## HW-6

## SIDDHANT CHAUDHARY

1). In this problem, we do problems 8 and 18 from Cookbook-II.
$8 \quad x \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\left(x^{2}-1\right) \frac{\mathrm{d} y}{\mathrm{~d} x}+x^{3} y=0, \quad x>0$
Solution. Dividing throughout by $x$, we get the equation

$$
\frac{\mathrm{d} y^{2}}{\mathrm{~d} x^{2}}+\frac{\left(x^{2}-1\right)}{x} \frac{\mathrm{~d} y}{\mathrm{~d} x}+x^{2} y=0
$$

Put

$$
p(x)=\frac{\left(x^{2}-1\right)}{x} \quad, \quad q(x)=x^{2}
$$

Observe that

$$
\frac{q^{\prime}(x)+2 p(x) q(x)}{2(q(x))^{3 / 2}}=\frac{2 x+2 x\left(x^{2}-1\right)}{2 x^{3}}=1
$$

i.e this quantity is constant on the interval of existence. So, consider the transformation

$$
t=\int \sqrt{q(x)} \mathrm{d} x=\int x \mathrm{~d} x=\frac{x^{2}}{2}
$$

For these transformations we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x}
$$

and

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}=\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}\left(\frac{\mathrm{~d} t}{\mathrm{~d} x}\right)^{2}+\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d}^{2} t}{\mathrm{~d} x^{2}}
$$

In our case, we have

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\sqrt{2 t} \frac{\mathrm{~d} y}{\mathrm{~d} t} \quad, \quad \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}=2 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} t}
$$

and so the equation becomes

$$
2 t \frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} t}+\frac{2 t-1}{\sqrt{2 t}} \sqrt{2 t} \frac{\mathrm{~d} y}{\mathrm{~d} t}+2 t y=0
$$

which is the same as

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{\mathrm{d} y}{\mathrm{~d} t}+y=0
$$

Note this this is a DE with constant coefficients, and this can be easily solved. The characteristic equation is

$$
s^{2}+s+1=0
$$

$\overline{\text { Date: } 21 \text { February } 2021 . ~}$

The roots of this polynomial are $\frac{-1 \pm i \sqrt{3}}{2}$, and each root has multiplicity 1. So the general solution of the DE is given by

$$
y(t)=c_{1} e^{\frac{-t}{2}} \cos \left(\frac{\sqrt{3}}{2} t\right)+c_{2} e^{\frac{-t}{2}} \sin \left(\frac{\sqrt{3}}{2} t\right)
$$

where $c_{1}, c_{2} \in \mathbb{R}$ are constants. So, in terms of $x$, the general solution is

$$
y=c_{1} e^{\frac{-x^{2}}{4}} \cos \left(\frac{\sqrt{3}}{4} x^{2}\right)+c_{2} e^{\frac{-x^{2}}{4}} \sin \left(\frac{\sqrt{3}}{4} x^{2}\right)
$$

where $c_{1}, c_{2} \in \mathbb{R}$.
$18 y^{(6)}-3 y^{(5)}+45 y^{(4)}-24 y^{(3)}+236 y^{\prime \prime}+1300 y^{\prime}-4056 y=x^{2} e^{x} \cos (\sqrt{5} x)$
Solution. First, we write the given DE in the form
$y^{(6)}-3 y^{(5)}+45 y^{(4)}-24 y^{(3)}+236 y^{\prime \prime}+1300 y^{\prime}-4056 y=e^{1 \cdot x}\left(x^{2} \cdot \cos (\sqrt{5} x)+0 \cdot \sin (\sqrt{5} x)\right)$
and hence $\alpha=1, \beta=\sqrt{5}$ where $\alpha, \beta$ are as in Cookbook-II. So, the form of a particular solution of this DE will be

$$
y_{p}=x^{s} e^{x}(A(x) \cos (\sqrt{5} x)+B(x) \sin (\sqrt{5} x))
$$

where $A, B$ are polynomials of degree 2 and $s$ is the multiplicity of $r=1+i \sqrt{5}$ as a root of the characteristic polynomial. Let us calculate this multiplicity. The characteristic polynomial is

$$
t^{6}-3 t^{5}+45 t^{4}-24 t^{3}+236 t^{2}+1300 t-4056
$$

If $1+i \sqrt{5}$ is a root, then $1-i \sqrt{5}$ is also a root, and hence $(x-1)^{2}+5=x^{2}-2 x+6$ must be a factor of this polynomial. But this is not true, and hence the multiplicity $s=0$.
2). Let $\Omega$ be a domain in $\mathbb{R} \times \mathbb{R}^{n}$ and let $\overrightarrow{\boldsymbol{v}}: \Omega \rightarrow \mathbb{R}^{n}$ be a $\mathscr{C}^{1}$ function. We show that $\boldsymbol{v}$ is locally Lipschitz in the second argument.

