn−1

(n− 1)!


Vn

0
...
0
0
0



=



I2 tI2
t2

2!
I2 · · · t(n−1)

(n−1)!
I2

I2 tI2 · · · t(n−2)

(n−2)!
I2

I2 · · · t(n−3)

(n−3)!
I2

. . .
· · · tI2
· · · I2


where the last matrix is in block-matrix form. So, it follows that

etA = etP etQ

=



etM

etM

etM

etM

. . .
etM





I2 tI2
t2

2!
I2 · · · t(n−1)

(n−1)!
I2

I2 tI2 · · · t(n−2)

(n−2)!
I2

I2 · · · t(n−3)

(n−3)!
I2

. . .
· · · tI2
· · · I2



=



etM tetM t2

2!
etM · · · t(n−1)

(n−1)!
etM

etM tetM · · · t(n−2)

(n−2)!
etM

etM · · · t(n−3)

(n−3)!
etM

. . .
· · · tetM

· · · etM


and so our required matrix B is

B = etM

Finally, we compute the matrix B. Observe that

M =

[
a 0
0 a

]
+

[
0 −b
b 0

]
= aI2 +

[
0 −b
b 0

]
= E + F

and clearly the two matrices E,F in the above sum commute. So, it follows that
etM = etEetF
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Now, observe that
tE = taI2 =

[
ta 0
0 ta

]
So by part (a) of problem 3). we see that

etE =

[
eta 0
0 eta

]
Also, observe that

tF =

[
0 −tb
tb 0

]
and so by (b) of problem 3). we see that

etF =

[
cos(tb) −sin(tb)
sin(tb) cos(tb)

]
and combining all of this, we see that

etM = etEetF

=

[
eta 0
0 eta

] [
cos(tb) −sin(tb)
sin(tb) cos(tb)

]
=

[
etacos(tb) −etasin(tb)
etasin(tb) etacos(tb)

]
and this is the required matrix B.

5). Define the one-parameter group of diffeomorhpisms {gt} on M = (0, 1) by the
following formula.

gtx =
xet

xet + 1− x
, t ∈ R, x ∈ M

It is clear that for x ∈ M and t ∈ R, gtx ∈ M , because the numerator is always strictly
smaller than the denominator. Also, g is C 2 on R × M , because it has continuous
partial derivatives. Let us first show that this is indeed a one-parameter group. So let
s, t ∈ R. So we have

gs(gtx) = gs
(

xet

xet + 1− x

)

=

xetes

xet + 1− x
xetes

xet + 1− x
+ 1− xet

xet + 1− x

=
xetes

xetes + xet + 1− x− xet

=
xes+t

xes+t + 1− x

= gs+tx

and hence this shows that
gsgt = gs+t

Now this condition automatically forces each gt to be a diffeomorphism from M to
itself. So, {gt} is indeed a one-parameter group.



8 SIDDHANT CHAUDHARY

Next, we compute the velocity vector field v. For any x ∈ M , we have

v(x) = lim
h→0

ghx− x

h

= lim
h→0

xeh

xeh + 1− x
− x

h

= lim
h→0

xeh − x2eh − x+ x2

(xeh + 1− x)h

= lim
h→0

x(eh − 1)− x2(eh − 1)

h(xeh + 1− x)

= lim
h→0

eh − 1

h

(
x− x2

xeh + 1− x

)
= x− x2

= x(1− x)

So, the corresponding autonomous differential equation for this one-parameter group
is

ẋ = v(x) = x(1− x)

and hence this is the required one-parameter group.

6). Consider the maps

gtx =
x

x+ (1− x)et
, x ∈ M, t ∈ R

If x ∈ M and t ∈ R, then the numerator is strictly smaller than the denominator,
and hence gtx ∈ M . Moreover, g is C 2 on R × M becaus it has continuous partial
derivatives. Now, let s, t ∈ R. Then we have the following chain of equations.

gs(gtx) = gs
(

x

x+ (1− x)et

)
=

x

x+ (x+ (1− x)et − x)es

=
x

x+ (1− x)etes

=
x

x+ (1− x)es+t

= gs+tx

and hence this implies that

gs+t = gsgt

showing that {gt} is indeed a one-parameter group of diffeomorphisms on M (the
above condition enforces every gt to be a diffeomorphism).
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Next, we compute the phase velocity field of this parameter group. For x ∈ M , we
have

v(x) = lim
h→0

ghx− x

h

= lim
h→0

x

x+ (1− x)eh
− x

h

= lim
h→0

x− x2 − x(1− x)eh

(x+ (1− x)eh)h

= lim
h→0

x(1− x)(1− eh)

h(x+ (1− x)eh

= lim
h→0

−
(
eh − 1

h

)
x(1− x)

x+ (1− x)eh

= x(x− 1)

and so the corresponding autonomous differential equation is
ẋ = x(x− 1)

7). In this problem, we will sketch the intergral curves in the extended phase space
of the one-parameter groups occuring in the previous two problems. Observe that the
extended phase space in both the problems is R× (0, 1).

Integral Curves for problem 5). The one-parameter group is

gtx =
xet

xet + 1− x
, t ∈ R, x ∈ M

For a fixed x ∈ (0, 1), we sketch the graph of the function

φ(t) =
xet

xet + 1− x
, t ∈ R

The graphs are given in the picture below.

Integral Curves for problem 6). The one-parameter group is

gtx =
x

x+ (1− x)et
, t ∈ R, x ∈ M
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For different values of x ∈ (0, 1), we sketch the graph of the function

φ(t) =
x

x+ (1− x)et
, t ∈ R

The graphs are given in the picture below.
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