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1). Here, I will be solving problems 19 and 20 from Cookbook-II.

19 Here, we show that the transformation t = ln x transforms the DE in equation (5)
of the text-portion of Cookbook-II to the one in (6).

Solution. Suppose we have a DE of the form

x2 d2y

dx2
+ αx

dy
dx + βy = 0, x > 0

where α, β are constants. Let us substitute t = ln x. By the chain rule, we first have
the following equations.

dy
dx =

dy
dt

dt
dx

d2y

dx2
=

d2y

dt2
( dt

dx

)2

+
dy
dt

d2t

dx2

In our case, we have
dt
dx =

1

x
=

1

et
,

d2t

dx2
= − 1

x2
= − 1

e2t

So using the above two equations, we get
dy
dx =

1

et
dy
dt

d2y

dx2
=

d2y

dt2
1

e2t
+

dy
dt

(
− 1

e2t

)
So, the original DE becomes

e2t
(d2y

dt2
1

e2t
+

dy
dt

(
− 1

e2t

))
+ αet

(
1

et
dy
dt

)
+ βy = 0

which gives us
d2y

dt2 − dy
dt + α

dy
dt + βy = 0

which is the same as the equation
d2y

dt2 + (α− 1)
dy
dt + βy = 0

and this finishes the proof. ■

20 Here we show that the transformation t =
∫
q(x)

1
2 dx transforms the DE in (7) in

the text portion of Cookbook-II to a linear DE with constant co-efficients.
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Solution. Suppose we have an equation of the form

d2y

dx2
+ p(x)

dy
dx + q(x)y = 0

on an interval I such that q > 0 on I and

q′(x) + 2p(x)q(x)

2(q(x))3/2
= c

for some c ∈ R on I. Consider the transformation

t =

∫ √
q(x)dx

Again, by the chain rule, we first have the following equations.

dy
dx =

dy
dt

dt
dx

d2y

dx2
=

d2y

dt2
( dt

dx

)2

+
dy
dt

d2t

dx2

In our case, we have
dt
dx =

√
q(x) ,

d2t

dx2
=

q′(x)

2
√
q(x)

Putting all this together, we have the following.

dy
dx =

dy
dt
√
q(x)

d2y

dx2
=

d2y

dt2
(√

q(x)
)2

+
dy
dt

q′(x)

2
√
q(x)

So, our original equation becomes

q(x)
d2y

dt2 +
q′(x)

2
√

q(x)

dy
dt + p(x)

√
q(x)

dy
dt + q(x)y = 0

which is the same as the equation

q(x)
d2y

dt2 +
q′(x) + 2p(x)q(x)

2
√
q(x)

dy
dt + q(x)y = 0

Dividing throughout by q(x), we get

d2y

dt2 +
q′(x) + 2p(x)q(x)

2q(x)3/2
dy
dt + y = 0

which by assumption is the equation

d2y

dt2 + c
dy
dt + y = 0

which is clearly a linear DE with constant coefficients. This proves the claim. ■
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2). Let v be the vector field on Ω = {(x, y, z) | y ̸= 0} given by
v = ((y2 + z2)y−1, xz,−xy)

We first find two first integrals for v on a suitable large open subset U of Ω. Note that
the corresponding DE is

d
dt

xy
z

 =

(y2 + z2)y−1

xz
−xy


Let U be the subset of Ω given by U = {(x, y, z) | x ̸= 0, y ̸= 0}. On U , observe that

dy
dz =

xz

−xy
=

−z

y

and this is clearly a separable DE. Solving this, we get∫
y dy =

∫
−z dz

and this gives us
y2

2
=

−z2

2
+ c′1

for some c′1 ∈ R. Rearranging, we get
y2 + z2 = 2c′1 = c1

where c1 ∈ R. So, if we define the function f : U → R given by
f(x, y, z) = y2 + z2

then it follows that f is a first integral for v. This can be easily verified by checking
the equation

(y2 + z2)y−1∂f

∂x
+ xz

∂f

∂y
− xy

∂f

∂z
≡ 0

on U . So, one first integral has been found.
Now, using the fact that y2 + z2 = c1 on U (and hence c1 > 0), we see that

dx
dt =

c1
y

on U . So, we get
dx
dz =

c1
y

1

−xy
=

−c1
xy2

=
−c1

x(c1 − z2)

and again we have a separable DE. Upon rearranging, we get

x
dx
dz =

−c1
(c1 − z2)

and hence ∫
xdx = −c1

∫
1

c1 − z2
dz

which gives us

x2

2
= −c1

 log
(

z√
c1
+ 1
)