Let $\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right) \in \Omega$. First, choose some $r>0$ such that

$$
\bar{B}\left(\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right), r\right) \subseteq \Omega
$$

and this is possible because $\Omega$ is open. Now, we know that $\boldsymbol{\boldsymbol { v }}$ is a $\mathscr{C}^{1}$ function; hence, it follows that the map $\overrightarrow{\boldsymbol{v}}^{\prime}: \bar{B}\left(\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right), r\right) \rightarrow \mathbb{R}^{n(n+1)}$ given by $(t, \overrightarrow{\boldsymbol{a}}) \mapsto \overrightarrow{\boldsymbol{v}}^{\prime}(t, \overrightarrow{\boldsymbol{a}})$ is a continuous map. If $\|\cdot\|_{\text {。 denotes the operator norm, this means that the map }}$ $(t, \overrightarrow{\boldsymbol{a}}) \mapsto\left\|\overrightarrow{\boldsymbol{v}}^{\prime}(t, \overrightarrow{\boldsymbol{a}})\right\|_{\circ}$ is continuous, where we are interpreting $\overrightarrow{\boldsymbol{v}}^{\prime}(t, \overrightarrow{\boldsymbol{a}})$ as an $n \times(n+1)$ matrix. So, there is some $M>0$ such that

$$
\left\|\overrightarrow{\boldsymbol{v}}^{\prime}(t, \overrightarrow{\boldsymbol{a}})\right\|_{0} \leq M
$$

for all $(t, \overrightarrow{\boldsymbol{a}}) \in \bar{B}\left(\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right), r\right)$, and this is true because $\bar{B}\left(\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right), r\right)$ is a compact set.
Now, suppose $\left(t, \overrightarrow{\boldsymbol{a}}_{1}\right)$ and $\left(t, \overrightarrow{\boldsymbol{a}}_{2}\right)$ are any two points in $\bar{B}\left(\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right), r\right)$. We know that $\bar{B}\left(\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right), r\right)$ is a convex set; so, we can define $\boldsymbol{\vec { g }}:[0,1] \rightarrow \bar{B}\left(\left(t_{0}, \overrightarrow{\boldsymbol{a}}_{0}\right), r\right)$ to be the linear path between these two points, i.e

$$
\overrightarrow{\boldsymbol{g}}(s)=(1-s)\left(t, \overrightarrow{\boldsymbol{a}}_{1}\right)+s\left(t, \overrightarrow{\boldsymbol{a}}_{2}\right) \quad, \quad t \in[0,1]
$$

Next, consider the map $\overrightarrow{\boldsymbol{v}} \circ \overrightarrow{\boldsymbol{g}}:[0,1] \rightarrow \mathbb{R}^{n}$, which is clearly a $\mathscr{C}^{1}$ map because both $\overrightarrow{\boldsymbol{v}}$ and $\boldsymbol{g}$ are $\mathscr{C}^{1}$. Also, observe that for any $s \in[0,1]$ we have by the chain rule

$$
(\overrightarrow{\boldsymbol{v}} \circ \overrightarrow{\boldsymbol{g}})^{\prime}(s)=\overrightarrow{\boldsymbol{v}}^{\prime}(\overrightarrow{\boldsymbol{g}}(s)) \overrightarrow{\boldsymbol{g}}^{\prime}(s)=\overrightarrow{\boldsymbol{v}}^{\prime}(\overrightarrow{\boldsymbol{g}}(s))\left(0, \overrightarrow{\boldsymbol{a}}_{2}-\overrightarrow{\boldsymbol{a}}_{1}\right)
$$

where in the above equation, we are interpretting $\overrightarrow{\boldsymbol{v}}^{\prime}(\overrightarrow{\boldsymbol{g}}(s))$ as a matrix. So, we see that

$$
\left\|(\overrightarrow{\boldsymbol{v}} \circ \overrightarrow{\boldsymbol{g}})^{\prime}(s)\right\|=\left\|\overrightarrow{\boldsymbol{v}}^{\prime}(\overrightarrow{\boldsymbol{g}}(s))\right\|_{\circ}\left\|\left(0, \overrightarrow{\boldsymbol{a}_{\mathbf{2}}}-\overrightarrow{\boldsymbol{a}_{\mathbf{1}}}\right)\right\| \leq M\left\|\overrightarrow{\boldsymbol{a}_{\mathbf{2}}}-\overrightarrow{\boldsymbol{a}_{1}}\right\| \quad, \quad s \in[0,1]
$$

