HW-9

SIDDHANT CHAUDHARY

1). Here, we solve problem 23 of Cookbook-I.

1
23 y =(01-2x)y* y(0)= -

Solution. This is a separable DE. We have
1
—1y = (1 —2x)

Y2
Integrating both sides, we get

1
/?dy:/l—mcdx

-1
— =z-2*+C
)
where C' € R is some constant. Using the given initial condition, we get C' = 6. Hence,

the solution of the DE is

and this gives us

B 1
= R—
Note that y is defined on R minus the roots of the given polynomial. Observe that
2° -2 —6=(r+2)(z—3)

and hence y is defined on (—oo, —2) U (—2,3) U (3,00). Since the initial point —1/6
lies in the interval (—2,3), it follows that the interval of existence is (—2, 3). |

2). Let (1,a) € R*. We will find a formula for ¢(, 4 (¢) for t € J(7,a). First, suppose
a # 0. As in problem 1), we then see that

—1 —1
— = =7-74C
@ a7
which gives us
1
C=r-7-2
a
and hence the formula ¢, 4)(t) is given by
-1 1
—t— -
Pra(t) a
and solving this further, we obtain
1 a

ra)(l) = =
P (t) 2—t—r2+74+1 a@—t—7247)+1

Now, above if we put a = 0, we get the constant solution ¢(,¢) = 0. So, the formula
makes sense for all (7,a), and hence this is the required formula.
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3). Suppose (7,a) is on the 7-axis. This means that ¢ = 0. In this case, note that
the zero function ¢, ) = 0 is a solution to (A)(r,). Hence, the interval of existence in
this case is R, i.e J(7,0) = R.

4). Note that the curve a(27 — 1)? = 4 divides the plane into two domains (open
connected sets), namely
{(r,a) | a(2r —1)* > 4} and {(7,a) | a(27 — 1)? < 4}

Since the origin (0,0) belongs to the second region above, it follows that region @ is
contained in the second set above. So, a set theoretic description of @ is as follows:

@z {(r,a) |a(2r —1)* <4, a>0}
So, suppose the point (7, a) is lies in @ We know that

a
2—t—124+71)+1

S0(7'=a) (t> = CL(

We claim that the denominator vanishes for no value of ¢, i.e the equation
alt* —t—7"+7)+1=0
has no solution ¢ € R. This will imply that J(7,a) = R, and that will complete the

proof.
Since a > 0, the equation can be written as

1
—t—1'+7+-=0
a
This is a quadratic equation with discriminant
9 1
D=1—-4(—-717"+7+ -
a

Now, observe that

a(2r —1)* <4
4
= (2r-1P2--<0
a
2 4
= 47" —47 - -+1<0
a
9 1 1
= 7 -7T—-=+-<0
a 4
1 9 1
= - < -7 +T7+ -
4 a
- 1<4(—7’2+T+—>
a
= D <0

and hence the quadratic has no real solutions. This proves that J(7,a) = R, thereby
completing our proof.
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5. We show that if (7,a) is in region @, @ or @, then 0(7,a) > 0. This is easy
to see. As in problem 4), consider the following two domains in R?, which the curve
a(27 — 1)* = 4 divides the plane into.

{(r,a) | a(21 — 1)* > 4} and {(7,a) | a(2T — 1)* < 4}

(1) Suppose (7,a) € @ or @ Because the origin (0,0) lies in the second set
above, we immediately see that both @ and @ are subsets of {(7,a) | a(27 —
1) > 4}. Also, note that a > 0, since (7,a) € @ or @ So, we see that

a*(21 —1)* > 4a
and hence §(7,a) > 0 in this case.

(2) In this second case, suppose (1,a) € @ Again, since the origin (0,0) lies in
the second set above, we see that @ is a subset of {(7,a) | a(21 — 1)? < 4}.
Also, since (71,a) € @, we have that a < 0. So, multiplying the inequality
a(21 — 1)? < 4 by a, which is a negative number, we get

a*(2r —1)* > 4a
and hence again 6(7,a) > 0.

This completes the proof.

6). Suppose (1,a) € @ Again, consider the formula for ¢, ,) that we found before:
B a
Ca(t?—t—7247)+1

P(r,a) (t)

By the remarks made in problem 5) above, we note that the set-theoretic description
of the set @ is the following.