2
√
c1

−
log
(
1− z√

c1

)
2
√
c1

+ c′2





4 SIDDHANT CHAUDHARY

for some c′2 ∈ R, and this can be written as
x2

2
=

√
c1
2

(
log
(
1− z

√
c1

)
− log

(
1 +

z
√
c1

))
+ c2

where c2 = −c1c
′
2 ∈ R, and hence

x2

2
=

√
c1
2

log
(√

c1 − z
√
c1 + z

)
+ c2

Now, replacing c1 by y2 + z2 above, we get

x2

2
=

√
y2 + z2

2
log
(√

y2 + z2 − z√
y2 + z2 + z

)
+ c2

and this gives us
x2

2
−
√

y2 + z2

2
log
(√

y2 + z2 − z√
y2 + z2 + z

)
= c2

So if we define the function g : U → R by

g(x, y, z) =
x2

2
−
√

y2 + z2

2
log
(√

y2 + z2 − z√
y2 + z2 + z

)
then it follows that g is a first integral for v.

Now, we show that the level surfaces f = c1 and g = c2 intersect transversally. To
show this, it is enough to show that the Jacobian matrix ∂(f, g)/∂(x, y, z) has rank 2
at every point of U . Now, we have

∂(f, g)

∂(x, y, z)
=

0 2y 2z

x
∂g

∂y

∂g

∂z


Observe that on U , we have x ̸= 0. So, it follows that the rank of the Jacobian is
always 2 (because the two rows cannot be scalar multiplies of each other), and this
proves the claim.

3). Let v be the vector field on R3 given by

v =

y + z
y

x− y


Let U be the open subset of R3 on which z2 > (x− y)2 and y > 0.

(a) First we find two first integrals f and g for v on U such that their level surfaces
intersect transversally. The corresponding DE is

d
dt

xy
z

 =

y + z
y

x− y


From here, we can see that

d(x+ z)

dt
= x+ z

and hence we see that
d(x+ z)

dy =
x+ z

y
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This implies that
1

y2

(
y

d(x+ z)

dy − (x+ z)

)
= 0

which is the same as writing

1

y

d(x+ z)

dy − 1

y2
(x+ z) =

d
dy

(
1

y
(x+ z)

)
= 0

and hence this implies that
x+ z

y
= c1

for some c1 ∈ R. So, if we define the function f : U → R given by

f(x, y, z) =
x+ z

y

then it follows that f is a first integral for v on U , and this easily follows by verifying
the equation

(y + z)
∂f

∂x
+ y

∂f

∂y
+ (x− y)

∂f

∂z
≡ 0 on U

Also from the given DE we can see that

d(x− y)

dt = z

and hence we see that
d(x− y)

dz =
z

x− y

This is again a separable DE which we can solve. By integrating we get∫
(x− y)d(x− y) =

∫
z dz =

z2

2
+ c′2

for some c′2 ∈ R. This gives us

(x− y)2 − z2 = 2c′2 = c2

for all (x, y, z) ∈ U . So if we define a function g : U → R given by

g(x, y, z) = (x− y)2 − z2

then it follows that g is a first integral for v on U . Again, this can be easily verified
by checking the equation

(y + z)
∂g

∂x
+ y

∂g

∂y
+ (x− y)

∂g

∂z
≡ 0 on U

So, we have found two first integrals f, g on U . We now show that the level surfaces f =
c1 and g = c2 intersect transversally, and to show this we show that ∂(f, g)/∂(x, y, z)
has rank 2 on U . Observe that

∂(f, g)

∂(x, y, z)
=

[
1
y

−(x+z)
y2

1
y

2(x− y) −2(x− y) −2z

]
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Now, I claim that this matrix must have rank 2. Because y > 0 on U , it is clear that
this matrix has rank atleast 1. For the sake of contradiction, suppose the matrix has
rank 2. So, there is some non-zero λ ∈ R such that

1
y

−(x+z)
y2
1
y

 =

 2λ(x− y)
−2λ(x− y)

−2λz


This implies that

2λ(x− y) = −2λz

and this implies that
(x− y)2 = z2

which is a contradiction, since (x, y, z) ∈ U . So, it follows that the Jacobian has rank
2 at all points of U , and hence the level surfaces intersect transversally.

(b) Let (x0, y0, z0) be a point in U . We will find a solution to the IVP
ẋ = v(x) , x(0) = (x0, y0, z0)

Let S1 and S2 be the level curves given by the equations f = c1 and g = c2, where
c1 = f(x0, y0, z0) and c2 = g(x0, y0, z0). Let C = S1 ∩ S2. The two surfaces that we
have are

x+ z

y
= c1 (c1 ̸= 0)

(x− y)2 − z2 = c2

From the first equation, we get that x + z = c1y, which means z = c1y − x. Putting
this value of z in the second equation, we get

(x− y)2 − (c1y − x)2 = c2

and this implies

x =
y2(c21 − 1) + c2
2y(c1 − 1)

, z =
y2(c21 − 2c1 + 1)− c2

2y(c1 − 1)
=

y2(c1 − 1)2 − c2
2y(c1 − 1)

