HW-8

SIDDHANT CHAUDHARY

1). First, we show that Φ and Ψ are well defined, i.e if $e(\theta_1) = e(\theta_2)$ then

$$\Phi(e(\theta_1)) = \Phi(e(\theta_2)) \quad , \quad \Psi(e(\theta_1)) = \Psi(e(\theta_2))$$

Let us first show the equality for Φ . So, let $\theta_1, \theta_2 \in \mathbf{R}$ be such that $e(\theta_1) = e(\theta_2) \neq -1$. Since *e* has period 2π , we see that

$$\theta_1 = \theta_2 \pmod{2\pi}$$

Suppose $\theta \in (-\pi, \pi)$ is such that

$$\theta = \theta_1 = \theta_2 \pmod{2\pi}$$

and clearly we see that $e(\theta) = e(\theta_1) = e(\theta_2)$ (note that such a θ exists because $e(\theta_1) = e(\theta_2) \neq -1$). Because $\theta = \theta_1 \pmod{2\pi}$, we can write $\theta_1 = \theta + 2\pi k$ for some $k \in \mathbb{Z}$. Then

$$\Phi(e(\theta_1)) = \tan(\theta_1/2) = \tan(\theta/2 + k\pi) = \tan(\theta/2) = \Phi(e(\theta))$$

since tan has period π . By the same reasoning, we have that $\Phi(e(\theta_2)) = \Phi(e(\theta))$, and hence

$$\Phi(e(\theta_1)) = \Phi(e(\theta_2))$$

showing that Φ is well-defined.

Let us do the same thing for Ψ . So, let $\theta_1, \theta_2 \in \mathbf{R}$ be such that $e(\theta_1) = e(\theta_2) \neq 1$. Since *e* has period 2π we see that

$$\theta_1 = \theta_2 \pmod{2\pi}$$

Suppose $\theta \in (0, 2\pi)$ is such that

$$\theta = \theta_1 = \theta_2 \pmod{2\pi}$$

and clearly we see that $e(\theta) = e(\theta_1) = e(\theta_2)$ (and again, note that such a θ exists because $e(\theta_1) = e(\theta_2) \neq 1$). Because $\theta = \theta_1 \pmod{2\pi}$, we can write $\theta_1 = \theta + 2\pi k$ for some $k \in \mathbb{Z}$. Then

$$\Psi(e(\theta_1)) = \cot(\theta_1/2) = \cot(\theta/2 + k\pi) = \cot(\theta/2) = \Psi(e(\theta))$$

since cot has period π . By the same reasoning, we have that $\Psi(e(\theta_2)) = \Psi(e(\theta))$, and hence

$$\Psi(e(\theta_1)) = \Psi(e(\theta_2))$$

showing that Ψ is well-defined.

Next, we will show that the map

$$\psi \circ \Phi^{-1} : \mathbf{R} \setminus \{0\} \to \mathbf{R} \setminus \{0\}$$

is the map $y \mapsto 1/y$. So, let $y \in \mathbf{R} \setminus \{0\}$. Observe that $e((-\pi, \pi)) = S^1 \setminus \{-1\}$. So, let $\theta \in (-\pi, \pi)$ be such that $e(\theta) = \Phi^{-1}(y)$, which implies that

$$\tan(\theta/2) = y$$

Date: 23 March 2021.

and since $y \neq 0$, we see that $\theta \neq 0$, and hence $e(\theta) \neq 1 \in S^1$, which means that $\Psi(e(\theta))$ makes sense. So, we have

$$(\Psi \circ \Phi^{-1})(y) = \Psi(e(\theta)) = \cot(\theta/2) = \frac{1}{\tan(\theta/2)} = \frac{1}{y}$$

and this proves the claim.