@)= {(T,a) la(2r — 1) > 4,7 > %}

Now, consider the following quadratic equation in ¢.
a(t® —t—7*+7)+1=0
which is the same as the equation
at* —at +a(—-*+7)+1=0
The discriminant of this quadratic is
D = a® — 4a(—a7® + ar + 1) = a* + 4a*7* — 4’7 — 4a = a*(27 — 1)® — 4a = 0(7, a)
and hence the solutions of this quadratic are

at\/o(r,a) 1 d(rya) 1 o(7,a)

2a 2 20 2 2|al

where above we have used the fact that a = |a|, since (7,a) € @ So, the function
P(r,a) 1s defined on

1 o(7,a) 1 o(r,a) 1 o(r,a) 1 d(T,a)
(‘Oo’i_ 2/a] )U<§_ oal 2 2 )U<§+ 2/l ’OO)
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The interval of existence in this case will be one of the above three intervals, in which
the number 7 belongs. Because a > 0, we see that
a®(2r —1)* > a*(27 — 1)* — 4a
which means
a’(2r —1)* > §(7,a)
Taking square roots, we get
a2t — 1) > \/0(7,a)
and hence
- 1 N d(7,a)
T — —
2 2|al
which implies that the interval of existence in this case is

J(1,a) = (% + %ﬁ,oo)

7). This problem has a very similar solution to that of problem 6). Note that the
set-theoretic description of @ is the following.

@)= {(T,a) la(2r —1)2 > 4,7 < %}

Again, the solutions of the quadratic

which proves the claim.

at? —t—7"+7)+1=0

are

1, Vo)

2 2|al

where again we have used the fact that a = |a|, since (1,a) € @ So, the function
@(r,a) 1s defined on the union

1 o(T,a) 1 o(r,a) 1 o(T,a) 1 d(7,a)
(‘“’5_ 2lal )U<§_ oal 2 2l )U<§+ 2/l ’OO)

So, the interval of existence will be the interval in which the number 7 belongs. Because
a > 0, we see that

a’(2r —1)* > a*(27 — 1)* — 4a = §(7, a)
which can be written as
a*(1—27)* > (7, a)

1
Since T < o Ve see that (1 —27) > 0. Taking square roots, we see that

a(l —27) > +/0(7,a)
which implies that
1 o(r,a)

<__
TS T o]
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and hence, the interval of existence in this case is
1 d(7,a)
J = | —co. 2 X7/
(7—7 a) ( OO, 2 2’(1‘ >

8). We follow the same strategy as in problems 6) and 7). Note that the set-theoretic
description of @ is the following.

@: {(r,a) | a(21 = 1)* <4,a < 0}
The solutions of the quadratic
a(t® —t—7*+7)+1=0

which proves the claim.

are
1 d(r,a)
2 2|al

where we have used the fact that |a| = —a, since a < 0. So, the function ¢(;q) is

defined on the union

1 o(7,a) 1 d(r,a) 1 o(t,a) 1 d(7,a)
(‘OO’E_ 2[al )U<§_ oal 2 24l )U<§+ 2/l ’OO)

and hence the interval of existence will be the interval in which 7 belongs. We consider
three cases.

1
(1) In the first case, suppose T = 3 In that case, observe that

_Oe(z_mz+m>

2 2a] 2 2|al

and hence the interval of existence in this case will be
1 d(r,a) 1 6(7,a)
J(0 = =- -
(0.) (2 da 27 24

1
(2) In the second case, suppose T > 3 which means that 27 — 1 > 0. Because

a < 0, we see that
a’(2r —1)? < a®(27 — 1)* — 4a = §(7, a)

Taking square roots on both sides (use the fact that 2r — 1 = |27 — 1| and
la| = —a), we get

la|(2T — 1) < \/0(T,a)
from which we get

—a(21 — 1) < \/é(T,a)
Dividing both sides by —a, which is positive, we get

or —1 < \Vo(T,a) _ \Vo(T,a)

lal

and hence we get

d(7,a)
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Also, because a < 0, 27 — 1 > 0 and §(7,a) > 0, we get

a2t — 1) < \/0(T,a)
and dividing throughout by a, which is negative, we get

)
27 1> Vo4
a
and from here we obtain
1 o(7,a)
> . A
R RT

which implies that

TE(E— d(T,a) 1+ 5(7‘,a))

2 2la] 2 2|al

and hence, in this case as well, we see that the interval of existence is

J(T’“):G_ S(ra) 1, 5(7,&))

2 20a| 72 2|al

1
(3) In the final case, we assume that 7 < 3 which implies that 27 — 1 < 0. This

case is handled similar to case (2), and even here, we obtain that the interval

of existence is
) )
(7_7 a) (1 (T, a) 1 (T, a) )

