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1). First, we show that Φ and Ψ are well defined, i.e if e(θ1) = e(θ2) then
Φ(e(θ1)) = Φ(e(θ2)) , Ψ(e(θ1)) = Ψ(e(θ2))

Let us first show the equality for Φ. So, let θ1, θ2 ∈ R be such that e(θ1) = e(θ2) 6= −1.
Since e has period 2π, we see that

θ1 = θ2 (mod 2π)
Suppose θ ∈ (−π, π) is such that

θ = θ1 = θ2 (mod 2π)
and clearly we see that e(θ) = e(θ1) = e(θ2) (note that such a θ exists because
e(θ1) = e(θ2) 6= −1). Because θ = θ1 (mod 2π), we can write θ1 = θ + 2πk for some
k ∈ Z. Then

Φ(e(θ1)) = tan(θ1/2) = tan(θ/2 + kπ) = tan(θ/2) = Φ(e(θ))

since tan has period π. By the same reasoning, we have that Φ(e(θ2)) = Φ(e(θ)), and
hence

Φ(e(θ1)) = Φ(e(θ2))

showing that Φ is well-defined.
Let us do the same thing for Ψ. So, let θ1, θ2 ∈ R be such that e(θ1) = e(θ2) 6= 1.

Since e has period 2π we see that
θ1 = θ2 (mod 2π)

Suppose θ ∈ (0, 2π) is such that
θ = θ1 = θ2 (mod 2π)

and clearly we see that e(θ) = e(θ1) = e(θ2) (and again, note that such a θ exists
because e(θ1) = e(θ2) 6= 1). Because θ = θ1 (mod 2π), we can write θ1 = θ + 2πk for
some k ∈ Z. Then

Ψ(e(θ1)) = cot(θ1/2) = cot(θ/2 + kπ) = cot(θ/2) = Ψ(e(θ))

since cot has period π. By the same reasoning, we have that Ψ(e(θ2)) = Ψ(e(θ)), and
hence

Ψ(e(θ1)) = Ψ(e(θ2))

showing that Ψ is well-defined.
Next, we will show that the map

ψ ◦ Φ−1 : R \ {0} → R \ {0}
is the map y 7→ 1/y. So, let y ∈ R \ {0}. Observe that e((−π, π)) = S1 \ {−1}. So,
let θ ∈ (−π, π) be such that e(θ) = Φ−1(y), which implies that

tan(θ/2) = y

Date: 23 March 2021.
1



2 SIDDHANT CHAUDHARY

and since y 6= 0, we see that θ 6= 0, and hence e(θ) 6= 1 ∈ S1, which means that
Ψ(e(θ)) makes sense. So, we have

(Ψ ◦ Φ−1)(y) = Ψ(e(θ)) = cot(θ/2) = 1

tan(θ/2) =
1

y

and this proves the claim.

2). Consider the vector field v(e(θ)) = (cos θ+ sin θ− 1) d
dθ on S1. Let f : R → R be

the map y 7→ y(1− y) and g : R → R be the map z 7→ 1− z. We show that

Φ∗(v|U−1) = fϑ(0.1)
Ψ∗(v|U1) = gϑ(0.2)

Let us first show (0.1). So, suppose y0 ∈ R, and let θ0 ∈ (−π, π) be such that
e(θ0) = Φ−1(y0). Equality (0.1) is an equality of vector fields, so we need to show that

Φ∗(v|U−1(e(θ0))) = f(y0)ϑ(y0) = y0(1− y0)ϑ(y0)

Note that the above equality is an equality of derivations, because Φ∗ is a map from
derivations to derivations. Suppose gy0 ∈ C ∞

y0
, i.e gy0 is a germ of C ∞ functions at y0

represented by (g, U), where U is some open set in R. Define f = g◦Φ on U ′ = Φ−1(U),
and we get a germ fe(θ0) ∈ C ∞

e(θ0)
represented by (f, U ′). By definition, we have

Φ∗(v|U−1(e(θ0)))(gy0) = v|U−1(e(θ0))(fe(θ0))

and hence showing equality (0.1) is equivalent to showing

v|U−1(e(θ0))(fe(θ0)) = y0(1− y0)ϑ(y0)(gy0)(0.3)

Now observe that

v|U−1(e(θ0))(f) = (cos θ0 + sin θ0 − 1)
d(f ◦ e)

dθ

∣∣∣∣
θ=θ0

= (cos θ0 + sin θ0 − 1)
d(g ◦ Φ ◦ e)

dθ

∣∣∣∣
θ=θ0

= (cos θ0 + sin θ0 − 1)
d(g(tan(θ/2)))

dθ

∣∣∣∣
θ=θ0

= (cos θ0 + sin θ0 − 1)
dg
dy (tan(θ0/2))

d tan(θ/2)
dθ |θ=θ0

= (cos θ0 + sin θ0 − 1)
dg
dy (y0) ·

1

2
sec2(θ0/2)