2). Consider the vector field $\boldsymbol{v}(e(\theta)) = (\cos \theta + \sin \theta - 1) \frac{\mathrm{d}}{\mathrm{d}\theta}$ on S^1 . Let $f : \mathbf{R} \to \mathbf{R}$ be the map $y \mapsto y(1-y)$ and $g : \mathbf{R} \to \mathbf{R}$ be the map $z \mapsto 1-z$. We show that

$$\Phi_*(\boldsymbol{v}|_{U_{-1}}) = f \boldsymbol{v}$$

(0.2)
$$\Psi_*(\boldsymbol{v}|_{U_1}) = g\vartheta$$

Let us first show (0.1). So, suppose $y_0 \in \mathbf{R}$, and let $\theta_0 \in (-\pi, \pi)$ be such that $e(\theta_0) = \Phi^{-1}(y_0)$. Equality (0.1) is an equality of vector fields, so we need to show that

$$\Phi_*(\boldsymbol{v}|_{U_{-1}}(e(\theta_0))) = f(y_0)\vartheta(y_0) = y_0(1-y_0)\vartheta(y_0)$$

Note that the above equality is an equality of derivations, because Φ_* is a map from derivations to derivations. Suppose $g_{y_0} \in \mathscr{C}_{y_0}^{\infty}$, i.e g_{y_0} is a germ of \mathscr{C}^{∞} functions at y_0 represented by (g, U), where U is some open set in **R**. Define $f = g \circ \Phi$ on $U' = \Phi^{-1}(U)$, and we get a germ $f_{e(\theta_0)} \in \mathscr{C}_{e(\theta_0)}^{\infty}$ represented by (f, U'). By definition, we have

$$\Phi_*(\boldsymbol{v}|_{U_{-1}}(e(\theta_0)))(g_{y_0}) = \boldsymbol{v}|_{U_{-1}}(e(\theta_0))(f_{e(\theta_0)})$$

and hence showing equality (0.1) is equivalent to showing

(0.3)
$$\boldsymbol{v}|_{U_{-1}}(e(\theta_0))(f_{e(\theta_0)}) = y_0(1-y_0)\vartheta(y_0)(g_{y_0})$$

Now observe that

$$\boldsymbol{v}|_{U_{-1}}(e(\theta_0))(f) = (\cos\theta_0 + \sin\theta_0 - 1) \left. \frac{\mathrm{d}(f \circ e)}{\mathrm{d}\theta} \right|_{\theta=\theta_0}$$
$$= (\cos\theta_0 + \sin\theta_0 - 1) \left. \frac{\mathrm{d}(g \circ \Phi \circ e)}{\mathrm{d}\theta} \right|_{\theta=\theta_0}$$
$$= (\cos\theta_0 + \sin\theta_0 - 1) \left. \frac{\mathrm{d}(g(\tan(\theta/2)))}{\mathrm{d}\theta} \right|_{\theta=\theta_0}$$
$$= (\cos\theta_0 + \sin\theta_0 - 1) \frac{\mathrm{d}g}{\mathrm{d}y} (\tan(\theta_0/2)) \frac{\mathrm{d}\tan(\theta/2)}{\mathrm{d}\theta} |_{\theta=\theta_0}$$
$$= (\cos\theta_0 + \sin\theta_0 - 1) \frac{\mathrm{d}g}{\mathrm{d}y} (y_0) \cdot \frac{1}{2} \mathrm{sec}^2(\theta_0/2)$$
$$= \frac{1}{2} (\cos\theta_0 + \sin\theta_0 - 1) \mathrm{sec}^2(\theta_0/2) \vartheta(y_0)(g)$$

Now, we use the identities

$$\sin(\theta_0) = \frac{2\tan(\theta_0/2)}{1 + \tan^2(\theta_0/2)} = \frac{2y_0}{1 + y_0^2}$$
$$\cos(\theta_0) = \frac{1 - \tan^2(\theta_0/2)}{1 + \tan^2(\theta_0/2)} = \frac{1 - y_0^2}{1 + y_0^2}$$

HW-8

and hence we get

$$\boldsymbol{v}|_{U_{-1}}(e(\theta_0))(f) = \frac{1}{2} \left(\frac{1 - y_0^2 + 2y_0}{1 + y_0^2} - 1 \right) (1 + y_0^2) \vartheta(y_0)(g) = y_0(1 - y_0)\vartheta(y_0)(g)$$

and the above equality shows equation (0.3), and hence proves equation (0.1).

