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1). Here, we solve problem 23 of Cookbook-I.

23 y′ = (1− 2x)y2, y(0) =
−1

6

Solution. This is a separable DE. We have
1

y2
y′ = (1− 2x)

Integrating both sides, we get ∫
1

y2
dy =

∫
1− 2xdx

and this gives us
−1

y
= x− x2 + C

where C ∈ R is some constant. Using the given initial condition, we get C = 6. Hence,
the solution of the DE is

y =
1

x2 − x− 6
Note that y is defined on R minus the roots of the given polynomial. Observe that

x2 − x− 6 = (x+ 2)(x− 3)

and hence y is defined on (−∞,−2) ∪ (−2, 3) ∪ (3,∞). Since the initial point −1/6
lies in the interval (−2, 3), it follows that the interval of existence is (−2, 3). ■
2). Let (τ, a) ∈ R2. We will find a formula for φ(τ,a)(t) for t ∈ J(τ, a). First, suppose
a ̸= 0. As in problem 1), we then see that

−1

a
=

−1

φ(τ,a)(τ)
= τ − τ 2 + C

which gives us
C = τ 2 − τ − 1

a
and hence the formula φ(τ,a)(t) is given by

−1

φ(τ,a)(t)
= t− t2 + τ 2 − τ − 1

a

and solving this further, we obtain

φ(τ,a)(t) =
1

t2 − t− τ 2 + τ + 1
a

=
a

a(t2 − t− τ 2 + τ) + 1

Now, above if we put a = 0, we get the constant solution φ(τ,0) ≡ 0. So, the formula
makes sense for all (τ, a), and hence this is the required formula.
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3). Suppose (τ, a) is on the τ -axis. This means that a = 0. In this case, note that
the zero function φ(τ,0) ≡ 0 is a solution to (∆)(τ,a). Hence, the interval of existence in
this case is R, i.e J(τ, 0) = R.

4). Note that the curve a(2τ − 1)2 = 4 divides the plane into two domains (open
connected sets), namely

{(τ, a) | a(2τ − 1)2 > 4} and {(τ, a) | a(2τ − 1)2 < 4}

Since the origin (0, 0) belongs to the second region above, it follows that region 1 is
contained in the second set above. So, a set theoretic description of 1 is as follows:

1 = {(τ, a) | a(2τ − 1)2 < 4, a > 0}

So, suppose the point (τ, a) is lies in 1 . We know that

φ(τ,a)(t) =
a

a(t2 − t− τ 2 + τ) + 1

We claim that the denominator vanishes for no value of t, i.e the equation

a(t2 − t− τ 2 + τ) + 1 = 0

has no solution t ∈ R. This will imply that J(τ, a) = R, and that will complete the
proof.

Since a > 0, the equation can be written as

t2 − t− τ 2 + τ +
1

a
= 0

This is a quadratic equation with discriminant

D = 1− 4

(
−τ 2 + τ +

1

a

)
Now, observe that

a(2τ − 1)2 < 4

=⇒ (2τ − 1)2 − 4

a
< 0

=⇒ 4τ 2 − 4τ − 4

a
+ 1 < 0

=⇒ τ 2 − τ − 1

a
+

1

4
< 0

=⇒ 1

4
< −τ 2 + τ +

1

a

=⇒ 1 < 4

(
−τ 2 + τ +

1

a

)
=⇒ D < 0

and hence the quadratic has no real solutions. This proves that J(τ, a) = R, thereby
completing our proof.
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5. We show that if (τ, a) is in region 2 , 2’ or 3 , then δ(τ, a) > 0. This is easy
to see. As in problem 4), consider the following two domains in R2, which the curve
a(2τ − 1)2 = 4 divides the plane into.

