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1. Ordinary Differential Equations (ODEs)

Definition 1.1. An ordinary differential equation (ODE) n is an equation of the form
F (t, u(t), u′(t), ...., u(n)(t)) = 0(∗)

where F : I × U → R is a function, with I an interval in R, U an open subset of
Rn+1 and the unknown to be found is a function u : I → R which satisfies the above
equation. The order of the given ODE is n.
In this course we assume that the equation in Definition 1.1 can be written in the
form

u(n) = f(t, u, u′, ..., u(n−1))(∗∗)
Example 1.1. Consider the equation

x2
d2y

dx2 + 3x
dy
dx + 4y = 0 , x > 0

The above is of the form
F (x, y, y′, y′′) = 0

where
F (a, b, c, d) = a2d+ 3ac+ 4b

If we solve for d in the equation F = 0, we get a a DE in the form (∗∗).
1.1. Converting an nth order DE to a first order DE. Consider a DE of the
form in (∗∗), i.e

u(n) = f(t, u, u′, ..., u(n−1))

Consider a system of DEs
dx1
dt = v1(t, x1, ..., xn)

dx2
dt = v2(t, x1, ..., xn)

....

dxn
dt = vn(t, x1, ..., xn)

This is called a vector valued differential equation of the first order. Here each xi is a
function on some interval I, and each vi is a function taking vector valued inputs. We
can write the above equation as

dx⃗
dt = v⃗(t, x⃗)
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where
x⃗ = (x1, ..., xn) , v⃗ = (v1, ..., vn)

are vector valued functions.

Coming back to our original equation (∗∗), we do the following. Set
dx1
dt = x2

dx2
dt = x3

...(∗ ∗ ∗)
dxn−1

dt = xn

dxn
dt = f(t, x1, x2, ..., xn−1, xn)

We see that (∗ ∗ ∗) is equivalent to (∗∗). To show this, suppose
φ⃗ = (φ1, ..., φn)

is a solution of (∗ ∗ ∗), where each φi is a function of t. Then, φ1 is a solution of the
equation (∗∗). Conversely, if φ is a solution of (∗∗), then

φ⃗ = (φ, φ′..., φ(n−1))

is a solution of (∗ ∗ ∗).

Remark 1.0.1. Most of our course will be concerned with such vector valued first
order differential equations. So, our standard form will be

dx⃗
dt = v⃗(t, x⃗)

Infact, as we shall see, it will be enough to study equations of the form
dx⃗
dt = v⃗(x⃗)

Equations of the above form are called autonomous differential equations. These are
DEs in which the RHS does not explicitly depend upon the independent variable.

Differential equations often come with initial conditions. These are called initial value
problems (IVP). For instance, one could ask the following: Find a function satisfying

dx⃗
dt = v⃗(t, x⃗)

such that x⃗(t0) = x⃗0 for some initial time t0.

1.2. Some more terminology. We will frequently use the dot notation for the de-
rivative. For instance, given a function x⃗, we have

dx⃗
dt = ˙⃗x

Eventually, we will prove the following statement: if the function v⃗ is assumed to be
C 1, then the IVP

˙⃗x = v⃗(t, x⃗) , x⃗(t0) = x⃗0
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has a unique solution in a neighborhood of t0. We will actually show that there is
a maximal interval around t0 on which the solution exists (and since we are working
with intervals in R, this interval will be a maximum). Let us try to make this more
formal. We will show that there is some interval (ω−, ω+) containing the point t0 and
some φ⃗max : (ω−, ω+) → Rn which is C 1 such that

˙⃗φmax(t) = v⃗(t, φ⃗max(t))

and the interval (ω−, ω+) is maximal in the following sense: if there is another interval
I containing t0 and a function φ⃗ : I → Rn such that

˙⃗φ(t) = v⃗(t, φ⃗(t))

for each t ∈ I, then
(1) I ⊆ (ω−, ω+)
(2) φ⃗ = φ⃗max|I

It should be noted that the function φ⃗max depends on both t0 and x⃗0, i.e we have some
function

ψ⃗(t0, x0, t) = φ⃗max(t)

The point t0 is called the initial time, and the point x⃗0 is called the initial state. In
general, the x⃗’s vary in a state/phase space, and the t’s vary in a time space.

1.3. Integral Curves and Phase Spaces. This short section will only be about
formalising the problem at hand. Let Ω be an open subset of Rn and let I be an open
interval in R. Let t0 ∈ I and x⃗0 ∈ Ω. Suppose we have a map

v⃗ : I × Ω → Rn

which is a C 1 map. Then we are interested in the IVP

˙⃗x =
dx⃗
dt = v⃗(t, x⃗) , x⃗(t0) = x⃗0(†)

The set Ω is called the phase space, and the x⃗’s are called states or phases. I × Ω is
sometimes called the extended phase space. A solution is often called an integral curve.
By a solution to this IVP we mean a pair (J, φ⃗) where J ⊆ I is an open interval in R
containing t0 and

φ⃗ : J → Ω

is a differentiable map such that
˙⃗φ(t) = v⃗(t, φ⃗(t)) , φ⃗(t0) = x0

for each t ∈ J . The interval J is called an interval of existence. Next, suppose (J, φ⃗)

is a solution of (†). Consider the map ψ⃗ given by
ψ⃗(t) = (t, φ⃗(t)) = (t, φ1(t), ..., φn(t))

where (φ1, .., .φn) = φ⃗ (component functions). Let Ω̂ = I × Ω be the extended phase
space, and let

w⃗ : Ω̂ → Rn+1

be the map given by
(s, x⃗) 7→ (1, v⃗(s, x⃗)) = (1, v1(s, x⃗), ..., vn(s, x⃗)) , (s, x⃗) ∈ Ω̂

Then, consider the IVP
˙⃗
ξ = w⃗(ξ⃗) , ξ⃗(t0) = (t0, x⃗0)(•)
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Note that
(1) The differential equation (•) is autonomous, i.e the right hand side does not

depend upon I.
(2) ψ⃗ is a solution of (•).
(3) Given a solution ψ⃗ of (•), say

ψ⃗ = (ψ0, ψ1, ..., ψn)

then we see that ψ0(t) = t for any t ∈ J and if φi := ψi then φ⃗ = (φ1, ..., φn)
is a solution of (†).