Similarly, we now prove equation (0.2). Again, let $y_0 \in \mathbf{R}$, and let $\theta_0 \in (0, 2\pi)$ be such that $e(\theta_0) = \Psi^{-1}(y_0)$. Again, equality (0.2) is an equality of vector fields, and so we need to show that

$$\Psi_*(\boldsymbol{v}|_{U_1}(e(\theta_0))) = g(y_0)\vartheta(y_0) = (1-y_0)\vartheta(y_0)$$

Again, note that the above equality is an equality of derivations, since Ψ_* is a map from derivations to derivations. To show the above equality, let $g_{y_0} \in \mathscr{C}_{y_0}^{\infty}$, i.e g_{y_0} is a germ of \mathscr{C}^{∞} functions at y_0 represented by (g, U), where U is an open set in **R**. Let $f = g \circ \Psi$ on $U' = \Psi^{-1}(U)$, and we get a germ $f_{e(\theta_0)} \in \mathscr{C}_{e(\theta_0)}^{\infty}$ represented by (f, U'). By definition, we have

$$\Psi_*(\boldsymbol{v}|_{U_1}(e(\theta_0)))(g_{y_0}) = \boldsymbol{v}|_{U_1}(e(\theta_0))(f_{e(\theta_0)})$$

and hence showing equality (0.2) is equivalent to showing

(0.4)
$$\boldsymbol{v}|_{U_1}(e(\theta_0))(f_{e(\theta_0)}) = (1 - y_0)\vartheta(y_0)(g_{y_0})$$

Now observe that

$$\begin{aligned} \boldsymbol{v}|_{U_1}(\boldsymbol{e}(\theta_0))(f) &= (\cos\theta_0 + \sin\theta_0 - 1) \left. \frac{\mathrm{d}(f \circ \boldsymbol{e})}{\mathrm{d}\theta} \right|_{\theta=\theta_0} \\ &= (\cos\theta_0 + \sin\theta_0 - 1) \left. \frac{\mathrm{d}(g \circ \Psi \circ \boldsymbol{e})}{\mathrm{d}\theta} \right|_{\theta=\theta_0} \\ &= (\cos\theta_0 + \sin\theta_0 - 1) \left. \frac{\mathrm{d}g(\cot(\theta/2))}{\mathrm{d}\theta} \right|_{\theta=\theta_0} \\ &= (\cos\theta_0 + \sin\theta_0 - 1) \frac{\mathrm{d}g}{\mathrm{d}y} (\cot(\theta_0/2)) \frac{\mathrm{d}\cot(\theta/2)}{\mathrm{d}\theta} |_{\theta=\theta_0} \\ &= (\cos\theta_0 + \sin\theta_0 - 1) \frac{\mathrm{d}g}{\mathrm{d}y} (y_0) \frac{1}{2} (-\csc^2(\theta_0/2)) \\ &= -\frac{1}{2} (\cos\theta_0 + \sin\theta_0 - 1) (1 + \cot^2(\theta_0/2)) \vartheta(y_0)(g) \\ &= -\frac{1}{2} (\cos\theta_0 + \sin\theta_0 - 1) (1 + y_0^2) \vartheta(y_0)(g) \end{aligned}$$

Now, we use the identities

$$\sin(\theta_0) = \frac{2\cot(\theta_0/2)}{1 + \cot^2(\theta_0/2)} = \frac{2y_0}{1 + y_0^2}$$
$$\cos(\theta_0) = \frac{\cot^2(\theta_0/2) - 1}{\cot^2(\theta_0/2) + 1} = \frac{y_0^2 - 1}{y_0^2 + 1}$$

and hence we get

$$\boldsymbol{v}|_{U_1}(e(\theta_0))(f) = -\frac{1}{2} \left(\frac{y_0^2 - 1 + 2y_0}{y_0^2 + 1} - 1 \right) (y_0^2 + 1)\vartheta(y_0)(g) = (1 - y_0)\vartheta(y_0)(g)$$

and the above equality shows equation (0.4), and hence it shows equation (0.2). This completes the proof.