{(τ, a) | a(2τ − 1)2 > 4} and {(τ, a) | a(2τ − 1)2 < 4}

(1) Suppose (τ, a) ∈ 2 or 2’ . Because the origin (0, 0) lies in the second set
above, we immediately see that both 2 and 2’ are subsets of {(τ, a) | a(2τ−
1)2 > 4}. Also, note that a > 0, since (τ, a) ∈ 2 or 2’ . So, we see that

a2(2τ − 1)2 > 4a

and hence δ(τ, a) > 0 in this case.
(2) In this second case, suppose (τ, a) ∈ 3 . Again, since the origin (0, 0) lies in

the second set above, we see that 3 is a subset of {(τ, a) | a(2τ − 1)2 < 4}.
Also, since (τ, a) ∈ 3 , we have that a < 0. So, multiplying the inequality
a(2τ − 1)2 < 4 by a, which is a negative number, we get

a2(2τ − 1)2 > 4a

and hence again δ(τ, a) > 0.
This completes the proof.

6). Suppose (τ, a) ∈ 2 . Again, consider the formula for φ(τ,a) that we found before:

φ(τ,a)(t) =
a

a(t2 − t− τ 2 + τ) + 1

By the remarks made in problem 5) above, we note that the set-theoretic description
of the set 2 is the following.

2 =

{
(τ, a) | a(2τ − 1)2 > 4, τ >

1

2

}
Now, consider the following quadratic equation in t.

a(t2 − t− τ 2 + τ) + 1 = 0

which is the same as the equation
at2 − at+ a(−τ 2 + τ) + 1 = 0

The discriminant of this quadratic is
D = a2 − 4a(−aτ 2 + aτ + 1) = a2 + 4a2τ 2 − 4a2τ − 4a = a2(2τ − 1)2 − 4a = δ(τ, a)

and hence the solutions of this quadratic are

a±
√

δ(τ, a)

2a
=

1

2
±
√

δ(τ, a)

2a
=

1

2
±
√

δ(τ, a)

2|a|

where above we have used the fact that a = |a|, since (τ, a) ∈ 2 . So, the function
φ(τ,a) is defined on(

−∞,
1

2
−
√

δ(τ, a)

2|a|

)
∪

(
1

2
−
√

δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)
∪

(
1

2
+

√
δ(τ, a)

2|a|
,∞

)
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The interval of existence in this case will be one of the above three intervals, in which
the number τ belongs. Because a > 0, we see that

a2(2τ − 1)2 > a2(2τ − 1)2 − 4a

which means
a2(2τ − 1)2 > δ(τ, a)

Taking square roots, we get

a(2τ − 1) >
√

δ(τ, a)

and hence

τ >
1

2
+

√
δ(τ, a)

2|a|
which implies that the interval of existence in this case is

J(τ, a) =

(
1

2
+

√
δ(τ, a)

2|a|
,∞

)
which proves the claim.

7). This problem has a very similar solution to that of problem 6). Note that the
set-theoretic description of 2’ is the following.

2’ =

{
(τ, a) | a(2τ − 1)2 > 4, τ <

1

2

}
Again, the solutions of the quadratic

a(t2 − t− τ 2 + τ) + 1 = 0

are
1

2
±
√

δ(τ, a)

2|a|
where again we have used the fact that a = |a|, since (τ, a) ∈ 2’ . So, the function
φ(τ,a) is defined on the union(

−∞,
1

2
−
√

δ(τ, a)

2|a|

)
∪

(
1

2
−
√

δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)
∪

(
1

2
+

√
δ(τ, a)

2|a|
,∞

)
So, the interval of existence will be the interval in which the number τ belongs. Because
a > 0, we see that

a2(2τ − 1)2 > a2(2τ − 1)2 − 4a = δ(τ, a)

which can be written as
a2(1− 2τ)2 > δ(τ, a)

Since τ <
1

2
, we see that (1− 2τ) > 0. Taking square roots, we see that

a(1− 2τ) >
√

δ(τ, a)

which implies that

τ <
1

2
−
√
δ(τ, a)

2|a|
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and hence, the interval of existence in this case is

J(τ, a) =

(
−∞,

1

2
−
√

δ(τ, a)

2|a|

)
which proves the claim.

