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SIDDHANT CHAUDHARY

1). In this problem, we do problems 8 and 18 from Cookbook-II.
Py o, dy g
8 J?@‘{'(l’—l)a‘FQTy:O, x>0

Solution. Dividing throughout by z, we get the equation

dy? | (@ —1)dy 2
=J -0
dz? + z dz Ty
Put
x?—1
pwy = g =

Observe that
¢ (x) +2p(x)q(x) 2z +2x(x® —1)
2(q(2))*? 22

i.e this quantity is constant on the interval of existence. So, consider the transformation

t:/\/de:/xdx:%Q

For these transformations we have

=1

dy _dydt
dz  dt dx

() ay
dz?2  de2 \dz dt dx?

dy dy d*y d*y dy
Y_ Y v v, W
P @ 0 a2 e T

and so the equation becomes

d®y dy 2t—1 dy
I b B> vicl D VI
az Tar T Vg A=l

and

In our case, we have

2t

which is the same as

Note this this is a DE with constant coefficients, and this can be easily solved. The
characteristic equation is

$?+s+1=0
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The roots of this polynomial are %, and each root has multiplicity 1. So the

general solution of the DE is given by

s 3 L 3
y(t) = (c1€2 COoS <§t> + coe2 sin (%t)

where ¢, co € R are constants. So, in terms of x, the general solution is

o2 V3, =2 (V3 ,
Yy = c1€ 4 cos T:L‘ + cee 4 sIin Tm

where ¢, co € R. [ |

18 y© — 3y®) 4 45y — 249y 1+ 2369 4 1300y’ — 4056y = z2e® cos(v/bx)
Solution. First, we write the given DE in the form
y @ — 3y 4 45y® — 24y 12364 + 1300 — 4056y = e'*(x?- cos(v/5z) +0-sin(v/5z))

and hence a = 1, 8 = v/5 where «, § are as in Cookbook-11. So, the form of a particular
solution of this DE will be

yp = x°e” (A(x) cos(Vbz) + B(x) sin(\/gx))

where A, B are polynomials of degree 2 and s is the multiplicity of r = 1+4iv/5 as a root
of the characteristic polynomial. Let us calculate this multiplicity. The characteristic
polynomial is

t0 — 3t° + 45t* — 24¢% + 236> + 1300t — 4056
If 1 +14+/5 is a root, then 1 —iy/5 is also a root, and hence (z —1)? 45 = 22 — 22 + 6
must be a factor of this polynomial. But this is not true, and hence the multiplicity
s =0. |

2). Let 2 be a domain in R x R" and let ¥ : Q — R" be a ¢! function. We show that

U is locally Lipschitz in the second argument.
Let (to, @p) € Q. First, choose some r > 0 such that

E((to, C_l:(]), T) - Q
and this is possible because €2 is open. Now, we know that ¥ is a € function; hence,
it follows that the map @ : B((to,@),r) — RV given by (t,a@) — ¥ (t,@) is
a continuous map. If || - ||, denotes the operator norm, this means that the map
(t,@) — ||U'(t,d)||, is continuous, where we are interpreting ¥’ (¢, @) as an n x (n+ 1)
matrix. So, there is some M > 0 such that

15"(, @)l|lo < M

for all (t,a@) € B((to, @), r), and this is true because B((to, @), ) is a compact set.

Now, suppose (t,@;) and (¢, @,) are any two points in B((to, @), 7). We know that
E((to,ao), r) is a convex set; so, we can define § : [0,1] — B((to, @), r) to be the
linear path between these two points, i.e

g(s) = (1—s)(t,a,) +s(t,a,) , te]l0,1]

Next, consider the map ¥ o g : [0,1] — R", which is clearly a ¢! map because both ¥
and g are €’!. Also, observe that for any s € [0, 1] we have by the chain rule

(Tog)(s) =7(g(s)F(s) = T (g(s))(0, @ — @)
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where in the above equation, we are interpretting ¥'(g(s)) as a matrix. So, we see that
(@0 §)'(s)I| = 11" (G(s))][]1(0, @2 — @1)|| < M|laz — @l s €]0,1]

So, by the mean-value theorem in R", we immediately see that
|9(t, @2) — (t, @) = [|v o g(1) — 7o g0)]|
< M||@; — a@||(1 - 0)
=< M||@; — @,||
and this shows that ¥ is locally Lipschitz in the second argument.

