HW-7

SIDDHANT CHAUDHARY

1). Here, I will be solving problems 19 and 20 from Cookbook-II.

19 Here, we show that the transformation $t=\ln x$ transforms the DE in equation (5) of the text-portion of Cookbook-II to the one in (6).

Solution. Suppose we have a DE of the form

$$
x^{2} \frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}}+\alpha x \frac{\mathrm{~d} y}{\mathrm{~d} x}+\beta y=0, \quad x>0
$$

where α, β are constants. Let us substitute $t=\ln x$. By the chain rule, we first have the following equations.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x} \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} & =\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}\left(\frac{\mathrm{~d} t}{\mathrm{~d} x}\right)^{2}+\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d}^{2} t}{\mathrm{~d} x^{2}}
\end{aligned}
$$

In our case, we have

$$
\frac{\mathrm{d} t}{\mathrm{~d} x}=\frac{1}{x}=\frac{1}{e^{t}} \quad, \quad \frac{\mathrm{~d}^{2} t}{\mathrm{~d} x^{2}}=-\frac{1}{x^{2}}=-\frac{1}{e^{2 t}}
$$

So using the above two equations, we get

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{1}{e^{t}} \frac{\mathrm{~d} y}{\mathrm{~d} t} \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} & =\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}} \frac{1}{e^{2 t}}+\frac{\mathrm{d} y}{\mathrm{~d} t}\left(-\frac{1}{e^{2 t}}\right)
\end{aligned}
$$

So, the original DE becomes

$$
e^{2 t}\left(\frac{\mathrm{~d}^{2} y}{\mathrm{~d} t^{2}} \frac{1}{e^{2 t}}+\frac{\mathrm{d} y}{\mathrm{~d} t}\left(-\frac{1}{e^{2 t}}\right)\right)+\alpha e^{t}\left(\frac{1}{e^{t}} \frac{\mathrm{~d} y}{\mathrm{~d} t}\right)+\beta y=0
$$

which gives us

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}-\frac{\mathrm{d} y}{\mathrm{~d} t}+\alpha \frac{\mathrm{d} y}{\mathrm{~d} t}+\beta y=0
$$

which is the same as the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+(\alpha-1) \frac{\mathrm{d} y}{\mathrm{~d} t}+\beta y=0
$$

and this finishes the proof.
20 Here we show that the transformation $t=\int q(x)^{\frac{1}{2}} \mathrm{~d} x$ transforms the DE in (7) in the text portion of Cookbook-II to a linear DE with constant co-efficients.

Date: 7 March 2021.

Solution. Suppose we have an equation of the form

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}}+p(x) \frac{\mathrm{d} y}{\mathrm{~d} x}+q(x) y=0
$$

on an interval I such that $q>0$ on I and

$$
\frac{q^{\prime}(x)+2 p(x) q(x)}{2(q(x))^{3 / 2}}=c
$$

for some $c \in \mathbf{R}$ on I. Consider the transformation

$$
t=\int \sqrt{q(x)} \mathrm{d} x
$$

Again, by the chain rule, we first have the following equations.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d} t}{\mathrm{~d} x} \\
\frac{\mathrm{~d}^{2} y}{\mathrm{~d} x^{2}} & =\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}\left(\frac{\mathrm{~d} t}{\mathrm{~d} x}\right)^{2}+\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{\mathrm{~d}^{2} t}{\mathrm{~d} x^{2}}
\end{aligned}
$$

In our case, we have

$$
\frac{\mathrm{d} t}{\mathrm{~d} x}=\sqrt{q(x)} \quad, \quad \frac{\mathrm{d}^{2} t}{\mathrm{~d} x^{2}}=\frac{q^{\prime}(x)}{2 \sqrt{q(x)}}
$$

Putting all this together, we have the following.

$$
\begin{aligned}
\frac{\mathrm{d} y}{\mathrm{~d} x} & =\frac{\mathrm{d} y}{\mathrm{~d} t} \sqrt{q(x)} \\
\frac{\mathrm{d}^{2} y}{\mathrm{~d} x^{2}} & =\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}(\sqrt{q(x)})^{2}+\frac{\mathrm{d} y}{\mathrm{~d} t} \frac{q^{\prime}(x)}{2 \sqrt{q(x)}}
\end{aligned}
$$