8). We follow the same strategy as in problems 6) and 7). Note that the set-theoretic
description of 3 is the following.

3 =
{
(τ, a) | a(2τ − 1)2 < 4, a < 0

}
The solutions of the quadratic

a(t2 − t− τ 2 + τ) + 1 = 0

are
1

2
±
√

δ(τ, a)

2|a|
where we have used the fact that |a| = −a, since a < 0. So, the function φ(τ,a) is
defined on the union(

−∞,
1

2
−
√

δ(τ, a)

2|a|

)
∪

(
1

2
−
√

δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)
∪

(
1

2
+

√
δ(τ, a)

2|a|
,∞

)
and hence the interval of existence will be the interval in which τ belongs. We consider
three cases.

(1) In the first case, suppose τ =
1

2
. In that case, observe that

τ = 0 ∈

(
1

2
−
√
δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)
and hence the interval of existence in this case will be

J(0, a) =

(
1

2
−
√
δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)

(2) In the second case, suppose τ >
1

2
, which means that 2τ − 1 > 0. Because

a < 0, we see that
a2(2τ − 1)2 < a2(2τ − 1)2 − 4a = δ(τ, a)

Taking square roots on both sides (use the fact that 2τ − 1 = |2τ − 1| and
|a| = −a), we get

|a|(2τ − 1) <
√
δ(τ, a)

from which we get
−a(2τ − 1) <

√
δ(τ, a)

Dividing both sides by −a, which is positive, we get

2τ − 1 <

√
δ(τ, a)

−a
=

√
δ(τ, a)

|a|
and hence we get

τ <
1

2
+

√
δ(τ, a)

2|a|
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Also, because a < 0, 2τ − 1 > 0 and δ(τ, a) > 0, we get

a(2τ − 1) <
√

δ(τ, a)

and dividing throughout by a, which is negative, we get

2τ − 1 >

√
δ(τ, a)

a

and from here we obtain

τ >
1

2
−
√
δ(τ, a)

2|a|
which implies that

τ ∈

(
1

2
−
√
δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)
and hence, in this case as well, we see that the interval of existence is

J(τ, a) =

(
1

2
−
√

δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)

(3) In the final case, we assume that τ <
1

2
, which implies that 2τ − 1 < 0. This

case is handled similar to case (2), and even here, we obtain that the interval
of existence is

J(τ, a) =

(
1

2
−
√

δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)
So, the interval of existence has been found to be

J(τ, a) =

(
1

2
−
√

δ(τ, a)

2|a|
,
1

2
+

√
δ(τ, a)

2|a|

)
for all points (τ, a) in 3 .

9). The strategy here will be the same as in problems 6), 7) and 8). Note that if
(τ, a) is on the right branch of the curve a(2τ − 1)2 = 4, then we have a > 0 and
τ >

1

2
. Also, we see that

δ(τ, a) = a2(2τ − 1)2 − 4a = a[a(2τ − 1)2 = 4] = 0

In this case, the only solution of the quadratic
a(t2 − t− τ 2 + τ) + 1 = 0

is the point

t =
1

2
and hence the function φ(τ,a) is defined on the union(

−∞,
1

2

)(
1

2
,∞
)
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By assumption, we have τ >
1

2
, and hence the interval of existence in this case is

J(τ, a) =

(
1

2
,∞
)

10). The solution is similar to problem 9). If (τ, a) is on the left branch of the curve
a(2τ01)2 = 4, then we have a > 0 and τ <

1

2
. Again, we have

δ(τ, a) = a2(2τ − 1)2 − 4a = a[a(2τ − 1)2 = 4] = 0

and again the only solution of the quadratic
a(t2 − t− τ 2 + τ) + 1 = 0

is the point
t =

1

2
and hence the function φ(τ,a) is defined on the union(

−∞,
1

2

)(
1

2
,∞
)

By assumption, we have τ <
1

2
, and hence the interval of existence in this case is

J(τ, a) =

(
−∞,

1

2

)
which proves the claim.