So, by the mean-value theorem in $\mathbb{R}^{n}$, we immediately see that

$$
\begin{aligned}
\left\|\overrightarrow{\boldsymbol{v}}\left(t, \overrightarrow{\boldsymbol{a}}_{2}\right)-\overrightarrow{\boldsymbol{v}}\left(t, \overrightarrow{\boldsymbol{a}}_{1}\right)\right\| & =\|\overrightarrow{\boldsymbol{v}} \circ \overrightarrow{\boldsymbol{g}}(1)-\overrightarrow{\boldsymbol{v}} \circ \overrightarrow{\boldsymbol{g}}(0)\| \\
& \leq M\left\|\overrightarrow{\boldsymbol{a}}_{2}-\overrightarrow{\boldsymbol{a}}_{1}\right\|(1-0) \\
& =\leq M\left\|\overrightarrow{\boldsymbol{a}}_{2}-\overrightarrow{\boldsymbol{a}}_{1}\right\|
\end{aligned}
$$

and this shows that $\overrightarrow{\boldsymbol{v}}$ is locally Lipschitz in the second argument.
3). Suppose $J_{\overrightarrow{\boldsymbol{a}}}=\mathbb{R}$ for all $\overrightarrow{\boldsymbol{a}} \in U$. We show that $\left\{g^{t}\right\}$ is a one-parameter group of transformations on $U$, where

$$
g^{t}(\overrightarrow{\boldsymbol{x}})=\overrightarrow{\boldsymbol{\varphi}}_{\overrightarrow{\boldsymbol{x}}}(t) \quad, \quad \overrightarrow{\boldsymbol{x}} \in U, t \in \mathbb{R}
$$

We only need to show that for all $s, t \in \mathbb{R}$, we have

$$
\begin{equation*}
g^{s+t}=g^{s} g^{t} \tag{0.1}
\end{equation*}
$$

To prove this, let $s, t \in \mathbb{R}$ and take any $\overrightarrow{\boldsymbol{x}} \in U$. Consider the maps $\overrightarrow{\boldsymbol{\varphi}}_{\overrightarrow{\boldsymbol{x}}}$ and $\overrightarrow{\boldsymbol{\varphi}}_{g^{t}(\overrightarrow{\boldsymbol{x}})}$. We will show that

$$
\begin{equation*}
\overrightarrow{\boldsymbol{\varphi}}_{g^{t}(\overrightarrow{\boldsymbol{x}})}(u)=\overrightarrow{\boldsymbol{\varphi}}_{\overrightarrow{\boldsymbol{x}}}(u+t) \quad, \quad u \in \mathbb{R} \tag{0.2}
\end{equation*}
$$

To show this, first observe that

$$
\dot{\vec{\varphi}}_{\vec{x}}=\overrightarrow{\boldsymbol{v}}\left(\vec{\varphi}_{\vec{x}}\right) \quad, \quad \vec{\varphi}_{\vec{x}}(0)=\overrightarrow{\boldsymbol{x}}
$$

and also $\overrightarrow{\boldsymbol{\varphi}}_{\vec{x}}$ is the unique solution to the above IVP. Now put $\overrightarrow{\boldsymbol{\psi}}(u)=\overrightarrow{\boldsymbol{\varphi}}_{\vec{x}}(u+t)$ for $u \in \mathbb{R}$. From the above equations, it is clear that

$$
\dot{\overrightarrow{\boldsymbol{\psi}}}=\overrightarrow{\boldsymbol{v}}(\overrightarrow{\boldsymbol{\psi}}) \quad, \quad \overrightarrow{\boldsymbol{\psi}}(0)=\overrightarrow{\boldsymbol{\varphi}}_{\overrightarrow{\boldsymbol{x}}}(t)=g^{t}(\overrightarrow{\boldsymbol{x}})
$$

But by definition, we know that the map $\overrightarrow{\boldsymbol{\varphi}}_{g^{t}(\overrightarrow{\boldsymbol{x}})}$ is a solution to the above IVP as well. By uniquness, it follows that $\overrightarrow{\boldsymbol{\psi}}=\overrightarrow{\boldsymbol{\varphi}}_{g^{t}(\overrightarrow{\boldsymbol{x}})}$, and this proves equation (0.2). This implies that

$$
\begin{aligned}
g^{s+t}(\overrightarrow{\boldsymbol{x}}) & =\overrightarrow{\boldsymbol{\varphi}}_{\overrightarrow{\boldsymbol{x}}}(s+t) \\
& =\overrightarrow{\boldsymbol{\varphi}}_{g^{t}(\overrightarrow{\boldsymbol{x}})}(s) \\
& =g^{s}\left(g^{t}(\overrightarrow{\boldsymbol{x}})\right)
\end{aligned}
$$