So, our original equation becomes

$$
q(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{q^{\prime}(x)}{2 \sqrt{q(x)}} \frac{\mathrm{d} y}{\mathrm{~d} t}+p(x) \sqrt{q(x)} \frac{\mathrm{d} y}{\mathrm{~d} t}+q(x) y=0
$$

which is the same as the equation

$$
q(x) \frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{q^{\prime}(x)+2 p(x) q(x)}{2 \sqrt{q(x)}} \frac{\mathrm{d} y}{\mathrm{~d} t}+q(x) y=0
$$

Dividing throughout by $q(x)$, we get

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+\frac{q^{\prime}(x)+2 p(x) q(x)}{2 q(x)^{3 / 2}} \frac{\mathrm{~d} y}{\mathrm{~d} t}+y=0
$$

which by assumption is the equation

$$
\frac{\mathrm{d}^{2} y}{\mathrm{~d} t^{2}}+c \frac{\mathrm{~d} y}{\mathrm{~d} t}+y=0
$$

which is clearly a linear DE with constant coefficients. This proves the claim.
2). Let \boldsymbol{v} be the vector field on $\Omega=\{(x, y, z) \mid y \neq 0\}$ given by

$$
\boldsymbol{v}=\left(\left(y^{2}+z^{2}\right) y^{-1}, x z,-x y\right)
$$

We first find two first integrals for \boldsymbol{v} on a suitable large open subset U of Ω. Note that the corresponding DE is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
\left(y^{2}+z^{2}\right) y^{-1} \\
x z \\
-x y
\end{array}\right]
$$

Let U be the subset of Ω given by $U=\{(x, y, z) \mid x \neq 0, y \neq 0\}$. On U, observe that

$$
\frac{\mathrm{d} y}{\mathrm{~d} z}=\frac{x z}{-x y}=\frac{-z}{y}
$$

and this is clearly a separable DE . Solving this, we get

$$
\int y \mathrm{~d} y=\int-z \mathrm{~d} z
$$

and this gives us

$$
\frac{y^{2}}{2}=\frac{-z^{2}}{2}+c_{1}^{\prime}
$$

for some $c_{1}^{\prime} \in \mathbf{R}$. Rearranging, we get

$$
y^{2}+z^{2}=2 c_{1}^{\prime}=c_{1}
$$

where $c_{1} \in \mathbf{R}$. So, if we define the function $f: U \rightarrow \mathbf{R}$ given by

$$
f(x, y, z)=y^{2}+z^{2}
$$

then it follows that f is a first integral for \boldsymbol{v}. This can be easily verified by checking the equation

$$
\left(y^{2}+z^{2}\right) y^{-1} \frac{\partial f}{\partial x}+x z \frac{\partial f}{\partial y}-x y \frac{\partial f}{\partial z} \equiv 0
$$

on U. So, one first integral has been found.
Now, using the fact that $y^{2}+z^{2}=c_{1}$ on U (and hence $c_{1}>0$), we see that

$$
\frac{\mathrm{d} x}{\mathrm{~d} t}=\frac{c_{1}}{y}
$$

on U. So, we get

$$
\frac{\mathrm{d} x}{\mathrm{~d} z}=\frac{c_{1}}{y} \frac{1}{-x y}=\frac{-c_{1}}{x y^{2}}=\frac{-c_{1}}{x\left(c_{1}-z^{2}\right)}
$$

and again we have a separable DE. Upon rearranging, we get

$$
x \frac{\mathrm{~d} x}{\mathrm{~d} z}=\frac{-c_{1}}{\left(c_{1}-z^{2}\right)}
$$

and hence

$$
\int x \mathrm{~d} x=-c_{1} \int \frac{1}{c_{1}-z^{2}} \mathrm{~d} z
$$

which gives us

$$
\frac{x^{2}}{2}=-c_{1}\left(\frac{\log \left(\frac{z}{\sqrt{c_{1}}}+1\right)}{2 \sqrt{c_{1}}}-\frac{\log \left(1-\frac{z}{\sqrt{c_{1}}}\right)}{2 \sqrt{c_{1}}}+c_{2}^{\prime}\right)
$$

for some $c_{2}^{\prime} \in \mathbf{R}$, and this can be written as

$$
\frac{x^{2}}{2}=\frac{\sqrt{c_{1}}}{2}\left(\log \left(1-\frac{z}{\sqrt{c_{1}}}\right)-\log \left(1+\frac{z}{\sqrt{c_{1}}}\right)\right)+c_{2}
$$

where $c_{2}=-c_{1} c_{2}^{\prime} \in \mathbf{R}$, and hence

$$
\frac{x^{2}}{2}=\frac{\sqrt{c_{1}}}{2} \log \left(\frac{\sqrt{c_{1}}-z}{\sqrt{c_{1}}+z}\right)+c_{2}
$$