11). To show that Ω̃ is the connected component of W containing the origin 0, we
will show the following.

(1) 0 ∈ Ω̃.
(2) Ω̃ is an open subset of W .
(3) Ω̃ is a closed subset of W .
(4) Ω̃ is path connected.

Note that (4) will imply that Ω̃ is a connected set. Also, points (2) and (3) will imply
that Ω̃ cannot sit inside a bigger connected set, and hence Ω̃ must be the connected
component of 0.

First, note that 0 = (0, 0, 0) ∈ Ω̃: this is because φ(0,0) ≡ 0, i.e φ(0,0) is the constant
zero map, whose interval of existence is R. In particular, we have that 0 ∈ J(0, 0),
and hence by definition, (0, 0, 0) ∈ Ω̃. This proves (1).

To prove (2), note that Ω̃ is an open subset of R3 by Proposition 2.1.4 of Lecture
23. Also, W is an open subset of R3, because it is the complement of a closed set.
So, it remains to show that Ω̃ ⊆ W , and that will prove (2). So, suppose (t, τ, a) ∈ Ω̃.
Then, we have some cases to handle.

(1) In the first case, (τ, a) is in the τ -axis. We know by problem 3) that in this
case, J(τ, a) = R, which is equivalent to saying that the quadratic

a(t2 − t− τ 2 + τ) + 1 = 0

has no solution in t. In that case, clearly we see that (t, τ, a) /∈ S ∪ F1 ∪ F2,
and hence (t, τ, a) ∈ W .
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(2) In the second case, (τ, a) ∈ 1 . By problem 4), we know that J(τ, a) = R,
and hence again, the quadratic

a(t2 − t− τ 2 + τ) + 1 = 0

has no solution in t. So, again we see that (t, τ, a) /∈ S ∪ F1 ∪ F2, which again
implies that (t, τ, a) ∈ W .

(3) In the third case, we have (τ, a) ∈ the closure of 2 . By problems 6) and 9),
we know that

J(τ, a) =

(
1

2
+

√
δ(τ, a)

2|a|
,∞

)
(δ(τ, a) = 0 if (τ, a) lies on the right branch of the curve a(2τ − 1)2 = 4). By
definition, we know that t ∈ J(τ, a), and hence

t >
1

2
+

√
δ(τ, a)

2|a|
Also, because t is in the interval of existence, this means that

a(t2 − t− τ 2 + τ) + 1 ̸= 0

since the above term is the denominator of φ(τ,a)(t). All of this implies that
(t, τ, a) /∈ S ∪ F1 ∪ F2, and hence (t, τ, a) ∈ W .

(4) In the fourth case, we have (τ, a) ∈ the closure of 2’ . Using a very similar
argument as in point number (3) above and using problems 7) and 10), it can
be argued that (t, τ, a) ∈ W .

(5) In the last case, we have that (τ, a) ∈ 3 . Clearly, because t lies in the interval
of existence, it followst that

a(t2 − t− τ 2 + τ) + 1 ̸= 0

as the above term is the denominator of φ(τ,a)(t). So again, we see that
(t, τ, a) /∈ S ∪ F1 ∪ F2, and hence (t, τ, a) ∈ W .

So this completes the proof of (2), i.e Ω̃ is an open subset of W (note that Ω̃ is already
known to be open in R3).

Next, we prove (3), i.e Ω̃ is a closed subset of W . We show this by showing that Ω̃
has no limit points in W − Ω̃. Couldn’t complete this part.

Finally, we show that Ω̃ is path connected, and it is actually true that straight line
paths do the job. Suppose (t1, τ1, a1) and (t2, τ2, a2) are two points in Ω̃. Couldn’t
complete this part.
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