Note that the DE (•) is an autonomous DE. So these observations tell us that to study
IVPs of the form (†), it is enough to restrict our attention to autonomous DEs, i.e
DEs of the form

˙⃗x = v⃗(x⃗) , x⃗(t0) = x⃗0

1.4. Autonomous equations when n = 1. Consider the following autonomous IVP
(since the dimension is 1, we won’t put an arrow):

ẋ = v(x) , x(t0) = x0(∗)

where v : Ω → R is a C 1 map on an open interval Ω of R, x0 is a fixed state in Ω and
t0 a time point.

1.4.1. Time Reversal. Let φ : (a, b) → Ω be a solution of (∗). Recall that this implies
that t0 ∈ (a, b). The map

φtr : (2t0 − b, 2t0 − a) → Ω

given by
φtr(t) = φ(2t0 − t) , 2t0 − b < t < 2t0 − a

is a solution of the differential equation

ẋ = −v(x) , x(t0) = x0(∗tr)

The IVP (∗tr) is called the time reversal of (∗) (we will see the reason behind the
terminology) and the map φtr is called the time reversal of φ.

1.4.2. State Reversal. Let φ : (a, b) → Ω be a solution to (∗). Set

−Ω = {x ∈ R | − x ∈ Ω}

Let
vsr : −Ω → R

be the map vsr(x) = −v(−x). Then vsr is C 1 and vsr(−x0) = −v(x0). Let

φsr : (a, b) → −Ω

be the map φsr(t) = −φ(t) for t ∈ (a, b). Then, φsr is a solution of the IVP

ẋ = vsr(x) , x(t0) = −x0(∗sr)

The IVP (∗sr) is called the state reversal of (∗) and φsr is called the state reversal of
φ.
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Figure 1. The curve in blue is φ, the one in red is φtr the one in orange
is φsr and the basepoint is t0 = 0. The time reversal is like flipping the
graph of φ around the axis t = t0. The state reversal is like flipping the
graph of φ around the x = 0 axis.

We now introduce a few more terms related to (∗). A state x ∈ Ω is said to be regular if
v(x) 6= 0. Otherwise it is called stationary or singular, i.e x is stationary (or singular)
if v(x) = 0. We use the following notation.

Ωreg := {x ∈ Ω | v(x) 6= 0}
Ωsing := {x ∈ Ω | v(x) = 0}

Note that Ωreg is an open subset of Ω, and hence an open subset of R. Also, Ωsing is a
closed subset of Ω.

1.4.3. Solving the equation. Suppose x0 ∈ Ωreg. Let
Smax = (xm, xM) ⊆ Ωreg

be the largest interval containing x0 which lies in Ωreg. In other words Smax is the
connected component of the open set Ωreg containing x0.

Since v is nowhere vanishing on Smax, it has a constant sign on it. Let
θ : Smax = (xm, xM) → R

be the function defined by

θ(x) = t0 +

∫ x

x0

dξ

v(ξ)
, x ∈ Smax(⋆)

Since v(ξ) has a constant sign for ξ ∈ Smax, θ is strictly monotone and hence one-to-one.
Moreover, θ is continuous (infact C 2). So let

θ(Smax) = (ω−, ω+) =: Jmax

Let φmax : Jmax → Smax be the inverse of θ, i.e φmax = θ−1. The Inverse Function
Theorem shows that φmax is differentiable and C 2. Now,

θ(φmax(t)) = t
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and hence
dθ

dx
(φmax(t))φ̇max(t) = 1

and because dθ
dx

= 1
v
, it follows that

φ̇max(t)

v(φmax(t))
= 1

So, we see that
φ̇max(t) = v(φmax(t)) , φmax(t0) = x0

and hence it follows that (∗) has a solution, namely the function φmax : (ω−, ω+) → Ω.

1.4.4. The nature of the solutions. Having shown that a solution to (∗) exists, we will
see how solutions to this equation look like.

First, suppose φ : (a, b) → Ωreg is a solution of (∗). Note that we are requiring φ
to take values in Ωreg. We will soon see that every solution of (∗) takes values in Ωreg.
Let J = (a, b). Because φ is continuous, φ(J) is connected and contains x0. Hence, it
follows that φ(J) ⊆ (xm, xM) = Smax (this is true since Smax is the largest interval in
Ωreg containing x0). Now, we know that v(φ(s)) 6= 0 for s ∈ (a, b) = J . Also, we know
that

φ̇(s) = v(φ(s)) , s ∈ (a, b)

So we have that
φ̇(s)

v(φ(s))
= 1 , ∀s ∈ (a, b)

Integrating both sides of the above equation from t0 to t for some t ∈ (a, b) = J we
get ∫ t

t0

˙φ(s)

v(φ(s))
ds =

∫ t

t0

ds = t− t0 , t ∈ J

Now use the substitution ξ = φ(s) to get∫ φ(t)

x0

dξ

v(ξ)
= t− t0 , t ∈ J

which we rewrite as
t0 +

∫ φ(t)

x0

dξ

v(ξ)
= t , t ∈ J

Now, let θ be the function we defined by equation (⋆) in the previous section 1.4.3.
The above equation implies that

θ(φ(t)) = t

Now two things follow from this equation: first is that J ⊆ (ω−, ω+) since the image
of θ is (ω−, ω+) = Smax. Note that φ̇ = v ◦ φ which is nowhere vanishing, and hence
φ is also one-one. All this implies that φ is an inverse of θ. So, the above equation
implies that φ is an inverse of θ and we see that

J = (a, b) ⊆ (ω−, ω+) = Smax and φ−1 = θ|J
So, it follows that φ = φmax|(a,b).

To summarise, if φ : (a, b) → Ωreg is a solution of (∗), then{
(a, b) ⊆ (ω−, ω+)

φ = φmax|(a,b)
(∗∗)
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The statement (∗∗) explains why we used the notation φmax. As we mentioned before,
we can infact make a stronger statement: if φ : (a, b) → Ω is a solution of (∗), then φ
must take values in Ωreg, and hence (∗∗) has to be true for φ.

1.4.5. Some Observations. Let θ and φmax be the functions as in section 1.4.3. θ and
φmax being monotone and continuous are homomomorphisms between (xm, xM) and
(ω−, ω+). If v(x0) > 0, they are both strictly increasing, and if v(x0) < 0 they are
both strictly decreasing. This gives us the following.

