HW-8

SIDDHANT CHAUDHARY

1). First, we show that Φ and Ψ are well defined, i.e if $e\left(\theta_{1}\right)=e\left(\theta_{2}\right)$ then

$$
\Phi\left(e\left(\theta_{1}\right)\right)=\Phi\left(e\left(\theta_{2}\right)\right) \quad, \quad \Psi\left(e\left(\theta_{1}\right)\right)=\Psi\left(e\left(\theta_{2}\right)\right)
$$

Let us first show the equality for Φ. So, let $\theta_{1}, \theta_{2} \in \mathbf{R}$ be such that $e\left(\theta_{1}\right)=e\left(\theta_{2}\right) \neq-1$. Since e has period 2π, we see that

$$
\theta_{1}=\theta_{2} \quad(\bmod 2 \pi)
$$

Suppose $\theta \in(-\pi, \pi)$ is such that

$$
\theta=\theta_{1}=\theta_{2} \quad(\bmod 2 \pi)
$$

and clearly we see that $e(\theta)=e\left(\theta_{1}\right)=e\left(\theta_{2}\right)$ (note that such a θ exists because $\left.e\left(\theta_{1}\right)=e\left(\theta_{2}\right) \neq-1\right)$. Because $\theta=\theta_{1}(\bmod 2 \pi)$, we can write $\theta_{1}=\theta+2 \pi k$ for some $k \in \mathbb{Z}$. Then

$$
\Phi\left(e\left(\theta_{1}\right)\right)=\tan \left(\theta_{1} / 2\right)=\tan (\theta / 2+k \pi)=\tan (\theta / 2)=\Phi(e(\theta))
$$

since tan has period π. By the same reasoning, we have that $\Phi\left(e\left(\theta_{2}\right)\right)=\Phi(e(\theta))$, and hence

$$
\Phi\left(e\left(\theta_{1}\right)\right)=\Phi\left(e\left(\theta_{2}\right)\right)
$$

showing that Φ is well-defined.
Let us do the same thing for Ψ. So, let $\theta_{1}, \theta_{2} \in \mathbf{R}$ be such that $e\left(\theta_{1}\right)=e\left(\theta_{2}\right) \neq 1$. Since e has period 2π we see that

$$
\theta_{1}=\theta_{2} \quad(\bmod 2 \pi)
$$

Suppose $\theta \in(0,2 \pi)$ is such that

$$
\theta=\theta_{1}=\theta_{2} \quad(\bmod 2 \pi)
$$

and clearly we see that $e(\theta)=e\left(\theta_{1}\right)=e\left(\theta_{2}\right)$ (and again, note that such a θ exists because $\left.e\left(\theta_{1}\right)=e\left(\theta_{2}\right) \neq 1\right)$. Because $\theta=\theta_{1}(\bmod 2 \pi)$, we can write $\theta_{1}=\theta+2 \pi k$ for some $k \in \mathbb{Z}$. Then

$$
\Psi\left(e\left(\theta_{1}\right)\right)=\cot \left(\theta_{1} / 2\right)=\cot (\theta / 2+k \pi)=\cot (\theta / 2)=\Psi(e(\theta))
$$

since cot has period π. By the same reasoning, we have that $\Psi\left(e\left(\theta_{2}\right)\right)=\Psi(e(\theta))$, and hence

$$
\Psi\left(e\left(\theta_{1}\right)\right)=\Psi\left(e\left(\theta_{2}\right)\right)
$$

showing that Ψ is well-defined.
Next, we will show that the map

$$
\psi \circ \Phi^{-1}: \mathbf{R} \backslash\{0\} \rightarrow \mathbf{R} \backslash\{0\}
$$

is the map $y \mapsto 1 / y$. So, let $y \in \mathbf{R} \backslash\{0\}$. Observe that $e((-\pi, \pi))=\boldsymbol{S}^{1} \backslash\{-1\}$. So, let $\theta \in(-\pi, \pi)$ be such that $e(\theta)=\Phi^{-1}(y)$, which implies that