Now, replacing c_{1} by $y^{2}+z^{2}$ above, we get

$$
\frac{x^{2}}{2}=\frac{\sqrt{y^{2}+z^{2}}}{2} \log \left(\frac{\sqrt{y^{2}+z^{2}}-z}{\sqrt{y^{2}+z^{2}}+z}\right)+c_{2}
$$

and this gives us

$$
\frac{x^{2}}{2}-\frac{\sqrt{y^{2}+z^{2}}}{2} \log \left(\frac{\sqrt{y^{2}+z^{2}}-z}{\sqrt{y^{2}+z^{2}}+z}\right)=c_{2}
$$

So if we define the function $g: U \rightarrow \mathbf{R}$ by

$$
g(x, y, z)=\frac{x^{2}}{2}-\frac{\sqrt{y^{2}+z^{2}}}{2} \log \left(\frac{\sqrt{y^{2}+z^{2}}-z}{\sqrt{y^{2}+z^{2}}+z}\right)
$$

then it follows that g is a first integral for v.
Now, we show that the level surfaces $f=c_{1}$ and $g=c_{2}$ intersect transversally. To show this, it is enough to show that the Jacobian matrix $\partial(f, g) / \partial(x, y, z)$ has rank 2 at every point of U. Now, we have

$$
\frac{\partial(f, g)}{\partial(x, y, z)}=\left[\begin{array}{ccc}
0 & 2 y & 2 z \\
x & \frac{\partial g}{\partial y} & \frac{\partial g}{\partial z}
\end{array}\right]
$$

Observe that on U, we have $x \neq 0$. So, it follows that the rank of the Jacobian is always 2 (because the two rows cannot be scalar multiplies of each other), and this proves the claim.
3). Let \boldsymbol{v} be the vector field on \mathbf{R}^{3} given by

$$
\boldsymbol{v}=\left[\begin{array}{c}
y+z \\
y \\
x-y
\end{array}\right]
$$

Let U be the open subset of \mathbf{R}^{3} on which $z^{2}>(x-y)^{2}$ and $y>0$.
(a) First we find two first integrals f and g for \boldsymbol{v} on U such that their level surfaces intersect transversally. The corresponding DE is

$$
\frac{\mathrm{d}}{\mathrm{~d} t}\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
y+z \\
y \\
x-y
\end{array}\right]
$$

From here, we can see that

$$
\frac{\mathrm{d}(x+z)}{d t}=x+z
$$

and hence we see that

$$
\frac{\mathrm{d}(x+z)}{\mathrm{d} y}=\frac{x+z}{y}
$$

This implies that

$$
\frac{1}{y^{2}}\left(y \frac{\mathrm{~d}(x+z)}{\mathrm{d} y}-(x+z)\right)=0
$$

which is the same as writing

$$
\frac{1}{y} \frac{\mathrm{~d}(x+z)}{\mathrm{d} y}-\frac{1}{y^{2}}(x+z)=\frac{\mathrm{d}}{\mathrm{~d} y}\left(\frac{1}{y}(x+z)\right)=0
$$

and hence this implies that

$$
\frac{x+z}{y}=c_{1}
$$

for some $c_{1} \in \mathbf{R}$. So, if we define the function $f: U \rightarrow \mathbf{R}$ given by

$$
f(x, y, z)=\frac{x+z}{y}
$$

then it follows that f is a first integral for \boldsymbol{v} on U, and this easily follows by verifying the equation

$$
(y+z) \frac{\partial f}{\partial x}+y \frac{\partial f}{\partial y}+(x-y) \frac{\partial f}{\partial z} \equiv 0 \quad \text { on } U
$$