(1) If v(x0) > 0 then
lim
x→xm

θ(x) = ω− , lim
x→xM

θ(x) = ω+

and
lim
t→ω−

φmax(t) = xm , lim
t→ω+

φmax(t) = xM

(2) If v(x0) < 0 then
lim
x→xm

θ(x) = ω+ , lim
x→xM

θ(x) = ω−

and
lim
t→ω−

φmax(t) = xM , lim
t→ω+

φmax(t) = xm

Remark 1.0.2. Note that, in our discussion thus far, ω− and ω+ are allowed to be
−∞ and ∞ respectively. Similar is the case with xm and xM .

Suppose, for the sake of definiteness, v(x0) > 0. Hence, in this case point number (1)
above applies. We claim that if xM ∈ Ω, then ω+ = ∞. First, note that if xM ∈ Ω
then v(xM) = 0, because (xm, xM) is the largest interval contained in Ω that contains
x0 and v is continuous. Next, let

M = sup{|v̇(ξ)| | ξ ∈ [x0, xM ]}
Note that 0 < M <∞; M is finite because [x0, xM ] is a compact set and v is C 1. By
the mean value theorem, for each x ∈ [x0, xM) there exists x∗ ∈ [x, xM) such that

v(x) = v(x)− v(xM) = v̇(x∗)(x− xM)

and using the fact that v does not change sign on (xm, xM) we have
v(x) = |v(x)| ≤M(xM − x) , x ∈ [x0, xM)

This means that
1

v(ξ)
≥ 1

M
· 1

xM − ξ
, ξ ∈ [x0, xM)

Hence for x ∈ [x0, xM) we see that

θ(x) = t0 +

∫ x

x0

dξ

v(ξ)
≥ t0 +

1

M

∫ x

x0

dξ

xM − ξ

= t0 +
1

M
log xM − x0

xM − x

So, it follows that

ω+ = lim
x→xM

θ(x) ≥ t0 +
1

M
lim
x→xM

logxM − x0
xM − x

= ∞

Lemma 1.1. Suppose v(x0) 6= 0, or equivalently x0 ∈ Ωreg .
(1) If v(x0) > 0 and xM ∈ Ω, then ω+ = ∞.
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Figure 2. v(x0) > 0 and xM ∈ Ω =⇒ ω+ = ∞

Figure 3. v(x0) < 0 and xM ∈ Ω =⇒ ω− = −∞

(2) If v(x0) < 0 and xM ∈ Ω then ω− = −∞.
(3) If v(x0) < 0 and xm ∈ Ω then ω+ = ∞.
(4) If v(x0) > 0 and xm ∈ Ω then ω− = −∞.

Proof. We have proved (1) in the above discussion. Part (2) is obtained by applying
(1) to the time reversal (∗tr) of φmax. Part (3) is obtained by applying (1) to the state
reversal (∗sr) of φmax. Part (d) is obtained by applying (2) to the state reversal (∗sr)
of φmax. I have included some pictures to explain things a bit better. See figures 2, 3
and 4 for cases (1), (2) and (3) respectively. ■

Proposition 1.2. Let φ : (a, b) → Ω be a solution of (∗) with x0 ∈ Ωreg. Let
θ, φmax, xm, xM , ω−, ω+ etc. be as before. Then

(1) φ takes values in Ωreg.
(2) (a, b) ⊆ (ω−, ω+).
(3) φ = φmax|(a,b).



10 SIDDHANT CHAUDHARY

Figure 4. v(x0) < 0 and xm ∈ Ω =⇒ ω+ = ∞

Proof. Parts (2) and (3) follow from (1) in view of the statement (∗∗) that we proved
before. So, it is enough to prove (1). Let (α, β) be the connected component φ−1(Ωreg)
containing the point t0. Now φ|(α,β) takes values in Ωreg. So, from (∗∗) it follows that
(α, β) ⊆ (ω−, ω+) and

φ(s) = φmax(s) , ∀s ∈ (α, β)

It is enough to show that α = a and β = b. Without loss of generality we assume that
v(x0) > 0 (the case v(x0) < 0 can be handled by a state-reversal). Further, we will
show that b = β. The proof mutatis mutandis will show that a = α.

Because (α, β) ⊆ (ω−, ω+) and (α, β) ⊆ (a, b), we see that β ≤ b and β ≤ ω+.
For the sake of contradiction, suppose β < b and β < ω+. Now, by taking limits,
clearly φ(β) = φmax(β) ∈ Ωreg. This contradicts the fact that (α, β) is the largest
open interval containing t0 in φ−1(Ωreg). Therefore, either β = b or β = ω+. If β = b,
then we are done. So, suppose β = ω+ and β < b. Since φ is defined on (a, b), φ(β)
makes sense. Clearly, v(φ(β)) = 0, again by the fact that (α, β) is the largest open
interval containing t0 in φ−1(Ωreg). Moreover, φ is increasing on (α, β) because of the
assumption v(x0) > 0. All of this implies that

φ(β) = xM

This means that xM ∈ Ω, which then implies that ω+ = ∞ by Lemma 1.1 and hence
β = ∞. But then, β < b is a contradiction. So, if β = ω+ then β = b.

The same argument shows that α = a, and hence we are done. ■
Theorem 1.3. Consider the IVP (∗). Then there is a maximal solution (Jmax, φmax)
of (∗) such that if (J, φ) is a solution of (∗) then J ⊆ Jmax and φ = φmax|J .

Proof. Suppose v(x0) 6= 0. Then we have already seen that this is true in Proposition
1.2. So, suppose v(x0) = 0. We claim that the maximal solution to (∗) is the constant
function

φ(t) = x0 , ∀t ∈ R
In this case Jmax = R. It is clear that this constant function is a solution of (∗).
Conversely, suppose (J, ψ) is a solution of (∗). Suppose v(ψ(τ)) 6= 0 for some τ ∈ J .
Let x∗ = ψ(τ). Then ψ is a solution of the IVP

ẋ = v(x) , x(τ) = x∗
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So from Proposition 1.2, ψ takes values only in Ωreg, which is clearly a contradiction
because x0 ∈ J . ■
1.5. Picard-Lindelöf Theorem. In this section, we will prove a very useful and
important theorem for existence of solutions to certain ODEs.