$$
\tan (\theta / 2)=y
$$

Date: 23 March 2021.
and since $y \neq 0$, we see that $\theta \neq 0$, and hence $e(\theta) \neq 1 \in \boldsymbol{S}^{1}$, which means that $\Psi(e(\theta))$ makes sense. So, we have

$$
\left(\Psi \circ \Phi^{-1}\right)(y)=\Psi(e(\theta))=\cot (\theta / 2)=\frac{1}{\tan (\theta / 2)}=\frac{1}{y}
$$

and this proves the claim.
2). Consider the vector field $\boldsymbol{v}(e(\theta))=(\cos \theta+\sin \theta-1) \frac{\mathrm{d}}{\mathrm{d} \theta}$ on \boldsymbol{S}^{1}. Let $f: \mathbf{R} \rightarrow \mathbf{R}$ be the map $y \mapsto y(1-y)$ and $g: \mathbf{R} \rightarrow \mathbf{R}$ be the map $z \mapsto 1-z$. We show that

$$
\begin{align*}
\Phi_{*}\left(\left.\boldsymbol{v}\right|_{U_{-1}}\right) & =f \vartheta \tag{0.1}\\
\Psi_{*}\left(\left.\boldsymbol{v}\right|_{U_{1}}\right) & =g \vartheta \tag{0.2}
\end{align*}
$$

Let us first show (0.1). So, suppose $y_{0} \in \mathbf{R}$, and let $\theta_{0} \in(-\pi, \pi)$ be such that $e\left(\theta_{0}\right)=\Phi^{-1}\left(y_{0}\right)$. Equality (0.1) is an equality of vector fields, so we need to show that

$$
\Phi_{*}\left(\left.\boldsymbol{v}\right|_{U_{-1}}\left(e\left(\theta_{0}\right)\right)\right)=f\left(y_{0}\right) \vartheta\left(y_{0}\right)=y_{0}\left(1-y_{0}\right) \vartheta\left(y_{0}\right)
$$

Note that the above equality is an equality of derivations, because Φ_{*} is a map from derivations to derivations. Suppose $g_{y_{0}} \in \mathscr{C}_{y_{0}}^{\infty}$, i.e $g_{y_{0}}$ is a germ of \mathscr{C}^{∞} functions at y_{0} represented by (g, U), where U is some open set in \mathbf{R}. Define $f=g \circ \Phi$ on $U^{\prime}=\Phi^{-1}(U)$, and we get a germ $f_{e\left(\theta_{0}\right)} \in \mathscr{C}_{e\left(\theta_{0}\right)}^{\infty}$ represented by $\left(f, U^{\prime}\right)$. By definition, we have

$$
\Phi_{*}\left(\left.\boldsymbol{v}\right|_{U_{-1}}\left(e\left(\theta_{0}\right)\right)\right)\left(g_{y_{0}}\right)=\left.\boldsymbol{v}\right|_{U_{-1}}\left(e\left(\theta_{0}\right)\right)\left(f_{e\left(\theta_{0}\right)}\right)
$$

and hence showing equality (0.1) is equivalent to showing

$$
\begin{equation*}
\left.\boldsymbol{v}\right|_{U_{-1}}\left(e\left(\theta_{0}\right)\right)\left(f_{e\left(\theta_{0}\right)}\right)=y_{0}\left(1-y_{0}\right) \vartheta\left(y_{0}\right)\left(g_{y_{0}}\right) \tag{0.3}
\end{equation*}
$$

Now observe that

$$
\begin{aligned}
\left.\boldsymbol{v}\right|_{U_{-1}}\left(e\left(\theta_{0}\right)\right)(f) & =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d}(f \circ e)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d}(g \circ \Phi \circ e)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d}(g(\tan (\theta / 2)))}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d} g}{\mathrm{~d} y}\left(\tan \left(\theta_{0} / 2\right)\right) \frac{\mathrm{d} \tan (\theta / 2)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d} g}{\mathrm{~d} y}\left(y_{0}\right) \cdot \frac{1}{2} \sec ^{2}\left(\theta_{0} / 2\right) \\
& =\frac{1}{2}\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \sec ^{2}\left(\theta_{0} / 2\right) \vartheta\left(y_{0}\right)(g)
\end{aligned}
$$