3). To show that $g^t(e(\theta))$ is well-defined, it is enough to show that if $e(\theta_1) = e(\theta_2)$, then

$$\frac{e^{t}\tan(\theta_{1}/2)}{e^{t}\tan(\theta_{1}/2) - \tan(\theta_{1}/2) + 1} = \frac{e^{t}\tan(\theta_{2}/2)}{e^{t}\tan(\theta_{2}/2) - \tan(\theta_{2}/2) + 1}$$

and note that to show the above equation, it is enough to show that

$$\tan(\theta_1/2) = \tan(\theta_2/2)$$

But this is easy: because e has period 2π and $e(\theta_1) = e(\theta_2)$, we see that

$$\theta_2 = \theta_1 + 2\pi k$$

for some $k \in \mathbb{Z}$. This will imply that

$$\tan(\theta_2/2) = \tan(\theta_1/2 + \pi k) = \tan(\theta_1/2)$$

because tan has period π . So, this shows that $g^t(e(\theta))$ is well-defined.

4). We now show that $\{g^t\}$ is a 1-parameter group of diffeomorphisms on S^1 . First, consider the DE

$$\dot{p} = \boldsymbol{v}(p)$$

on S^1 . We first restrict this DE to U_{-1} , and we transform this DE to a DE in **R** via the map Φ . So, let w be the map on **R** defined as follows

$$\boldsymbol{w}(y) = \Phi'(e(\theta))\boldsymbol{v}(e(\theta))$$

where $e(\theta) = \Phi^{-1}(y) \in U_{-1}$. Then as proven in Lecture 18, the DE $\dot{p} = \boldsymbol{v}(p)$ is equivalent to the DE $\dot{q} = \boldsymbol{w}(q)$, in the sense that given a solution to $\dot{q} = \boldsymbol{w}(q)$, a solution of $\dot{p} = \boldsymbol{v}(p)$ can be obtained by pulling back via Φ . Now, observe that

$$\begin{split} \boldsymbol{w}(y) &= \Phi'(e(\theta))\boldsymbol{v}(e(\theta)) \\ &= \frac{\mathrm{d}}{\mathrm{d}\theta} \mathrm{tan}(\theta/2)(\cos\theta + \sin\theta - 1) \\ &= \frac{1}{2}\mathrm{sec}^2(\theta/2)(\cos\theta + \sin\theta - 1) \\ &= \frac{1}{2}(1+y^2)\left(\frac{1-y^2+2y}{1+y^2} - 1\right) \\ &= y(1-y) \end{split}$$

So, consider the DE

$$\dot{q} = \boldsymbol{w}(q) = q(1-q)$$

on **R**. This is a separable DE, which we know how to solve.

$$\int \frac{1}{q(1-q)} \,\mathrm{d}q = t + C'$$

for some $C' \in \mathbf{R}$ and solving this DE, we get

$$\frac{q}{1-q} = e^{t+C'}$$

and solving for q, we get

$$q = \frac{e^{t+C'}}{e^{t+C'}+1} = \frac{Ce^t}{Ce^t+1}$$

where $C = e^{C'}$. If we put $q(0) = q_0$, then we see that

$$C = \frac{q_0}{1 - q_0}$$

HW-8

and hence

$$q = \frac{q_0 e^t}{q_0 e^t + 1 - q_0}$$

So we consider the following:

$$h^t x = \frac{x e^t}{x e^t + 1 - x} \quad , \quad x,t \in \mathbf{R}$$

In problem 5) of HW-5, we have already shown that this is a one-parameter group of diffeomorphisms. If $x \in \{0, 1\}$, then the phase-flow will be a constant map. If x is in one of the connected components $(-\infty, 0)$, (0, 1) or $(1, \infty)$, then we get a phase-flow which stays in the component of x.

Now, consider the pullback under Φ of the one parameter group defined above, i.e consider

$$g^{t}e(\theta) = e\left\{2\arctan\left(\frac{\tan(\theta/2)e^{t}}{\tan(\theta/2)e^{t} + 1 - \tan(\theta/2)}\right)\right\}$$

Since h^t is a one-parameter group, it follows that g^t is also a one-parameter group of diffeomorphisms. This is because, as maps, it is true that

$$g^t = \Phi^{-1} \circ h^t \circ \Phi$$

for all $t \in \mathbf{R}$, and since h^t satisfies the axioms for a one-parameter group, it follows that g^t also satisfies the axioms of a one-parameter group.

Since we have pulled back via the map Φ , the one parameter group g^t is only defined on U_{-1} . Now, observe that the formula for g^t actually makes sense over all of S^1 , i.e. $g^t(e(\theta))$ is well-defined for all θ . Hence, it follows that g^t is actually a one-parameter group of diffeomorphisms on S^1 .