1.5.1. Notation. Let A ⊆ Rn. A function f⃗ : A → Rn is said to be Lipschitz if there
is a constant L > 0 such that

||f⃗(x⃗)− f⃗(x⃗)|| ≤ L||x⃗− y⃗|| , ∀x⃗, y⃗ ∈ A

The constant L is called a Lipschitz constant for f⃗ .
Suppose I = [a, b] where a ∈ (−∞,∞) and b ∈ (a,∞]. We say f⃗ : I → Rn is C 1 if

d
dt

+|t=af⃗ exists, and the resultant function ˙⃗
f : I → Rn is continuous, where ˙⃗

f(a) is the
one-sided derivative we just mentioned. Similarly, we can make sense of C 1 functions
on intervals of the form (a, b] and [a, b]. If I is a closed and bounded interval in R,
then we denote the set of all continuous maps on I taking values in Rn by C(I, n). We
know from earlier courses that (C(I, n), || · ||∞) is a Banach space, i.e it is a complete
normed vector space.

To prove the existence and uniqueness of solutions to DEs to IVPs on I, it is more
convenient to work with a different norm denoted || · ||w. Let t0 be the midpoint of I
and |I| = 2b. Then, I is of the form [t0 − b, t0 + b]. Let L be a positive number. Then
we define

|| · ||w = || · ||w,L : C(I, n) → [0,∞)

by
||f⃗ ||w = supt∈I{e−2L|t−t0|||f⃗(t)||}

It is straightforward to check that this is a norm.
Lemma 1.4. || · ||w and || · ||∞ are equivalent norms.
Proof. It can be checked that

e−L2b · ||f⃗ ||∞ ≤ ||f⃗ ||w ≤ ||f⃗ ||∞ , ∀f⃗ ∈ C(I, n)

■
Theorem 1.5 (Picard-Lindelöf Theorem). Let a⃗ ∈ Rn, t0 ∈ R and let

v⃗ : [t0 − α, t0 + α]×B(a⃗, r) → Rn

be a continuous map with upper bound M for ||v⃗(t, x⃗)||. Suppose further that there
is a positive constant L such that for each t ∈ [t0 − α, t0 + α], the function v⃗(t, ) :
B(a⃗, r) → Rn is Lipschitz with Lipschitz constant L. Then the IVP

˙⃗x = v⃗(t, x⃗) , x⃗(t0) = a⃗

has a unique solution defined on [t0 − b, t0 + b] where b = min
{
α,

r

M

}
Proof. Let I = [t0 − b, t0 + b] where b is as in the statement of the theorem. Let
|| · ||w = || · ||w,L where L is the constant in the statement of the theorem. Recall

||f⃗ ||w = supt∈I{e−2L|t−t0|||f⃗(t)||}
Let

X = {f⃗ ∈ C(I, n) | f⃗(I) ⊆ B(a, r)}

= {f⃗ ∈ C(I, n) | ||f⃗(t)− a⃗|| ≤ r, t ∈ I}
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Clearly, X is closed in C(I, n). Therefore (X, || · ||∞) is complete. Since || · ||∞ and
|| · ||w are equivalent, (X, || · ||w) is also complete.

For f⃗ ∈ X and t ∈ I we define

(T f⃗)(t) = a⃗+

∫ t

t0

v⃗(s, f⃗(s))ds

By the fundamental theorem of calculus, the map t 7→ (T f⃗)(t) is differentiable on I
and hence it is continuous. Moreover, we have

||(T f⃗)(t)− a⃗|| =
∣∣∣∣∣∣∣∣∫ t

t0

v⃗(s, f⃗(s))ds

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∫ t

t0

||v⃗(s, f⃗(s))||ds
∣∣∣∣

≤M

∣∣∣∣∫ t

t0

ds

∣∣∣∣
≤M(t− t0)

≤Mb

≤ r , since b = min
{
α,

r

M

}
Notice the absolute value signs above; we have put it for the case t < t0. So, it follows
that T f⃗ ∈ X. Hence we have a map T : X → X. Suppose f⃗ , g⃗ ∈ X. Then (again we
put an absolute value sign everywhere for the case t < t0)

e−2L|t−t0| · ||(T f⃗)(t)− (T g⃗)(t)|| = e−2L|t−t0|
∣∣∣∣∣∣∣∣∫ t

t0

{v⃗(s, f⃗(s))− v⃗(s, g⃗(s))}ds
∣∣∣∣∣∣∣∣

≤ e−2L|t−t0|
∣∣∣∣∫ t

t0

||v⃗(s, f⃗(s))− v⃗(s, g⃗(s))||ds
∣∣∣∣

≤ e−2L|t−t0| · L
∣∣∣∣∫ t

t0

||f⃗(s)− g⃗(s)||ds
∣∣∣∣

≤ Le−2L|t−t0|
∣∣∣∣∫ t

t0

e2L|s−t0|||f⃗ − g⃗||wds
∣∣∣∣

=
L||f⃗ − g⃗||we−2L|t−t0|

2L

∣∣e2L|t−t0| − 1
∣∣

=
1

2
||f⃗ − g⃗||w(1− e−2L|t−t0|)

=
1

2
||f⃗ − g⃗||

So, it follows that
||T f⃗ − T g⃗||w ≤ 1

2
||f⃗ − g⃗||w

Hence, T is a contraction mapping with contraction factor 1
2
. By the contraction

mapping theorem, it follows that T has a unique fixed point in X, say φ⃗. This fact
translates to the equation

φ(t) = a⃗+

∫ t

t0

v⃗(s, φ⃗(s))ds
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and hence φ⃗ is a solution of the given IVP.
Conversely if ψ⃗ is a solution of the given IVP in [t0−b, t0+b] then by the fundamental

theorem of calculus, for t ∈ I we have

ψ⃗(t) = a⃗+

∫ t

t0

˙⃗
ψ(s)ds

= a⃗+

∫ t

t0

v⃗(s, ψ⃗(s))ds(†)

Hence for t ∈ I we have

|ψ⃗(t)− a⃗| =
∣∣∣∣∫ t

t0

v⃗(s, ψ⃗(s))ds

∣∣∣∣
≤M |t− t0|
≤Mb ≤ r

Thus ψ⃗ ∈ X. From (†) we see that T ψ⃗ = ψ⃗ and hence by uniqueness of the fixed
point if follows that ψ⃗ = φ⃗. This completes our proof. ■
Definition 1.2. Let Ω be a domain in R × Rn, i.e Ω is a connected open subset of
Rn+1. A map

v⃗ : Ω → Rn

is said to be locally Lipschitz with respect to the second variable (or in our case, with
respect to the phase) if it is continuous and for each (t0, a⃗) ∈ Ω, there is a positive
number L = L(t0, a⃗) and a product set I × U containing (t0, a⃗) as an interior point
such that for each t ∈ I, the restriction of v⃗(t, ) to U is Lipschitz continuous with
Lipschitz constant L = L(t0, a⃗). We say it is uniformly Lipschitz if L(t0, a⃗) does not
depend upon the point (t0, a⃗).