Also from the given DE we can see that

$$
\frac{\mathrm{d}(x-y)}{\mathrm{d} t}=z
$$

and hence we see that

$$
\frac{\mathrm{d}(x-y)}{\mathrm{d} z}=\frac{z}{x-y}
$$

This is again a separable DE which we can solve. By integrating we get

$$
\int(x-y) \mathrm{d}(x-y)=\int z \mathrm{~d} z=\frac{z^{2}}{2}+c_{2}^{\prime}
$$

for some $c_{2}^{\prime} \in \mathbf{R}$. This gives us

$$
(x-y)^{2}-z^{2}=2 c_{2}^{\prime}=c_{2}
$$

for all $(x, y, z) \in U$. So if we define a function $g: U \rightarrow \mathbf{R}$ given by

$$
g(x, y, z)=(x-y)^{2}-z^{2}
$$

then it follows that g is a first integral for \boldsymbol{v} on U. Again, this can be easily verified by checking the equation

$$
(y+z) \frac{\partial g}{\partial x}+y \frac{\partial g}{\partial y}+(x-y) \frac{\partial g}{\partial z} \equiv 0 \quad \text { on } U
$$

So, we have found two first integrals f, g on U. We now show that the level surfaces $f=$ c_{1} and $g=c_{2}$ intersect transversally, and to show this we show that $\partial(f, g) / \partial(x, y, z)$ has rank 2 on U. Observe that

$$
\frac{\partial(f, g)}{\partial(x, y, z)}=\left[\begin{array}{ccc}
\frac{1}{y} & \frac{-(x+z)}{y^{2}} & \frac{1}{y} \\
2(x-y) & -2(x-y) & -2 z
\end{array}\right]
$$

Now, I claim that this matrix must have rank 2. Because $y>0$ on U, it is clear that this matrix has rank atleast 1 . For the sake of contradiction, suppose the matrix has rank 2. So, there is some non-zero $\lambda \in \mathbf{R}$ such that

$$
\left[\begin{array}{c}
\frac{1}{y} \\
\frac{-(x+z)}{y^{2}} \\
\frac{1}{y}
\end{array}\right]=\left[\begin{array}{c}
2 \lambda(x-y) \\
-2 \lambda(x-y) \\
-2 \lambda z
\end{array}\right]
$$

This implies that

$$
2 \lambda(x-y)=-2 \lambda z
$$

and this implies that

$$
(x-y)^{2}=z^{2}
$$

which is a contradiction, since $(x, y, z) \in U$. So, it follows that the Jacobian has rank 2 at all points of U, and hence the level surfaces intersect transversally.
(b) Let $\left(x_{0}, y_{0}, z_{0}\right)$ be a point in U. We will find a solution to the IVP

$$
\dot{\boldsymbol{x}}=\boldsymbol{v}(\boldsymbol{x}) \quad, \quad \boldsymbol{x}(0)=\left(x_{0}, y_{0}, z_{0}\right)
$$

Let S_{1} and S_{2} be the level curves given by the equations $f=c_{1}$ and $g=c_{2}$, where $c_{1}=f\left(x_{0}, y_{0}, z_{0}\right)$ and $c_{2}=g\left(x_{0}, y_{0}, z_{0}\right)$. Let $C=S_{1} \cap S_{2}$. The two surfaces that we have are

$$
\begin{aligned}
\frac{x+z}{y} & =c_{1} \quad\left(c_{1} \neq 0\right) \\
(x-y)^{2}-z^{2} & =c_{2}
\end{aligned}
$$

From the first equation, we get that $x+z=c_{1} y$, which means $z=c_{1} y-x$. Putting this value of z in the second equation, we get

$$
(x-y)^{2}-\left(c_{1} y-x\right)^{2}=c_{2}
$$

and this implies

$$
x=\frac{y^{2}\left(c_{1}^{2}-1\right)+c_{2}}{2 y\left(c_{1}-1\right)} \quad, \quad z=\frac{y^{2}\left(c_{1}^{2}-2 c_{1}+1\right)-c_{2}}{2 y\left(c_{1}-1\right)}=\frac{y^{2}\left(c_{1}-1\right)^{2}-c_{2}}{2 y\left(c_{1}-1\right)}
$$