=
1

2
(cos θ0 + sin θ0 − 1)sec2(θ0/2)ϑ(y0)(g)

Now, we use the identities

sin(θ0) =
2tan(θ0/2)

1 + tan2(θ0/2)
=

2y0
1 + y20

cos(θ0) =
1− tan2(θ0/2)

1 + tan2(θ0/2)
=

1− y20
1 + y20
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and hence we get

v|U−1(e(θ0))(f) =
1

2

(
1− y20 + 2y0

1 + y20
− 1

)
(1 + y20)ϑ(y0)(g) = y0(1− y0)ϑ(y0)(g)

and the above equality shows equation (0.3), and hence proves equation (0.1).
Similarly, we now prove equation (0.2). Again, let y0 ∈ R, and let θ0 ∈ (0, 2π) be

such that e(θ0) = Ψ−1(y0). Again, equality (0.2) is an equality of vector fields, and so
we need to show that

Ψ∗(v|U1(e(θ0))) = g(y0)ϑ(y0) = (1− y0)ϑ(y0)

Again, note that the above equality is an equality of derivations, since Ψ∗ is a map
from derivations to derivations. To show the above equality, let gy0 ∈ C ∞

y0
, i.e gy0 is a

germ of C ∞ functions at y0 represented by (g, U), where U is an open set in R. Let
f = g ◦ Ψ on U ′ = Ψ−1(U), and we get a germ fe(θ0) ∈ C ∞

e(θ0)
represented by (f, U ′).

By definition, we have
Ψ∗(v|U1(e(θ0)))(gy0) = v|U1(e(θ0))(fe(θ0))

and hence showing equality (0.2) is equivalent to showing
v|U1(e(θ0))(fe(θ0)) = (1− y0)ϑ(y0)(gy0)(0.4)

Now observe that

v|U1(e(θ0))(f) = (cos θ0 + sin θ0 − 1)
d(f ◦ e)

dθ

∣∣∣∣
θ=θ0

= (cos θ0 + sin θ0 − 1)
d(g ◦Ψ ◦ e)

dθ

∣∣∣∣
θ=θ0

= (cos θ0 + sin θ0 − 1)
dg(cot(θ/2))

dθ

∣∣∣∣
θ=θ0

= (cos θ0 + sin θ0 − 1)
dg
dy (cot(θ0/2))

dcot(θ/2)
dθ |θ=θ0

= (cos θ0 + sin θ0 − 1)
dg
dy (y0)

1

2
(−cosec2(θ0/2))

= −1

2
(cos θ0 + sin θ0 − 1)(1 + cot2(θ0/2))ϑ(y0)(g)

= −1

2
(cos θ0 + sin θ0 − 1)(1 + y20)ϑ(y0)(g)

Now, we use the identities

sin(θ0) =
2cot(θ0/2)

1 + cot2(θ0/2)
=

2y0
1 + y20

cos(θ0) =
cot2(θ0/2)− 1

cot2(θ0/2) + 1
=
y20 − 1

y20 + 1

and hence we get

v|U1(e(θ0))(f) = −1

2

(
y20 − 1 + 2y0

y20 + 1
− 1

)
(y20 + 1)ϑ(y0)(g) = (1− y0)ϑ(y0)(g)

and the above equality shows equation (0.4), and hence it shows equation (0.2). This
completes the proof.
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3). To show that gt(e(θ)) is well-defined, it is enough to show that if e(θ1) = e(θ2),
then

ettan(θ1/2)
ettan(θ1/2)− tan(θ1/2) + 1

=
ettan(θ2/2)

ettan(θ2/2)− tan(θ2/2) + 1

and note that to show the above equation, it is enough to show that
tan(θ1/2) = tan(θ2/2)

But this is easy: because e has period 2π and e(θ1) = e(θ2), we see that
θ2 = θ1 + 2πk

for some k ∈ Z. This will imply that
tan(θ2/2) = tan(θ1/2 + πk) = tan(θ1/2)

because tan has period π. So, this shows that gt(e(θ)) is well-defined.

4). We now show that {gt} is a 1-parameter group of diffeomorphisms on S1. First,
consider the DE

ṗ = v(p)

on S1. We first restrict this DE to U−1, and we transform this DE to a DE in R via
the map Φ. So, let w be the map on R defined as follows

w(y) = Φ′(e(θ))v(e(θ))

where e(θ) = Φ−1(y) ∈ U−1. Then as proven in Lecture 18, the DE ṗ = v(p) is
equivalent to the DE q̇ = w(q), in the sense that given a solution to q̇ = w(q), a
solution of ṗ = v(p) can be obtained by pulling back via Φ. Now, observe that

w(y) = Φ′(e(θ))v(e(θ))

=
d
dθ tan(θ/2)(cos θ + sin θ − 1)

=
1

2
sec2(θ/2)(cos θ + sin θ − 1)

=
1

2
(1 + y2)

(
1− y2 + 2y

1 + y2
− 1

)
= y(1− y)