1.6. Maximal Intervals of Existence. Let Ω be a domain in R × Rn and let v⃗ :
Ω → Rn a continuous map such that for each (t0, a⃗) ∈ Ω the IVP

˙⃗x = v⃗(t, x⃗) , x⃗(t0) = a⃗(∗t0 ,⃗a)
has a solution on some interval I (open, closed or half open) containing t0 in its interior,
and the solution is unique on this interval.

Let us fix the point (t0, a⃗) ∈ Ω. If I is an interval on which the solution to (∗t0 ,⃗a)
with t0 in the interior of I, we call I an interval of existence for (∗t0 ,⃗a).

Now, suppose I1, I2 are open intervals of existence for (∗t0 ,⃗a) . Let φ⃗1 and φ⃗2 be
solutions of (∗t0 ,⃗a) in I1, I2 respectively. From the hypothesis, the set

S := {t ∈ I1 ∩ I2 | φ⃗1(t) = φ⃗2(t)}
is open. Indeed, if τ ∈ S and a⃗∗ = φ⃗1(τ) = φ⃗2(τ) then φ⃗1 and φ⃗2 are solutions of
(∗τ,⃗a) (i.e the initial timepoint is τ and the initial phase is a⃗∗), so in a neighborhood of
τ , φ⃗1 and φ⃗2 agree. On the other hand, S is clearly closed (in I1∩ I2) and non-empty,
since t0 ∈ S. Since I1 ∩ I2 is connected this means S = I1 ∩ I2, because the only sets
which are both closed in a connected set are the empty set and the set itself. So we
see that

φ⃗1 and φ⃗2 agree on I1 ∩ I2
From the above, the union of all open intervals of existence for (∗t0 ,⃗a) is also an interval
of existence; we have shown that the solutions agree on the intersection of any two
open intervals, hence the solution can be extended to the union of all the intervals.
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Moreover, this union will not be a disjoint union because the point t0 belongs to all
the intervals of existence. Now, let

Jmax = (ω−, ω+) :=
⋃

I

where the union is taken over all open intervals of existence of (∗t0 ,⃗a). Clearly, it
follows that Jmax is an open interval of existence of (∗t0 ,⃗a).

Now suppose I is an interval of existence of (∗t0 ,⃗a) (not necessarily open). If I is
open, clearly I ⊆ Jmax. If I is not open, then it is still true that I ⊆ Jmax, and we now
show this. Without loss of generality, suppose I = (a, b], i.e I has a right boundary
point, and let φ⃗ be the solution of (∗t0 ,⃗a) on this interval I. Put a∗ = φ⃗(b). From
our hypothesis, there is an open interval I ′ = (b − δ1, b + δ2) of existence of (∗b,⃗a∗)

with δ1, δ2 > 0, and let the solution on the interval I ′ be φ⃗′. So, we can extend the
map φ⃗ to the open interval (a, b + δ2) by making it equal to φ⃗′ on (b, b + δ2). By
this, φ⃗ becomes a solution to (∗t0 ,⃗a) on the open interval (a, b + δ2). So, we see that
I ⊆ (a, b+ δ2) ⊆ Jmax, and hence we are done.

Remark 1.5.1. In all of this, we have assumed that the intervals have non-empty
interiors. The degenerate cases where the intervals are singletons are not interesting.

1.7. The General Existence Theorem. Now we will prove the following existence
theorem in higher dimensions.

Theorem 1.6. Suppose Ω is a domain in R×Rn and v⃗ : Ω → Rn a locally Lipschitz
continuous function with respect to the second variable. Let (t0, a⃗0) ∈ Ω. Then the
IVP

˙⃗x = v⃗(t, x⃗) , x⃗(t0) = a⃗0(∗t0,a⃗0)
has a maximal interval of existence, and is of the form (ω−, ω+) with ω− ∈ [−∞,∞)
and ω+ ∈ (−∞,∞]. There is a unique solution

φ⃗0 = φ⃗(t0,a⃗0) : (ω−, ω+) → Rn

of (∗t0,a⃗0) on (ω−, ω+) and any solution of (∗t0,a⃗0) on an interval I containing t0 is the
restriction of φ⃗0 to I. The variable point (t, φ⃗0(t)) leaves every compact subset K of
Ω as t ↓ ω− and as t ↑ ω+.

Proof. I claim that only the last statement needs to be proven, and everything else
has been proven. This is so because at the point (t0, a⃗0) we can use the local Lipschitz
continuity (w.r.t the second variable) of v⃗, and apply the Picard-Lindelöf Theorem
1.5 to get the existence of a unique solution to (∗t0,a⃗0). The existence of maximal
intervals follows from the discussion in the subsection 1.6.

So, let K ⊆ Ω be any compact subset. For each (t, a⃗) ∈ K, pick a closed rectangle
[t − 2α(t, a⃗), t + 2α(t, a⃗)] × B(a⃗, 2ρ(t, a⃗)) (where α⃗(t, a⃗) and ρ(t, a⃗) depend on the
point (t, a⃗), and notice the factor of 2) such that this closed rectangle is contained in
Ω and in which v⃗ is uniformly Lipschitz in the second variable; such a rectangle exists
because Ω is an open set and v⃗ is locally Lipschitz.

The sets (t−α, t+α)×B(a⃗, ρ) (where again α and ρ are dependent on (t, a⃗)) form
an open cover of K as (t, a⃗) varies over K. By the compactness of K, we have a finite
subcover. So, K is covered by a finite union of closed rectangles

K ⊆
m⋃
i=1

[ti − αi, ti + αi]×B(a⃗i, ρi)
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Now, let K ′ be the union of closed rectangles

K ′ =
m⋃
i=1

[ti − 2αi, ti + 2αi]×B(a⃗i, 2αi)

Let (t, a⃗) ∈ K. Then, (t, a⃗) ∈ [ti − αi, ti + αi] × B(a⃗i, ρi) for some 1 ≤ i ≤ m. Then
from the triangle inequality we have the following.