2 2a] 72 2|al

So, the interval of existence has been found to be

J(T,(Z):<1— 5(7’,a)l+ 5(7’,a)>

2 20a] 72 2|al

for all points (7, a) in @
9). The strategy here will be the same as in problems 6), 7) and 8). Note that if
(7,a) is on the right branch of the curve a(27 — 1)? = 4, then we have a > 0 and

T > 3 Also, we see that

§(1,a) = a®>(27 —1)* —da = ala(21 — 1)* =4] =0
In this case, the only solution of the quadratic
a(t® —t—7*+7)+1=0

is the point

1

2

and hence the function ¢, is defined on the union

()

t =
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1
By assumption, we have 7 > o and hence the interval of existence in this case is

J(r.a) = (%oo)

10). The solution is similar to problem 9). If (7, a) is on the left branch of the curve

a(2701)% = 4, then we have a > 0 and 7 < 5 Again, we have

§(r,a) = a*(21 — 1)* —da = afa(21 — 1)> = 4] = 0
and again the only solution of the quadratic
at®* —t—7*+7)+1=0
is the point

t==
2

and hence the function ¢(;,) is defined on the union

(~4)(-)

1
By assumption, we have 7 < 27 and hence the interval of existence in this case is

which proves the claim.

11). To show that Q) is the connected component of W containing the origin 0, we
will show the following.

Hoeq.

2) ) is an open subset of W.

3) Q is a closed subset of W.

4) Q is path connected.

Note that (4) will imply that Q is a connected set. Also, points (2) and (3) will imply
that (0 cannot sit inside a bigger connected set, and hence Q) must be the connected
component of 0.

First, note that 0 = (0,0,0) € Q: this is because ©(0,0) = 0, i.e p(0,0) is the constant
zero map, whose interval of existence is R. In particular, we have that 0 € J(0,0),
and hence by definition, (0,0,0) € €. This proves (1).

To prove (2), note that Q) is an open subset of R?® by Proposition 2.1.4 of Lecture
23. Also, W is an open subset of R3, because it is the complement of a closed set.
So, it remains to show that 2 C W, and that will prove (2). So, suppose (t,7,a) € Q.
Then, we have some cases to handle.

(1) In the first case, (7,a) is in the 7-axis. We know by problem 3) that in this
case, J(7,a) = R, which is equivalent to saying that the quadratic

a(t® —t—7*+7)+1=0

(
(
(
(

has no solution in ¢. In that case, clearly we see that (t,7,a) ¢ SU Fy; U Fy,
and hence (t,7,a) € W.
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(2) In the second case, (T,a) € @ By problem 4), we know that J(7,a) = R,
and hence again, the quadratic

at* —t—7"+7)+1=0
has no solution in ¢. So, again we see that (¢,7,a) ¢ S U Fy U Fy, which again
implies that (¢,7,a) € W.
(3) In the third case, we have (7,a) € the closure of @ By problems 6) and 9),

we know that
1 d(t,a)
J(T,a) = (5 + W,O@)

(6(7,a) = 0 if (7,a) lies on the right branch of the curve a(27 — 1) = 4). By
definition, we know that ¢t € J(1,a), and hence
‘= 1 N o(7,a)
2 2|al
Also, because t is in the interval of existence, this means that
a(t* —t—7"+7)+1#£0
since the above term is the denominator of ¢(;q)(t). All of this implies that
(t,7,a) ¢ SU F} U F,, and hence (t,7,a) € W.
(4) In the fourth case, we have (7,a) € the closure of @ Using a very similar
argument as in point number (3) above and using problems 7) and 10), it can
be argued that (t,7,a) € W.
(5) In the last case, we have that (7,a) € @ Clearly, because t lies in the interval
of existence, it followst that

a(t® —t—7*+7)+1#0
as the above term is the denominator of ¢(;q)(t). So again, we see that
(t,7,a) ¢ SU F; U F,, and hence (t,7,a) € W.
So this completes the proof of (2), i.e {2 is an open subset of W (note that € is already
known to be open in R?).
Next, we prove (3), i.e  is a closed subset of W. We show this by showing that
has no limit points in W — €. Couldn’t complete this part.
Finally, we show that {2 is path connected, and it is actually true that straight line

paths do the job. Suppose (t1,71,a1) and (t2,72,as) are two points in . Couldn’t
complete this part.
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