3). Suppose Jz = R for all @ € U. We show that {¢'} is a one-parameter group of
transformations on U, where

9'(&) =@a(t) , TeUteR
We only need to show that for all s,¢ € R, we have
(0.1) g =g

To prove this, let s, € R and take any & € U. Consider the maps @z and @y (5. We
will show that

(0.2) cﬁgt@)(u) = _’5(u + t) , ueR
To show this, first observe that
Gs=(Fz) ., Fx(0) =7

and also @z is the unique solution to the above IVP. Now put 9(u) = @z(u + t) for
u € R. From the above equations, it is clear that

P =3() , P0)=Fz(t) = ¢'(F)
But by definition, we know that the map @y () is a solution to the above IVP as well.

By uniquness, it follows that 1; = Pgt(z), and this proves equation (0.2). This implies
that

g (&) = Pals

and this proves equation (0.1), and hence shows that {¢'} is a one-parameter group of
transformations on U.

4). Suppose ¥ is €', and that J, = R for all @ € U. We show that {¢'} is a
one-parameter group of diffeomorphisms. We have already shown that this is a one-
parameter group of transformations. So, we only need to show that the map g :
R x U — R" defined by ¢(t,E) = ¢'% is a €' map on U. But, this clearly is a
consequence of Theorem 1 as mentioned in the homework sheet.
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5). Let [ = (—%, %) We show that there is a one parameter group {g'} of diffeomor-

phisms on I whose phase velocity field is given by v(x) = cos .
We know that if {¢g'} is such a one-parameter group, then for any xy € I the map
o(t) = g'xg is the unique solution to the IVP

y(t) = cos(y(t)) , y(0) =0
So, the idea is to solve the DE
y(t) = cos(y(t))

which is equivalent to the DE

dy _ cos
at Y
and clearly this is a separable DE. We get
dy 1
secy— =
Yat

Integrating both sides with respect to t, we get

/ secydy =t+C
for some C' € R and hence
log(tany +secy) =t +C
for some C' € R. By putting ¢ = 0, the value of C' obtained is
C' = log(tan zg + sec xo)

This gives us
tany +secy = Ke'

where K = tanzg + secxg. Now, observe that y(¢t) € I for all I € R, and hence
secy(t) > 0 for all ¢ € R. This means that

secy = \/1 + tan?y
tany + /1 + tan?y = Ke'

and hence

This gives us
1+ tan’y = K2 + tan?y — 2Ke' tany

and hence
K?%e? — 1
2K et

K2€2t -1
= t R —
Yy arctan < DK ot )

tanz + secz)?e? — 1
2(tanx + secz)e!

tany =

and hence

So, we may define

gt:c = arctan <(
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6). We just use the results of problem 5) for this problem. Let 2o = 0. So, as in the
previous problem, we get K = 1, and hence the map

et —1
y(t) = arctan

et

satisfies
§() = cos(y(t) , y(0) =0
for all t € R. So, y is a map from (—o00,00) — I, where I is the interval as in the
previous problem. Now, by reversing the steps in the previous problem, we can see
get that for all t € R,
log(tan(y(t)) + sec(y(t))) = ¢
(here C' =log K = 0). So, this means that the inverse map 6 : I — (—o0, 00) is given
b
' 0(z) = log(tan x + sec x)
By the results in section 1.4.5 of the main notes, we see that

lim A(x) = lim log(tanz + secx) = —o0
x—>—%+ a:—)—g+

Exponentiating both sides, we see that

lim tanz +secx=¢e > =0

™+
)

and this completes the proof of the claim.
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