[t− αi, t+ αi]×B(a⃗, ρi) ⊆ [ti − 2αi, ti + 2αi]×B(a⃗, 2ρi)(•)

Note that K ′ is compact being a finite union of closed rectangles. Let
M = sup(t,⃗a)∈K′||v⃗(t, a⃗)||
α = min1≤i≤mαi

r = min1≤i≤mρi

b = min
{
α,

r

M

}
On each rectangle [ti−2αi, ti+2αi]×B(a⃗, 2ρi), we know that v⃗ is uniformly Lipschitz.
By (•), it is therefore uniformly Lipschitz on [t−α, t+α]×B(a⃗, r). So by the Picard-
Lindelöf Theorem 1.5 we know that if (τ, a⃗) ∈ K then there is a unique solution
φ(τ,⃗a) on [τ − b, τ + b] to the IVP

˙⃗x = v⃗(t, x⃗) , x⃗(τ) = a⃗(∗τ,⃗a)

Note that the above equation gives us a family of IVPs as (τ, a⃗) varies over K, but
note that the constant b does not vary; in other words, as (τ, a⃗) varies over K we get
a different IVP, but the interval of existence of the solution, which is [τ − b, τ + b], has
fixed length.

Note that φ⃗0 = φ⃗(t0,a⃗0) where φ⃗0 is an in the statement of the theorem. Suppose
τ ∈ (ω−, ω+) and a⃗ = φ⃗0(t). From the uniqueness of solutions, clearly φ⃗0 = φ⃗(τ,⃗a).
Moreover, the maximal interval of existence of φ⃗(τ,⃗a) is therefore also (ω−, ω+). So, it
follows that if τ ∈ (ω−, ω+) and (τ, φ⃗0(τ)) ∈ K then [τ − b, τ + b] ⊆ (ω−, ω+), i.e

(τ, φ⃗0(τ)) ∈ K =⇒ ω− + b < τ < ω+ − b

It follows that if τ ∈ [ω+ − b, ω+) then (τ, φ⃗0(τ)) /∈ K and if τ ∈ (ω−, ω− + b] then
(τ, φ⃗0(τ)) /∈ K. This proves the claim if both ω− 6= −∞ and ω+ = ∞. If ω− = −∞ or
ω+ = ∞, the claim is trivially true because K, being a compact set, is bounded. ■
Corollary 1.6.1. If U ⊆ Rn is a bounded open set and Ω = (c, d)× U with (c, d) an
open interval in R, then either ω+ = d or φ⃗0(t) → ∂U as t ↑ ω+, and either ω− = c
or φ⃗0(t) → ∂U as t ↓ ω−.

Proof. We will only prove the statement for ω+, and the statement for ω− will have
an analogous proof. Suppose ω+ 6= d. Then ω+ < d and for ϵ > 0 sufficiently small
−ϵ+ ω+ ∈ (c, d). Let

f : Rn → [0,∞)

be the function given by
f(x) = infz⃗∈∂U ||x⃗− z⃗||

or in simple words, f is the distance from ∂U . Clearly, f is a continuous function. For
ϵ > 0, put

Γϵ = {x⃗ ∈ U | f(x⃗) ≥ ϵ}
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and let Kϵ = [−ϵ+ ω+, ω+]× Γϵ. Then Kϵ is compact and for sufficiently small ϵ, Kϵ

is a non-empty subset of Ω.
So by Theorem 1.6, (t, φ⃗0(t)) exits Kϵ. It cannot exit anywhere on {ω+} × Γϵ, for

φ⃗0(t) does not make sense for t = ω+. Thus, there exists τϵ ∈ [−ϵ+ω+, ω+) such that
f(φ⃗0(t)) < ϵ for all t ∈ [τϵ, ω+). This proves φ⃗0(t) → ∂U as t ↑ ω+. This completes
the proof. ■

Corollary 1.6.2. If Ω = (c, d) × Rn with (c, d) an open interval in R then either
ω+ = d or ||φ⃗0(t)|| → ∞ as t ↑ ω+, and either ω− = c or ||φ⃗0(t)|| → ∞ as t ↓ ω−.

Proof. Apply Corollary 1.6.1 to (c, d)× B(⃗0, n) where n ∈ N. If ω+ 6= d, i.e ω+ < d

then φ⃗0(t) → S (⃗0, n) as t → ω+ (here S (⃗0, n) = {x ∈ R | ||x⃗|| = n}). Let n → ∞.
Clearly, ||φ⃗0(t)|| → ∞ as t ↑ ω+. A similar argument works for ω−. This completes
the proof. ■

1.8. First Order Linear Equations. Let ||·||◦ be the operator norm on HomR(Rn,Rm)
as well as on Mm,n(R), the space of m× n real matrices.

We know that if A ∈ HomR(Rn,Rm) then

||A||◦ = sup
||x⃗||=1

||Ax⃗||

Theorem 1.7. Let I ⊆ R be an interval (closed, half-open or open, but with non-empty
interior), A : I → Mn(R) and g⃗ : I → Rn continuous maps. Let (t0, a⃗0) ∈ I × Rn.
Then the IVP

˙⃗x(t) = A(t)x⃗(t) + g⃗(t) , x⃗(t0) = a⃗0(∗)

has a unique solution on I.

Remark 1.7.1. Equations of the above form are called linear differential equations.
If g⃗(t) is identically zero, then it is called a homogeneous linear differential equation.

Proof. Note that we can find an increasing sequence of closed intervals

I0 ⊂ I1 ⊂ I2 ⊂ ... ⊂ In ⊂ ...

such that I =
⋃
In. Therefore, it is enough to assume that I is closed, say I = [c, d].