and this proves equation (0.1), and hence shows that $\left\{g^{t}\right\}$ is a one-parameter group of transformations on $U$.
4). Suppose $\overrightarrow{\boldsymbol{v}}$ is $\mathscr{C}^{1}$, and that $J_{a}=\mathbb{R}$ for all $a \in U$. We show that $\left\{g^{t}\right\}$ is a one-parameter group of diffeomorphisms. We have already shown that this is a oneparameter group of transformations. So, we only need to show that the map $g$ : $\mathbb{R} \times U \rightarrow \mathbb{R}^{n}$ defined by $g(t, \overrightarrow{\boldsymbol{x}})=g^{t} \overrightarrow{\boldsymbol{x}}$ is a $\mathscr{C}^{1}$ map on $U$. But, this clearly is a consequence of Theorem 1 as mentioned in the homework sheet.
5). Let $I=\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$. We show that there is a one parameter group $\left\{g^{t}\right\}$ of diffeomorphisms on $I$ whose phase velocity field is given by $v(x)=\cos x$.

We know that if $\left\{g^{t}\right\}$ is such a one-parameter group, then for any $x_{0} \in I$ the map $\varphi(t)=g^{t} x_{0}$ is the unique solution to the IVP

$$
\dot{y}(t)=\cos (y(t)) \quad, \quad y(0)=x_{0}
$$

So, the idea is to solve the DE

$$
\dot{y}(t)=\cos (y(t))
$$

which is equivalent to the DE

$$
\frac{\mathrm{d} y}{\mathrm{~d} t}=\cos y
$$

and clearly this is a separable DE. We get

$$
\sec y \frac{\mathrm{~d} y}{\mathrm{~d} t}=1
$$

Integrating both sides with respect to $t$, we get

$$
\int \sec y \mathrm{~d} y=t+C
$$

for some $C \in \mathbb{R}$ and hence

$$
\log (\tan y+\sec y)=t+C
$$

for some $C \in \mathbb{R}$. By putting $t=0$, the value of $C$ obtained is

$$
C=\log \left(\tan x_{0}+\sec x_{0}\right)
$$

This gives us

$$
\tan y+\sec y=K e^{t}
$$

where $K=\tan x_{0}+\sec x_{0}$. Now, observe that $y(t) \in I$ for all $I \in \mathbb{R}$, and hence $\sec y(t) \geq 0$ for all $t \in \mathbb{R}$. This means that

$$
\sec y=\sqrt{1+\tan ^{2} y}
$$

and hence

$$
\tan y+\sqrt{1+\tan ^{2} y}=K e^{t}
$$

This gives us

$$
1+\tan ^{2} y=K^{2} e^{2 t}+\tan ^{2} y-2 K e^{t} \tan y
$$

and hence

$$
\tan y=\frac{K^{2} e^{2 t}-1}{2 K e^{t}}
$$

and hence

$$
y=\arctan \left(\frac{K^{2} e^{2 t}-1}{2 K e^{t}}\right)
$$

So, we may define

$$
g^{t} x=\arctan \left(\frac{(\tan x+\sec x)^{2} e^{2 t}-1}{2(\tan x+\sec x) e^{t}}\right)
$$

6). We just use the results of problem 5) for this problem. Let $x_{0}=0$. So, as in the previous problem, we get $K=1$, and hence the map

$$
y(t)=\arctan \left(\frac{e^{2 t}-1}{2 e^{t}}\right)
$$

satisfies

$$
\dot{y}(t)=\cos (y(t)) \quad, \quad y(0)=0
$$

for all $t \in \mathbb{R}$. So, $y$ is a map from $(-\infty, \infty) \rightarrow I$, where $I$ is the interval as in the previous problem. Now, by reversing the steps in the previous problem, we can see get that for all $t \in \mathbb{R}$,

$$
\log (\tan (y(t))+\sec (y(t)))=t
$$

(here $C=\log K=0$ ). So, this means that the inverse map $\theta: I \rightarrow(-\infty, \infty)$ is given by

$$
\theta(x)=\log (\tan x+\sec x)
$$

By the results in section 1.4.5 of the main notes, we see that

$$
\lim _{x \rightarrow-\frac{\pi}{2}^{+}} \theta(x)=\lim _{x \rightarrow-\frac{\pi^{+}}{2}} \log (\tan x+\sec x)=-\infty
$$

Exponentiating both sides, we see that

$$
\lim _{x \rightarrow-\frac{\pi}{2}+} \tan x+\sec x=e^{-\infty}=0
$$

and this completes the proof of the claim.