Now, we use the identities

$$
\begin{aligned}
& \sin \left(\theta_{0}\right)=\frac{2 \tan \left(\theta_{0} / 2\right)}{1+\tan ^{2}\left(\theta_{0} / 2\right)}=\frac{2 y_{0}}{1+y_{0}^{2}} \\
& \cos \left(\theta_{0}\right)=\frac{1-\tan ^{2}\left(\theta_{0} / 2\right)}{1+\tan ^{2}\left(\theta_{0} / 2\right)}=\frac{1-y_{0}^{2}}{1+y_{0}^{2}}
\end{aligned}
$$

and hence we get

$$
\left.\boldsymbol{v}\right|_{U_{-1}}\left(e\left(\theta_{0}\right)\right)(f)=\frac{1}{2}\left(\frac{1-y_{0}^{2}+2 y_{0}}{1+y_{0}^{2}}-1\right)\left(1+y_{0}^{2}\right) \vartheta\left(y_{0}\right)(g)=y_{0}\left(1-y_{0}\right) \vartheta\left(y_{0}\right)(g)
$$

and the above equality shows equation (0.3), and hence proves equation (0.1).
Similarly, we now prove equation (0.2). Again, let $y_{0} \in \mathbf{R}$, and let $\theta_{0} \in(0,2 \pi)$ be such that $e\left(\theta_{0}\right)=\Psi^{-1}\left(y_{0}\right)$. Again, equality (0.2) is an equality of vector fields, and so we need to show that

$$
\Psi_{*}\left(\left.\boldsymbol{v}\right|_{U_{1}}\left(e\left(\theta_{0}\right)\right)\right)=g\left(y_{0}\right) \vartheta\left(y_{0}\right)=\left(1-y_{0}\right) \vartheta\left(y_{0}\right)
$$

Again, note that the above equality is an equality of derivations, since Ψ_{*} is a map from derivations to derivations. To show the above equality, let $g_{y_{0}} \in \mathscr{C}_{y_{0}}^{\infty}$, i.e $g_{y_{0}}$ is a germ of \mathscr{C}^{∞} functions at y_{0} represented by (g, U), where U is an open set in R. Let $f=g \circ \Psi$ on $U^{\prime}=\Psi^{-1}(U)$, and we get a germ $f_{e\left(\theta_{0}\right)} \in \mathscr{C}_{e\left(\theta_{0}\right)}^{\infty}$ represented by $\left(f, U^{\prime}\right)$. By definition, we have

$$
\Psi_{*}\left(\left.\boldsymbol{v}\right|_{U_{1}}\left(e\left(\theta_{0}\right)\right)\right)\left(g_{y_{0}}\right)=\left.\boldsymbol{v}\right|_{U_{1}}\left(e\left(\theta_{0}\right)\right)\left(f_{e\left(\theta_{0}\right)}\right)
$$

and hence showing equality (0.2) is equivalent to showing

$$
\begin{equation*}
\left.\boldsymbol{v}\right|_{U_{1}}\left(e\left(\theta_{0}\right)\right)\left(f_{e\left(\theta_{0}\right)}\right)=\left(1-y_{0}\right) \vartheta\left(y_{0}\right)\left(g_{y_{0}}\right) \tag{0.4}
\end{equation*}
$$