Next, let
M := sup

I
||⃗g(t)|| , L := sup

I
||A(t)||◦

Note that if we set v⃗(t, x) = A(t)x⃗(t) + g⃗(t) then

||v⃗(t, x)− v⃗(t, y)|| = ||A(t)x⃗− A(t)y⃗||
≤ ||A(t)||◦||x⃗− y⃗||
≤ L||x⃗− y⃗||

So v⃗ is uniformly Lipschitz in the second variable on I.
For η > 0, let Iη = (c − η, d + η). Set Ω = Iη × Rn. Extend A to Iη by setting

A(t) = A(d) for d ≤ t < d + η and A(t) = A(c) for c − η < t ≤ c. Similarly,
extend g⃗ to Iη by the same recipe. Now A and g⃗ are continuous on Iη. Again set
v⃗(t, x⃗) = A(t)x⃗(t) + g⃗(t) for t ∈ Iη. Note that M remains the supremum of ||⃗g(t)|| on
Iη, and L the supremum of ||A(t)||0 on Iη. Clearly the extended v⃗ is also uniformly
Lipschitz in the second variable on Iη.
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Let Jmax = (ω−, ω+) be the maximal interval of existence for our (extended) IVP.
Recall that Ω = Iη ×Rn. For simplicity consider t ∈ [t0, ω+) (the case t ∈ (ω−, t0] can
be handled similarly). Let

K = ||⃗a0||+M(ω+ − t0)

Let φ⃗0 : Jmax → Ω be the maximal solution of our (extended) IVP. Then for t ∈ [t0, ω+)

φ⃗0(t) = a⃗0 +

∫ t

t0

A(s)φ⃗0(s)ds+

∫ t

t0

g⃗(s)ds

Therefore

||φ⃗0(t)|| ≤ ||⃗a0||+
∫ t

t0

||A(s)||0||φ⃗0(s)||ds+
∫ t

t0

||⃗g(s)||ds

≤ ||⃗a0||+ L

∫ t

t0

||φ⃗0(s)||ds+M

∫ t

t0

ds

= ||⃗a0||+M(t− t0) + L

∫ t

t0

||φ⃗0(s)||ds

≤ ||⃗a0||+M(ω+ − t0) + L

∫ t

t0

||φ⃗0(s)||ds

So from all this, we get

||φ⃗0(t)|| ≤ K + L

∫ t

t0

||φ⃗0(s)||ds(∗∗)

Let f(t) =
∫ t
t0
||φ⃗0(s)||ds. Then (∗∗) amounts to

f ′(t) ≤ K + Lf(t) =⇒ f ′(t)− Lf(t) ≤ K(†)

Now we use the trick of multipliying by the integrating factor. So, multiplying both
sides above by e−Lt we get

e−Lt[f ′(t)− Lf(t)] ≤ e−LtK

which means
d

dt

{
e−Ltf(t)

}
≤ e−LtK

So integrating both sides of the above inequality, we get∫ t

t0

d

ds
{e−Lsf(s)}ds ≤ K

∫ t

t0

e−Lsds

and this implies that

e−Ltf(t)− e−Lt0f(t0) ≤
K

−L
(e−Lt − e−Lt0)

Because f(t0) = 0, this gives us

e−Ltf(t) ≤ K

L
(e−Lt0 − e−Lt)

and hence
f(t) ≤ K

L
(eL(t−t0) − 1)
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Substitute this inequality back in the inequality (†) and we get

f ′(t) ≤ K + L
K

L
(eL(t−t0) − 1)

= KeL(t−t0)

≤ KeL(ω+ − t0)

and all of this means
||φ⃗0(t)|| ≤ KeL(ω+−t0)

This means that ||φ⃗0(t)|| is bounded on [t0, ω+). So, Corollary 1.6.2 implies that
ω+ = d+ η, because if ω+ < d+ η, ||φ⃗0(t)|| will be unbounded. Similarly, ω− = c− η.

This shows that φ⃗0 exists on I. This is what we had to prove. ■

Remark 1.7.2. φ⃗0(t) depends upon the point (t0, a⃗0) and hence φ⃗0(t) = φ⃗(t0, a⃗0, t).
We will show (if v⃗ is C 1 in x⃗) that φ⃗ depends smoothly on (t0, a⃗0).

1.9. More on Linear DEs and Variation of Parameters. For this subsection, let
I and A be fixed as in Theorem 1.7. Define

T : C 1(I) → C 0(I)

by T f⃗ =
˙⃗
f − Af⃗ . Here, for non-negative integer k, C k(I) is the set C k(I,Rn), the

R-vector space of C k maps from I to Rn.
Clearly, T is a linear map. It is also surjective because if g⃗ ∈ C 0(I) we know that

the linear DE (∗) has a solution. Let φ⃗ be a solution of (∗). Then clearly T φ⃗ = g⃗.
Let

S := Ker(T )
Clearly S is the set of solutions of the homogeneous linear DE

˙⃗x = Ax⃗(∗∗)

on I. Note that automatically S gets a natural structure of an R-vector space. As in
problem 5). of HW-2 we can prove that S has dimension n.

Theorem 1.8. Let A, I, T, S be as above. Then the following are true.
(1) T : C 1(I) → C 0(I) is surjective.
(2) S has dimension n.

Proof. The proof is summarised in the above discussion. ■

Let g⃗ ∈ C 0(I). We know T−1(g⃗) is non-empty since T is surjective. Moreover, T is a
linear transformation with null space S. So if φ⃗ ∈ T−1(g⃗) then

T−1(g⃗) = S + φ⃗

In this case, φ⃗ is said to be a particular solution of (∗) and S is the set of solutions of
the homogeneous linear DE (∗∗).

In summary, the general solution of the linear DE (∗) is of the form

φ⃗ = c1φ⃗1 + ...+ cnφ⃗n + φ⃗p

where c1, ..., cn are arbitrary constants, φ⃗1, ..., φ⃗n is a basis of S, i.e a set of linearly
independent solutions of (∗∗) and φ⃗p is a particular solution of (∗). The term c1φ⃗1 +
...+ cnφ⃗n is called the complementary solution.
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1.9.1. Variation of Parameters. Consider the linear DE (∗) with A and g⃗ in C 0(I).
Suppose further that we have a basis φ⃗1, ..., φ⃗n of S. Let M be the square matrix
whose ith column is φ⃗i, i.e

M =
[
φ⃗1 ... φ⃗n

]
Now we have that

M : I → GLn(R)
and the fact that the range of M is GLn(R) is actually not hard to see, and is problem
3). of HW-3. Moreover, since each entry in M is C 1, therefore M is C 1. Also, we
have

Ṁ =
[
˙⃗φ1 ... ˙⃗φn

]
=
[
Aφ⃗1 ... Aφ⃗n

]
= A

[
φ⃗1 ... φ⃗n

]
= AM

and hence
Ṁ = AM(•)

Let ψ⃗ be the solution of (∗). For t ∈ I, since M(t) is invertible we can find scalars
u1(t), ..., un(t) such that

ψ⃗(t) = u1(t)φ⃗1(t) + ...+ un(t)φ⃗n(t)

Indeed, set

u⃗(t) =

u1(t)...
un(t)

 =M(t)−1

ψ⃗1(t)
...