Now, we also have the equation $\dot{y}=y$, which is again separable, and we also have the initial condition $y(0)=y_{0}$. Solving this DE, we get

$$
\int \frac{1}{y} \mathrm{~d} y=\int 1 \mathrm{~d} t=t+C
$$

for some $C \in \mathbf{R}$. This gives us

$$
\ln y=t+C
$$

and hence we get that $C=\ln y_{0}$. This gives us

$$
y=y_{0} e^{t}
$$

and hence

$$
(x, y, z)=\left(\frac{y_{0}^{2} e^{2 t}\left(c_{1}^{2}-1\right)+c_{2}}{2 y_{0} e^{t}\left(c_{1}-1\right)}, y_{0} e^{t}, \frac{y_{0}^{2} e^{2 t}\left(c_{1}-1\right)^{2}-c_{2}}{2 y_{0} e^{t}\left(c_{1}-1\right)}\right)
$$

where

$$
c_{1}=\frac{x_{0}+z_{0}}{y_{0}} \quad, \quad c_{2}=\left(x_{0}-y_{0}\right)^{2}-z_{0}^{2}
$$

So, if $\boldsymbol{p}_{\mathbf{0}}=\left(x_{0}, y_{0}, z_{0}\right)$ is our initial point, then the solution to the IVP is the function $\varphi_{p_{0}}$ defined by

$$
\varphi_{p_{0}}(t)=\left(\frac{y_{0}^{2} e^{2 t}\left(c_{1}^{2}-1\right)+c_{2}}{2 y_{0} e^{t}\left(c_{1}-1\right)}, y_{0} e^{t}, \frac{y_{0}^{2} e^{2 t}\left(c_{1}-1\right)^{2}-c_{2}}{2 y_{0} e^{t}\left(c_{1}-1\right)}\right)
$$

(c) From the parametric form of the solution, it is clear that the solution $\boldsymbol{\varphi}_{p_{0}}$ depends smoothly on $\boldsymbol{p}_{\mathbf{0}}=\left(x_{0}, y_{0}, z_{0}\right)$: note that the constants c_{1} and c_{2} are \mathscr{C}^{1} functions of $\left(x_{0}, y_{0}, z_{0}\right)$, and hence the solution also depends on the point in a smooth way.
4). For $\boldsymbol{p}=(x, y, z) \in U$ and $t \in J_{\max }(\boldsymbol{p})$ we define

$$
\begin{aligned}
& \boldsymbol{y}_{\mathbf{1}}(t)=\left(e^{t}, 0,\left(\frac{1}{2} y e^{2 t}-\frac{1}{2} y\right) \sec ^{2}(\theta(t, x, y, z))\right) \\
& \boldsymbol{y}_{\mathbf{2}}(t)=\left(0, e^{t},\left(\frac{1}{2} x e^{2 t}-\frac{1}{2} x\right) \sec ^{2}(\theta(t, x, y, z))\right)
\end{aligned}
$$

(a) We show that \boldsymbol{y}_{1} is a solution of the homogenous linear IVP

$$
\dot{\boldsymbol{\zeta}}=A(t, x, y, z) \boldsymbol{\zeta} \quad, \quad \boldsymbol{\zeta}(0)=\boldsymbol{e}_{1}
$$

where $\left\{\boldsymbol{e}_{\mathbf{1}}, \boldsymbol{e}_{\mathbf{2}}, \boldsymbol{e}_{\mathbf{3}}\right\}$ is the standard basis of \mathbf{R}^{3}. We observe a couple of things. First note that

$$
\frac{\partial \theta}{\partial t}(t, x, y, z)=x y e^{2 t}
$$

Now, observe that

$$
\begin{aligned}
\boldsymbol{y}_{\mathbf{1}}^{\prime}(t) & =\left(e^{t}, 0, y e^{2 t} \sec ^{2}(\theta(t, x, y, z))+\left(\frac{1}{2} y e^{2 t}-\frac{1}{2} y\right) \frac{\partial \theta}{\partial t} 2 \sec ^{2}(\theta(t, x, y, z)) \tan (\theta(t, x, y, z))\right) \\
& =\left(e^{t}, 0, y e^{2 t} \sec ^{2}(\theta(t, x, y, z))+2 x y e^{2 t}\left(\frac{1}{2} y e^{2 t}-\frac{1}{2} y\right) \sec ^{2}(\theta(t, x, y, z)) \tan (\theta(t, x, y, z))\right)
\end{aligned}
$$