5). In this problem, we determine the orbits of $\{g^t\}$ and the fixed points of $\{g^t\}$.

Fixed Points. Suppose $e(\theta) \in S^1$ is a fixed point of $\{g^t\}$. This means that

$$g^t e(\theta) = e(\theta)$$

for all $t \in \mathbf{R}$. So, this means that the phase flow over S^1 defined for this initial point is a constant map. This means that the push-forward under Φ of this phase flow in \mathbf{R} is a constant solution to the DE

$$\dot{q} = q(1-q)$$

Hence, it follows that $\Phi(e(\theta)) \in \{0,1\}$, because only the initial points 0,1 have a constant phase flow. This means that

$$\tan(\theta/2) \in \{0,1\}$$

and hence if we restrict $\theta \in (-\pi, \pi)$, we see that $\theta \in \{0, \pi/2\}$. So, it follows that the fixed points are

$$(\cos(0), \sin(0)) = (1, 0)$$
 and $(\cos(\pi/2), \sin(\pi/2)) = (0, 1)$

Orbits. Since the points (0, 1) and (1, 0) are fixed points of $\{g^t\}$, they form separate orbits. We will now determine the remaining orbits.

Suppose $e(\theta_1)$ and $e(\theta_2)$ are two points in $S^1 \setminus \{-1\}$ in the same orbit of $\{g^t\}$, i.e $e(\theta_2) = g^t e(\theta_1)$ for some $t \in \mathbf{R}$. Taking their images under Φ , we see that

$$\Phi(e(\theta_2)) = h^t \circ \Phi(e(\theta_1))$$

Now, as we remarked in problem 4), both the points $\Phi(e(\theta_1))$ and $\Phi(e(\theta_2))$ must belong to one of the connected components $(-\infty, 0)$, (0, 1) and $(1, \infty)$ (since the phase flow always remains in the same component).

Conversely, if we take any two points $e(\theta_1)$ and $e(\theta_2)$ in $S^1 \setminus \{-1\}$ such that $\Phi(e(\theta_1))$ and $\Phi(e(\theta_2))$ belong to the same connected component, without loss of generality say both the points are in (0, 1), then we claim that $\Phi(e(\theta_1))$ and $\Phi(e(\theta_2))$ are in the same orbit of $\{h^t\}$. This easily follows by solving for t in the equation

$$h^t \Phi(e(\theta_1)) = \Phi(e(\theta_2))$$

So, pulling back under Φ , we see that $e(\theta_1)$ and $e(\theta_2)$ belong to the same orbit of $\{g^t\}$. Now, the space $(\mathbf{S}^1 \setminus \{-1\}) \setminus \{(1,0), (0,1)\}$ has three connected components, all of which are open arcs. So, it follows that any two points on $\mathbf{S}^1 \setminus \{-1\}$ which belong to any one of these open arcs lie in the same orbit of $\{g^t\}$. So, there are atmost 5 orbits of $\{g^t\}$ on $\mathbf{S}^1 \setminus \{-1\}$.

Now we deal with the point $-1 \in S^1$. Observe that by assumption, this point is given by $-1 = e(-\pi) = e(\pi)$, and this point corresponds to either $-\infty$ or ∞ on the extended real line. Note that if $x \in (1, \infty)$ or $x \in (-\infty, 0)$, then there is some $t \in \mathbf{R}$ for which

$$xe^t + 1 - x = 0$$

This means that the denominator of $h^t x$ will be 0 for some $t \in \mathbf{R}$, meaning that $h^t x = \infty$ or $-\infty$ for some $t \in \mathbf{R}$, depending upon whether $x \in (1, \infty)$ or $x \in (-\infty, 0)$. Pulling back by Φ , this means that the points $\Phi^{-1}(x)$ and $-1 \in \mathbf{S}^1$ belong to the same orbit of $\{h\}^t$. So, it follows that the one-parameter group $\{h\}^t$ on \mathbf{S}^1 has only four orbits: two singleton points $\{(1,0)\}$ and $\{(0,1)\}$, and the two remaining open arcs on the circle.