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1). In this problem, we do problems 8 and 18 from Cookbook-II.

8 x
d2y

dx2
+ (x2 − 1)

dy
dx + x3y = 0, x > 0

Solution. Dividing throughout by x, we get the equation
dy2
dx2

+
(x2 − 1)

x

dy
dx + x2y = 0

Put
p(x) =

(x2 − 1)

x
, q(x) = x2

Observe that
q′(x) + 2p(x)q(x)

2(q(x))3/2
=

2x+ 2x(x2 − 1)

2x3
= 1

i.e this quantity is constant on the interval of existence. So, consider the transformation

t =

∫ √
q(x)dx =

∫
xdx =

x2

2

For these transformations we have
dy
dx =

dy
dt

dt
dx

and
d2y

dx2
=

d2y

dt2
( dt

dx

)2

+
dy
dt

d2t

dx2

In our case, we have
dy
dx =

√
2t

dy
dt ,

d2y

dx2
= 2t

d2y

dt2 +
dy
dt

and so the equation becomes

2t
d2y

dt2 +
dy
dt +

2t− 1√
2t

√
2t

dy
dt + 2ty = 0

which is the same as
d2y

dt2 +
dy
dt + y = 0

Note this this is a DE with constant coefficients, and this can be easily solved. The
characteristic equation is

s2 + s+ 1 = 0
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The roots of this polynomial are −1±i
√
3

2
, and each root has multiplicity 1. So the

general solution of the DE is given by

y(t) = c1e
−t
2 cos

(√
3

2
t

)
+ c2e

−t
2 sin

(√
3

2
t

)
where c1, c2 ∈ R are constants. So, in terms of x, the general solution is

y = c1e
−x2

4 cos
(√

3

4
x2

)
+ c2e

−x2

4 sin
(√

3

4
x2

)
where c1, c2 ∈ R. ■

18 y(6) − 3y(5) + 45y(4) − 24y(3) + 236y′′ + 1300y′ − 4056y = x2ex cos(
√
5x)

Solution. First, we write the given DE in the form
y(6)−3y(5)+45y(4)−24y(3)+236y′′+1300y′−4056y = e1·x(x2 ·cos(

√
5x)+0 ·sin(

√
5x))

and hence α = 1, β =
√
5 where α, β are as in Cookbook-II. So, the form of a particular

solution of this DE will be
yp = xsex

(
A(x) cos(

√
5x) +B(x) sin(

√
5x)
)

where A,B are polynomials of degree 2 and s is the multiplicity of r = 1+i
√
5 as a root

of the characteristic polynomial. Let us calculate this multiplicity. The characteristic
polynomial is

t6 − 3t5 + 45t4 − 24t3 + 236t2 + 1300t− 4056

If 1 + i
√
5 is a root, then 1− i

√
5 is also a root, and hence (x− 1)2 + 5 = x2 − 2x+ 6

must be a factor of this polynomial. But this is not true, and hence the multiplicity
s = 0. ■

2). Let Ω be a domain in R×Rn and let v⃗ : Ω → Rn be a C 1 function. We show that
v⃗ is locally Lipschitz in the second argument.

Let (t0, a⃗0) ∈ Ω. First, choose some r > 0 such that
B((t0, a⃗0), r) ⊆ Ω

and this is possible because Ω is open. Now, we know that v⃗ is a C 1 function; hence,
it follows that the map v⃗′ : B((t0, a⃗0), r) → Rn(n+1) given by (t, a⃗) 7→ v⃗′(t, a⃗) is
a continuous map. If || · ||◦ denotes the operator norm, this means that the map
(t, a⃗) 7→ ||v⃗′(t, a⃗)||◦ is continuous, where we are interpreting v⃗′(t, a⃗) as an n× (n+ 1)
matrix. So, there is some M > 0 such that

||v⃗′(t, a⃗)||◦ ≤ M

for all (t, a⃗) ∈ B((t0, a⃗0), r), and this is true because B((t0, a⃗0), r) is a compact set.
Now, suppose (t, a⃗1) and (t, a⃗2) are any two points in B((t0, a⃗0), r). We know that

B((t0, a⃗0), r) is a convex set; so, we can define g⃗ : [0, 1] → B((t0, a⃗0), r) to be the
linear path between these two points, i.e

g⃗(s) = (1− s)(t, a⃗1) + s(t, a⃗2) , t ∈ [0, 1]

Next, consider the map v⃗ ◦ g⃗ : [0, 1] → Rn, which is clearly a C 1 map because both v⃗
and g⃗ are C 1. Also, observe that for any s ∈ [0, 1] we have by the chain rule

(v⃗ ◦ g⃗)′(s) = v⃗′(g⃗(s))g⃗′(s) = v⃗′(g⃗(s))(0, a⃗2 − a⃗1)
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where in the above equation, we are interpretting v⃗′(g⃗(s)) as a matrix. So, we see that

||(v⃗ ◦ g⃗)′(s)|| = ||v⃗′(g⃗(s))||◦||(0, a⃗2 − a⃗1)|| ≤ M ||a⃗2 − a⃗1|| , s ∈ [0, 1]

So, by the mean-value theorem in Rn, we immediately see that

||v⃗(t, a⃗2)− v⃗(t, a⃗1)|| = ||v⃗ ◦ g⃗(1)− v⃗ ◦ g⃗(0)||
≤ M ||⃗a2 − a⃗1||(1− 0)

=≤ M ||⃗a2 − a⃗1||

and this shows that v⃗ is locally Lipschitz in the second argument.