Now observe that

$$
\begin{aligned}
\left.\boldsymbol{v}\right|_{U_{1}}\left(e\left(\theta_{0}\right)\right)(f) & =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d}(f \circ e)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d}(g \circ \Psi \circ e)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d} g(\cot (\theta / 2))}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left.\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d} g}{\mathrm{~d} y}\left(\cot \left(\theta_{0} / 2\right)\right) \frac{\mathrm{d} \cot (\theta / 2)}{\mathrm{d} \theta}\right|_{\theta=\theta_{0}} \\
& =\left(\cos \theta_{0}+\sin \theta_{0}-1\right) \frac{\mathrm{d} g}{\mathrm{~d} y}\left(y_{0}\right) \frac{1}{2}\left(-\operatorname{cosec}^{2}\left(\theta_{0} / 2\right)\right) \\
& =-\frac{1}{2}\left(\cos \theta_{0}+\sin \theta_{0}-1\right)\left(1+\cot ^{2}\left(\theta_{0} / 2\right)\right) \vartheta\left(y_{0}\right)(g) \\
& =-\frac{1}{2}\left(\cos \theta_{0}+\sin \theta_{0}-1\right)\left(1+y_{0}^{2}\right) \vartheta\left(y_{0}\right)(g)
\end{aligned}
$$

Now, we use the identities

$$
\begin{aligned}
& \sin \left(\theta_{0}\right)=\frac{2 \cot \left(\theta_{0} / 2\right)}{1+\cot ^{2}\left(\theta_{0} / 2\right)}=\frac{2 y_{0}}{1+y_{0}^{2}} \\
& \cos \left(\theta_{0}\right)=\frac{\cot ^{2}\left(\theta_{0} / 2\right)-1}{\cot ^{2}\left(\theta_{0} / 2\right)+1}=\frac{y_{0}^{2}-1}{y_{0}^{2}+1}
\end{aligned}
$$

and hence we get

$$
\left.\boldsymbol{v}\right|_{U_{1}}\left(e\left(\theta_{0}\right)\right)(f)=-\frac{1}{2}\left(\frac{y_{0}^{2}-1+2 y_{0}}{y_{0}^{2}+1}-1\right)\left(y_{0}^{2}+1\right) \vartheta\left(y_{0}\right)(g)=\left(1-y_{0}\right) \vartheta\left(y_{0}\right)(g)
$$

and the above equality shows equation (0.4), and hence it shows equation (0.2). This completes the proof.
3). To show that $g^{t}(e(\theta))$ is well-defined, it is enough to show that if $e\left(\theta_{1}\right)=e\left(\theta_{2}\right)$, then

$$
\frac{e^{t} \tan \left(\theta_{1} / 2\right)}{e^{t} \tan \left(\theta_{1} / 2\right)-\tan \left(\theta_{1} / 2\right)+1}=\frac{e^{t} \tan \left(\theta_{2} / 2\right)}{e^{t} \tan \left(\theta_{2} / 2\right)-\tan \left(\theta_{2} / 2\right)+1}
$$

and note that to show the above equation, it is enough to show that

$$
\tan \left(\theta_{1} / 2\right)=\tan \left(\theta_{2} / 2\right)
$$

But this is easy: because e has period 2π and $e\left(\theta_{1}\right)=e\left(\theta_{2}\right)$, we see that

$$
\theta_{2}=\theta_{1}+2 \pi k
$$

for some $k \in \mathbb{Z}$. This will imply that

$$
\tan \left(\theta_{2} / 2\right)=\tan \left(\theta_{1} / 2+\pi k\right)=\tan \left(\theta_{1} / 2\right)
$$

because \tan has period π. So, this shows that $g^{t}(e(\theta))$ is well-defined.
4). We now show that $\left\{g^{t}\right\}$ is a 1-parameter group of diffeomorphisms on \boldsymbol{S}^{1}. First, consider the DE

$$
\dot{p}=\boldsymbol{v}(p)
$$

on \boldsymbol{S}^{1}. We first restrict this DE to U_{-1}, and we transform this DE to a DE in \mathbf{R} via the map Φ. So, let \boldsymbol{w} be the map on \mathbf{R} defined as follows

$$
\boldsymbol{w}(y)=\Phi^{\prime}(e(\theta)) \boldsymbol{v}(e(\theta))
$$

where $e(\theta)=\Phi^{-1}(y) \in U_{-1}$. Then as proven in Lecture 18, the DE $\dot{p}=\boldsymbol{v}(p)$ is equivalent to the $\mathrm{DE} \dot{q}=\boldsymbol{w}(q)$, in the sense that given a solution to $\dot{q}=\boldsymbol{w}(q)$, a solution of $\dot{p}=\boldsymbol{v}(p)$ can be obtained by pulling back via Φ. Now, observe that