So, consider the DE
q̇ = w(q) = q(1− q)

on R. This is a separable DE, which we know how to solve.∫
1

q(1− q)
dq = t+ C ′

for some C ′ ∈ R and solving this DE, we get
q

1− q
= et+C′

and solving for q, we get

q =
et+C′

et+C′ + 1
=

Cet

Cet + 1

where C = eC
′ . If we put q(0) = q0, then we see that

C =
q0

1− q0
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and hence
q =

q0e
t

q0et + 1− q0
So we consider the following:

htx =
xet

xet + 1− x
, x, t ∈ R

In problem 5) of HW-5, we have already shown that this is a one-parameter group of
diffeomorphisms. If x ∈ {0, 1}, then the phase-flow will be a constant map. If x is in
one of the connected components (−∞, 0), (0, 1) or (1,∞), then we get a phase-flow
which stays in the component of x.

Now, consider the pullback under Φ of the one parameter group defined above, i.e
consider

gte(θ) = e

{
2 arctan

( tan(θ/2)et
tan(θ/2)et + 1− tan(θ/2)

)}
Since ht is a one-parameter group, it follows that gt is also a one-parameter group of
diffeomorphisms. This is because, as maps, it is true that

gt = Φ−1 ◦ ht ◦ Φ

for all t ∈ R, and since ht satisfies the axioms for a one-parameter group, it follows
that gt also satisfies the axioms of a one-parameter group.

Since we have pulled back via the map Φ, the one parameter group gt is only defined
on U−1. Now, observe that the formula for gt actually makes sense over all of S1, i.e
gt(e(θ)) is well-defined for all θ. Hence, it follows that gt is actually a one-parameter
group of diffeomorphisms on S1.

5). In this problem, we determine the orbits of {gt} and the fixed points of {gt}.

Fixed Points. Suppose e(θ) ∈ S1 is a fixed point of {gt}. This means that
gte(θ) = e(θ)

for all t ∈ R. So, this means that the phase flow over S1 defined for this initial point
is a constant map. This means that the push-forward under Φ of this phase flow in R
is a constant solution to the DE

q̇ = q(1− q)

Hence, it follows that Φ(e(θ)) ∈ {0, 1}, because only the initial points 0, 1 have a
constant phase flow. This means that

tan(θ/2) ∈ {0, 1}

and hence if we restrict θ ∈ (−π, π), we see that θ ∈ {0, π/2}. So, it follows that the
fixed points are

(cos(0), sin(0)) = (1, 0) and (cos(π/2), sin(π/2)) = (0, 1)

Orbits. Since the points (0, 1) and (1, 0) are fixed points of {gt}, they form separate
orbits. We will now determine the remaining orbits.

Suppose e(θ1) and e(θ2) are two points in S1 \ {−1} in the same orbit of {gt}, i.e
e(θ2) = gte(θ1) for some t ∈ R. Taking their images under Φ, we see that

Φ(e(θ2)) = ht ◦ Φ(e(θ1))
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Now, as we remarked in problem 4), both the points Φ(e(θ1)) and Φ(e(θ2)) must belong
to one of the connected components (−∞, 0), (0, 1) and (1,∞) (since the phase flow
always remains in the same component).

Conversely, if we take any two points e(θ1) and e(θ2) in S1\{−1} such that Φ(e(θ1))
and Φ(e(θ2)) belong to the same connected component, without loss of generality say
both the points are in (0, 1), then we claim that Φ(e(θ1)) and Φ(e(θ2)) are in the same
orbit of {ht}. This easily follows by solving for t in the equation

htΦ(e(θ1)) = Φ(e(θ2))

So, pulling back under Φ, we see that e(θ1) and e(θ2) belong to the same orbit of {gt}.
Now, the space (S1 \ {−1}) \ {(1, 0), (0, 1)} has three connected components, all of
which are open arcs. So, it follows that any two points on S1 \ {−1} which belong to
any one of these open arcs lie in the same orbit of {gt}. So, there are atmost 5 orbits
of {gt} on S1 \ {−1}.

Now we deal with the point −1 ∈ S1. Observe that by assumption, this point is
given by −1 = e(−π) = e(π), and this point corresponds to either −∞ or ∞ on the
extended real line. Note that if x ∈ (1,∞) or x ∈ (−∞, 0), then there is some t ∈ R
for which

xet + 1− x = 0

This means that the denominator of htx will be 0 for some t ∈ R, meaning that
htx = ∞ or −∞ for some t ∈ R, depending upon whether x ∈ (1,∞) or x ∈ (−∞, 0).
Pulling back by Φ, this means that the points Φ−1(x) and −1 ∈ S1 belong to the same
orbit of {h}t. So, it follows that the one-parameter group {h}t on S1 has only four
orbits: two singleton points {(1, 0)} and {(0, 1)}, and the two remaining open arcs on
the circle.


	1)
	2)
	3)
	4)
	5)