3). Suppose Ja⃗ = R for all a⃗ ∈ U . We show that {gt} is a one-parameter group of
transformations on U , where

gt(x⃗) = φ⃗x⃗(t) , x⃗ ∈ U, t ∈ R

We only need to show that for all s, t ∈ R, we have

gs+t = gsgt(0.1)

To prove this, let s, t ∈ R and take any x⃗ ∈ U . Consider the maps φ⃗x⃗ and φ⃗gt(x⃗). We
will show that

φ⃗gt(x⃗)(u) = φ⃗x⃗(u+ t) , u ∈ R(0.2)

To show this, first observe that
˙⃗φx⃗ = v⃗(φ⃗x⃗) , φ⃗x⃗(0) = x⃗

and also φ⃗x⃗ is the unique solution to the above IVP. Now put ψ⃗(u) = φ⃗x⃗(u + t) for
u ∈ R. From the above equations, it is clear that

˙⃗
ψ = v⃗(ψ⃗) , ψ⃗(0) = φ⃗x⃗(t) = gt(x⃗)

But by definition, we know that the map φ⃗gt(x⃗) is a solution to the above IVP as well.
By uniquness, it follows that ψ⃗ = φ⃗gt(x⃗), and this proves equation (0.2). This implies
that

gs+t(x⃗) = φ⃗x⃗(s+ t)

= φ⃗gt(x⃗)(s)

= gs(gt(x⃗))

and this proves equation (0.1), and hence shows that {gt} is a one-parameter group of
transformations on U .

4). Suppose v⃗ is C 1, and that Ja = R for all a ∈ U . We show that {gt} is a
one-parameter group of diffeomorphisms. We have already shown that this is a one-
parameter group of transformations. So, we only need to show that the map g :
R × U → Rn defined by g(t, x⃗) = gtx⃗ is a C 1 map on U . But, this clearly is a
consequence of Theorem 1 as mentioned in the homework sheet.
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5). Let I =
(
−π

2
, π
2

)
. We show that there is a one parameter group {gt} of diffeomor-

phisms on I whose phase velocity field is given by v(x) = cosx.
We know that if {gt} is such a one-parameter group, then for any x0 ∈ I the map

φ(t) = gtx0 is the unique solution to the IVP

ẏ(t) = cos(y(t)) , y(0) = x0

So, the idea is to solve the DE

ẏ(t) = cos(y(t))
which is equivalent to the DE

dy
dt = cos y

and clearly this is a separable DE. We get

sec ydy
dt = 1

Integrating both sides with respect to t, we get∫
sec y dy = t+ C

for some C ∈ R and hence

log(tan y + sec y) = t+ C

for some C ∈ R. By putting t = 0, the value of C obtained is

C = log(tan x0 + secx0)

This gives us
tan y + sec y = Ket

where K = tan x0 + secx0. Now, observe that y(t) ∈ I for all I ∈ R, and hence
sec y(t) ≥ 0 for all t ∈ R. This means that

sec y =
√

1 + tan2y

and hence
tan y +

√
1 + tan2y = Ket

This gives us
1 + tan2y = K2e2t + tan2y − 2Ket tan y

and hence

tan y =
K2e2t − 1

2Ket

and hence

y = arctan
(
K2e2t − 1

2Ket

)
So, we may define

gtx = arctan
(
(tan x+ secx)2e2t − 1

2(tan x+ secx)et
)
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6). We just use the results of problem 5) for this problem. Let x0 = 0. So, as in the
previous problem, we get K = 1, and hence the map

y(t) = arctan
(
e2t − 1

2et

)
satisfies

ẏ(t) = cos(y(t)) , y(0) = 0

for all t ∈ R. So, y is a map from (−∞,∞) → I, where I is the interval as in the
previous problem. Now, by reversing the steps in the previous problem, we can see
get that for all t ∈ R,

log(tan(y(t)) + sec(y(t))) = t

(here C = logK = 0). So, this means that the inverse map θ : I → (−∞,∞) is given
by

θ(x) = log(tan x+ secx)
By the results in section 1.4.5 of the main notes, we see that

lim
x→−π

2
+
θ(x) = lim

x→−π
2
+
log(tan x+ secx) = −∞

Exponentiating both sides, we see that
lim

x→−π
2
+
tan x+ secx = e−∞ = 0

and this completes the proof of the claim.
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