Now, we also have the equation ẏ = y, which is again separable, and we also have the
initial condition y(0) = y0. Solving this DE, we get∫

1

y
dy =

∫
1dt = t+ C

for some C ∈ R. This gives us
ln y = t+ C

and hence we get that C = ln y0. This gives us
y = y0e

t

and hence

(x, y, z) =

(
y20e

2t(c21 − 1) + c2
2y0et(c1 − 1)

, y0e
t,
y20e

2t(c1 − 1)2 − c2
2y0et(c1 − 1)

)
where

c1 =
x0 + z0

y0
, c2 = (x0 − y0)

2 − z20
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So, if p0 = (x0, y0, z0) is our initial point, then the solution to the IVP is the function
φp0 defined by

φp0(t) =

(
y20e

2t(c21 − 1) + c2
2y0et(c1 − 1)

, y0e
t,
y20e

2t(c1 − 1)2 − c2
2y0et(c1 − 1)

)
(c) From the parametric form of the solution, it is clear that the solution φp0 depends
smoothly on p0 = (x0, y0, z0): note that the constants c1 and c2 are C 1 functions of
(x0, y0, z0), and hence the solution also depends on the point in a smooth way.

4). For p = (x, y, z) ∈ U and t ∈ Jmax(p) we define

y1(t) =

(
et, 0,

(
1

2
ye2t − 1

2
y

)
sec2(θ(t, x, y, z))

)
y2(t) =

(
0, et,

(
1

2
xe2t − 1

2
x

)
sec2(θ(t, x, y, z))

)
(a) We show that y1 is a solution of the homogenous linear IVP

ζ̇ = A(t, x, y, z)ζ , ζ(0) = e1

where {e1, e2, e3} is the standard basis of R3. We observe a couple of things. First
note that

∂θ

∂t
(t, x, y, z) = xye2t

Now, observe that

y′
1(t) =

(
et, 0, ye2tsec2(θ(t, x, y, z)) +

(
1

2
ye2t − 1

2
y

)
∂θ

∂t
2sec2(θ(t, x, y, z))tan(θ(t, x, y, z))

)
=

(
et, 0, ye2tsec2(θ(t, x, y, z)) + 2xye2t

(
1

2
ye2t − 1

2
y

)
sec2(θ(t, x, y, z))tan(θ(t, x, y, z))

)
Now, observe that

A(t,x, y, z)y1(t) =

 1 0 0
0 1 0

yetsec2(θ(t, x, y, z)) xetsec2(θ(t, x, y, z)) 2xye2ttan(θ(t, x, y, z))

y1(t)

=

(
et, 0, ye2tsec2(θ(t, x, y, z)) + 2xye2t

(
1

2
ye2t − 1

2
y

)
sec2(θ(t, x, y, z))tan(θ(t, x, y, z))

)
and hence we obtain

y′
1(t) = A(t, x, y, z)y1(t)

Now, observe that
y1(0) = (1, 0, 0) = e1

and so this proves that y1 is a solution of the given IVP.

(b) First, observe that
∂φ

∂y
(x, y, z, t) =

(
0, et,

(
1

2
xe2t − 1

2
x

)
sec2(θ(t, x, y, z))

)
= y2(t)

So, we see that
ẏ2(t) =

∂φ

∂t∂y
(x, y, z, t) =

∂φ

∂y∂t
(x, y, z, t)
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where above we used equality of mixed partial derivatives, since φ is a C 2 function.
Now, observe that

∂φ

∂y∂t
(x, y, z, t) =

∂φ̇

∂y
(x, y, z, t)

=
∂

∂y
v(φ(x, y, z, t))

To compute the above partial derivative, we will use the chain rule. Consider the
function v ◦φ. Note that

∂

∂y
v ◦φ(x, y, z, t) = second column of J(v ◦φ)(x, y, z, t)

Also by the chain rule,
J(v ◦φ)(x, y, z, t) = (Jv)(φ(x, y, z, t)) · (Jφ)(x, y, z, t)

= A(t, x, y, z) · (Jφ)(x, y, z, t)

Now, the second column of the matrix (Jφ)(x, y, z, t) is simply ∂φ
∂y
(x, y, z, t) = y2(t),

as we saw above. So it follows that the second column of J(v ◦ φ)(x, y, z, t) is
A(t, x, y, z)y2(t). So, combining everything, we see that

ẏ2(t) = A(t, x, y, z)y2(t)

Also, observe that
y2(0) = (0, 1, 0) = e2

and hence this shows that y2 is the solution of the given IVP, and this completes the
proof.

(c) As in part (b) above, the solution to the IVP
ζ̇ = A(t, x, y, z)ζ , ζ(0) = e3

will be
y3(t) =

∂φ

∂y
(x, y, z, t)

and the justification will be similar to what we did in part (b).
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