$$
\begin{aligned}
\boldsymbol{w}(y) & =\Phi^{\prime}(e(\theta)) \boldsymbol{v}(e(\theta)) \\
& =\frac{\mathrm{d}}{\mathrm{~d} \theta} \tan (\theta / 2)(\cos \theta+\sin \theta-1) \\
& =\frac{1}{2} \sec ^{2}(\theta / 2)(\cos \theta+\sin \theta-1) \\
& =\frac{1}{2}\left(1+y^{2}\right)\left(\frac{1-y^{2}+2 y}{1+y^{2}}-1\right) \\
& =y(1-y)
\end{aligned}
$$

So, consider the DE

$$
\dot{q}=\boldsymbol{w}(q)=q(1-q)
$$

on \mathbf{R}. This is a separable DE, which we know how to solve.

$$
\int \frac{1}{q(1-q)} \mathrm{d} q=t+C^{\prime}
$$

for some $C^{\prime} \in \mathbf{R}$ and solving this DE , we get

$$
\frac{q}{1-q}=e^{t+C^{\prime}}
$$

and solving for q, we get

$$
q=\frac{e^{t+C^{\prime}}}{e^{t+C^{\prime}}+1}=\frac{C e^{t}}{C e^{t}+1}
$$

where $C=e^{C^{\prime}}$. If we put $q(0)=q_{0}$, then we see that

$$
C=\frac{q_{0}}{1-q_{0}}
$$

and hence

$$
q=\frac{q_{0} e^{t}}{q_{0} e^{t}+1-q_{0}}
$$

So we consider the following:

$$
h^{t} x=\frac{x e^{t}}{x e^{t}+1-x} \quad, \quad x, t \in \mathbf{R}
$$

In problem 5) of HW-5, we have already shown that this is a one-parameter group of diffeomorphisms. If $x \in\{0,1\}$, then the phase-flow will be a constant map. If x is in one of the connected components $(-\infty, 0),(0,1)$ or $(1, \infty)$, then we get a phase-flow which stays in the component of x.

Now, consider the pullback under Φ of the one parameter group defined above, i.e consider

$$
g^{t} e(\theta)=e\left\{2 \arctan \left(\frac{\tan (\theta / 2) e^{t}}{\tan (\theta / 2) e^{t}+1-\tan (\theta / 2)}\right)\right\}
$$

Since h^{t} is a one-parameter group, it follows that g^{t} is also a one-parameter group of diffeomorphisms. This is because, as maps, it is true that

$$
g^{t}=\Phi^{-1} \circ h^{t} \circ \Phi
$$

for all $t \in \mathbf{R}$, and since h^{t} satisfies the axioms for a one-parameter group, it follows that g^{t} also satisfies the axioms of a one-parameter group.

Since we have pulled back via the map Φ, the one parameter group g^{t} is only defined on U_{-1}. Now, observe that the formula for g^{t} actually makes sense over all of \boldsymbol{S}^{1}, i.e $g^{t}(e(\theta))$ is well-defined for all θ. Hence, it follows that g^{t} is actually a one-parameter group of diffeomorphisms on \boldsymbol{S}^{1}.
5). In this problem, we determine the orbits of $\left\{g^{t}\right\}$ and the fixed points of $\left\{g^{t}\right\}$.

Fixed Points. Suppose $e(\theta) \in S^{1}$ is a fixed point of $\left\{g^{t}\right\}$. This means that

$$
g^{t} e(\theta)=e(\theta)
$$

for all $t \in \mathbf{R}$. So, this means that the phase flow over S^{1} defined for this initial point is a constant map. This means that the push-forward under Φ of this phase flow in \mathbf{R} is a constant solution to the DE

$$
\dot{q}=q(1-q)
$$

Hence, it follows that $\Phi(e(\theta)) \in\{0,1\}$, because only the initial points 0,1 have a constant phase flow. This means that

$$
\tan (\theta / 2) \in\{0,1\}
$$

and hence if we restrict $\theta \in(-\pi, \pi)$, we see that $\theta \in\{0, \pi / 2\}$. So, it follows that the fixed points are

$$
(\cos (0), \sin (0))=(1,0) \text { and }(\cos (\pi / 2), \sin (\pi / 2))=(0,1)
$$

Orbits. Since the points $(0,1)$ and $(1,0)$ are fixed points of $\left\{g^{t}\right\}$, they form separate orbits. We will now determine the remaining orbits.