Now, observe that

$$
\left.\begin{array}{l}
A(t, x, y, z) \boldsymbol{y}_{\mathbf{1}}(t)=\left[\begin{array}{cc}
1 & 0 \\
0 & 1 \\
y e^{t} \sec ^{2}(\theta(t, x, y, z)) & x e^{t} \sec ^{2}(\theta(t, x, y, z))
\end{array}\right] 2 x y e^{2 t} \tan (\theta(t, x, y, z))
\end{array}\right] \boldsymbol{y}_{\mathbf{1}}(t)
$$

and hence we obtain

$$
\boldsymbol{y}_{\mathbf{1}}^{\prime}(t)=A(t, x, y, z) \boldsymbol{y}_{\mathbf{1}}(t)
$$

Now, observe that

$$
\boldsymbol{y}_{\mathbf{1}}(0)=(1,0,0)=\boldsymbol{e}_{\mathbf{1}}
$$

and so this proves that \boldsymbol{y}_{1} is a solution of the given IVP.
(b) First, observe that

$$
\frac{\partial \boldsymbol{\varphi}}{\partial y}(x, y, z, t)=\left(0, e^{t},\left(\frac{1}{2} x e^{2 t}-\frac{1}{2} x\right) \sec ^{2}(\theta(t, x, y, z))\right)=\boldsymbol{y}_{\mathbf{2}}(t)
$$

So, we see that

$$
\dot{\boldsymbol{y}}_{\mathbf{2}}(t)=\frac{\partial \boldsymbol{\varphi}}{\partial t \partial y}(x, y, z, t)=\frac{\partial \boldsymbol{\varphi}}{\partial y \partial t}(x, y, z, t)
$$

where above we used equality of mixed partial derivatives, since φ is a \mathscr{C}^{2} function. Now, observe that

$$
\begin{aligned}
\frac{\partial \boldsymbol{\varphi}}{\partial y \partial t}(x, y, z, t) & =\frac{\partial \dot{\varphi}}{\partial y}(x, y, z, t) \\
& =\frac{\partial}{\partial y} \boldsymbol{v}(\boldsymbol{\varphi}(x, y, z, t))
\end{aligned}
$$

To compute the above partial derivative, we will use the chain rule. Consider the function $\boldsymbol{v} \circ \varphi$. Note that

$$
\frac{\partial}{\partial y} \boldsymbol{v} \circ \boldsymbol{\varphi}(x, y, z, t)=\text { second column of } J(\boldsymbol{v} \circ \boldsymbol{\varphi})(x, y, z, t)
$$

Also by the chain rule,

$$
\begin{aligned}
J(\boldsymbol{v} \circ \boldsymbol{\varphi})(x, y, z, t) & =(J \boldsymbol{v})(\boldsymbol{\varphi}(x, y, z, t)) \cdot(J \boldsymbol{\varphi})(x, y, z, t) \\
& =A(t, x, y, z) \cdot(J \boldsymbol{\varphi})(x, y, z, t)
\end{aligned}
$$

Now, the second column of the matrix $(J \varphi)(x, y, z, t)$ is simply $\frac{\partial \varphi}{\partial y}(x, y, z, t)=\boldsymbol{y}_{\mathbf{2}}(t)$, as we saw above. So it follows that the second column of $J(\boldsymbol{v} \circ \varphi)(x, y, z, t)$ is $A(t, x, y, z) \boldsymbol{y}_{\mathbf{2}}(t)$. So, combining everything, we see that

$$
\dot{\boldsymbol{y}_{\mathbf{2}}}(t)=A(t, x, y, z) \boldsymbol{y}_{\mathbf{2}}(t)
$$

Also, observe that

$$
\boldsymbol{y}_{\boldsymbol{2}}(0)=(0,1,0)=\boldsymbol{e}_{\boldsymbol{2}}
$$

and hence this shows that $\boldsymbol{y}_{\mathbf{2}}$ is the solution of the given IVP, and this completes the proof.
(c) As in part (b) above, the solution to the IVP

$$
\dot{\boldsymbol{\zeta}}=A(t, x, y, z) \boldsymbol{\zeta} \quad, \quad \boldsymbol{\zeta}(0)=\boldsymbol{e}_{3}
$$

will be

$$
\boldsymbol{y}_{\mathbf{3}}(t)=\frac{\partial \boldsymbol{\varphi}}{\partial y}(x, y, z, t)
$$

and the justification will be similar to what we did in part (b).