Suppose $e\left(\theta_{1}\right)$ and $e\left(\theta_{2}\right)$ are two points in $\boldsymbol{S}^{1} \backslash\{-1\}$ in the same orbit of $\left\{g^{t}\right\}$, i.e $e\left(\theta_{2}\right)=g^{t} e\left(\theta_{1}\right)$ for some $t \in \mathbf{R}$. Taking their images under Φ, we see that

$$
\Phi\left(e\left(\theta_{2}\right)\right)=h^{t} \circ \Phi\left(e\left(\theta_{1}\right)\right)
$$

Now, as we remarked in problem 4), both the points $\Phi\left(e\left(\theta_{1}\right)\right)$ and $\Phi\left(e\left(\theta_{2}\right)\right)$ must belong to one of the connected components $(-\infty, 0),(0,1)$ and $(1, \infty)$ (since the phase flow always remains in the same component).

Conversely, if we take any two points $e\left(\theta_{1}\right)$ and $e\left(\theta_{2}\right)$ in $\boldsymbol{S}^{1} \backslash\{-1\}$ such that $\Phi\left(e\left(\theta_{1}\right)\right)$ and $\Phi\left(e\left(\theta_{2}\right)\right)$ belong to the same connected component, without loss of generality say both the points are in $(0,1)$, then we claim that $\Phi\left(e\left(\theta_{1}\right)\right)$ and $\Phi\left(e\left(\theta_{2}\right)\right)$ are in the same orbit of $\left\{h^{t}\right\}$. This easily follows by solving for t in the equation

$$
h^{t} \Phi\left(e\left(\theta_{1}\right)\right)=\Phi\left(e\left(\theta_{2}\right)\right)
$$

So, pulling back under Φ, we see that $e\left(\theta_{1}\right)$ and $e\left(\theta_{2}\right)$ belong to the same orbit of $\left\{g^{t}\right\}$. Now, the space $\left(\boldsymbol{S}^{1} \backslash\{-1\}\right) \backslash\{(1,0),(0,1)\}$ has three connected components, all of which are open arcs. So, it follows that any two points on $\boldsymbol{S}^{1} \backslash\{-1\}$ which belong to any one of these open arcs lie in the same orbit of $\left\{g^{t}\right\}$. So, there are atmost 5 orbits of $\left\{g^{t}\right\}$ on $\boldsymbol{S}^{1} \backslash\{-1\}$.

Now we deal with the point $-1 \in \boldsymbol{S}^{1}$. Observe that by assumption, this point is given by $-1=e(-\pi)=e(\pi)$, and this point corresponds to either $-\infty$ or ∞ on the extended real line. Note that if $x \in(1, \infty)$ or $x \in(-\infty, 0)$, then there is some $t \in \mathbf{R}$ for which

$$
x e^{t}+1-x=0
$$

This means that the denominator of $h^{t} x$ will be 0 for some $t \in \mathbf{R}$, meaning that $h^{t} x=\infty$ or $-\infty$ for some $t \in \mathbf{R}$, depending upon whether $x \in(1, \infty)$ or $x \in(-\infty, 0)$. Pulling back by Φ, this means that the points $\Phi^{-1}(x)$ and $-1 \in \boldsymbol{S}^{1}$ belong to the same orbit of $\{h\}^{t}$. So, it follows that the one-parameter group $\{h\}^{t}$ on \boldsymbol{S}^{1} has only four orbits: two singleton points $\{(1,0)\}$ and $\{(0,1)\}$, and the two remaining open arcs on the circle.