ψ⃗n(t)

 =M(t)−1ψ⃗(t)

Then clearly M(t)u⃗(t) = ψ⃗(t), and so the required u1(t), ..., un(t) have been found.
Infact, since M(t) is invertible, u⃗(t) is actually unique. Since

M−1 : I → GLn(R)
is continuous, it follows that u⃗ : I → Rn given by u⃗ =M−1ψ⃗ is also continuous.

So we can translate the problem of finding a particular solution ψ⃗ of (∗) to the
following: find continuous u⃗ : I → Rn such that M u⃗ is a solution of (∗). Let u⃗ be
such a function. Then by problem 4). of HW-3 and equation (•) we see that

d

dt
(M u⃗) = Ṁ u⃗+M ˙⃗u

= AM u⃗+M ˙⃗u

On the other hand, since M u⃗ is a solution of (∗) we have
d

dt
(M u⃗) = AM u⃗+ g⃗

Equating the right sides of the above equations we get

M ˙⃗u = g⃗

and hence we see that
u⃗ =

∫
(M−1g⃗)(t)dt
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With this u⃗, a solution of (∗) is

ψ⃗(t) =M(t)

∫ t

t0

(M−1g⃗)(s)ds

1.10. One Parameter Group of Transformations. Let M be any set, and let
g : R×M →M

be an action of the additive group R on M . For fixed t ∈ R, write gt :M →M be the
map given by the formula

gt(m) = g(t,m)

Being a group action, we can regard g as a homomorphism
g : R → Aut(M)

We have the following two relations, which are immediate.
gtgs = gt+s(∗)
g0 = 1M

Definition 1.3. Any map g : R ×M → M satisfying (∗) is called a one-parameter
group of transformations. This is often denoted {gt}. The pair (M, {gt}) is called a
phase flow.

Definition 1.4. Let (M, {gt}) be a phase flow. Then M is called the phase or state
space of the flow. A point of M is called a phase point or a state.

Definition 1.5. Let x be a phase point. The map
φ = φx : R →M

given by
φ(t) = gtx

is called the motion of x under the flow (M, {gt}). Its image is called the phase curve
of x.

Remark 1.8.1. From this point on, whenever the term manifold is used, we can just
think of it as an open set in Rn.

Definition 1.6. By a one-parameter group {gt} of diffeomorphisms of a manifold M
(which can be thought of as a domain in Euclidean space) is meant a mapping

g : R×M →M , g(t, x) = gtx , t ∈ R, x ∈M

of R×M into M such that
(1) g is a C 2 mapping.
(2) The mapping gt :M →M is a diffeomorphism for every t ∈ R.
(3) The family {gt | t ∈ R} is a one-parameter group of transformations.

Remark 1.8.2. Note that condition (2) above is actually redundant, as condition (3)
forces condition (2).

Definition 1.7. A one-parameter group of linear transformations in Rn is a one-
parameter group of diffeomorphisms

g : R× Rn → Rn

such that gt : Rn → Rn is a linear transformation for every t ∈ R.
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Here is a review of what we will be doing.
(1) All one-parameter groups of linear transformations are of the form gt = etA

where A is a linear transformation. We will (later) define eA =
∑

Am

m!
for any

n× n matrix A.
(2) Consider the IVP

˙⃗x = v⃗(t, x⃗) , x⃗(τ) = a⃗

The solution φ⃗(τ,⃗a) depends upon the point (τ, a⃗). Rewrite as
φ⃗(τ,⃗a)(t) = φ⃗(τ, a⃗, t)

If v⃗ is C 1, then φ⃗ varies smoothly with τ, a⃗ and t.

1.10.1. The phase velocity associated with {gt}. Fix a one parameter group of diffeo-
morphisms {gt} on an open set M of Rn. For x⃗ ∈M , let

φ⃗x⃗ : R →M

be the map t 7→ gtx⃗. As before, we write

˙⃗φx =
d

dt
φ⃗x⃗

Note that
˙⃗φx⃗ : R → Rn

Definition 1.8. The phase velocity vector of {gt} at x⃗ ∈M is the vector v⃗(x⃗) given
by the formula

v⃗(x⃗) = ˙⃗φx⃗(0) = lim
h→0

φ⃗x⃗(h)− x⃗
h

The map v⃗ :M → Rn given by x⃗ 7→ v⃗(x⃗) is called the phase velocity field.

Theorem 1.9. Let v⃗ : M → Rn be the phase velocity vector field of a one-parameter
group of diffeomorphisms {gt} and let x⃗0 ∈ M . Then φ⃗x⃗0 (as defined above) is the
unique solution to the autonomous IVP

˙⃗x = v⃗(x⃗) , x⃗(0) = x⃗0

Proof. Uniqueness follow from Theorem 1.6; because the map g is assumed to be C 2,
we see that the map v⃗ is C 1, and we know that C 1 maps are locally Lipschitz. We
have to show that φ⃗x⃗0 is a solution to the given IVP. W e clearly have φ⃗x⃗0(0) = x⃗0,
and hence the initial conditions are satisfied. Furthermore, we have the following:

˙⃗φx⃗0
(s) = lim

h→0

φ⃗x⃗0(s+ h)− φ⃗x⃗0(s)

h

= lim
h→0

gs+h(x⃗0)− gs(x⃗0)

h

= lim
h→0

gh(gs(x⃗0))− gs(x⃗0)

h

= lim
h→0

φ⃗gs(x⃗0)(h)− gs(x⃗0)

h
= v⃗(gs(x⃗0))

= v⃗(φ⃗x⃗0(s))

and this completes the proof. ■



22 SIDDHANT CHAUDHARY

1.10.2. One-parameter group of linear transformations. Here, we will see an interesting
example of one-parameter groups.

A one-parameter group of linear transformations on Rn is a one-parameter group
{gt} of diffeomorhpisms of Rn such that each gt : Rn → Rn is a linear transformation.

Note that this gives us a group homomorphism

g : R → GLn(R)
such that g is C 2, where we are regarding GLn(R) as an open subset of Rn2 .

Let {gt} be a one-parameter group of linear transformations on Rn. We will compute
the phase velocity field. Because g : R × Rn → Rn is C 2, it follows that the map
R → GLn(R) ⊂ Rn2 given by t 7→ gt is C 2 (it’s a good little exercise to check why this
is true), and hence has continuous partial derivatives. Let

A =
dgt

dt
|t=0

and hence A ∈Mn(R). Because all norms on Rn2 are equivalent, we get that

lim
h→0

∣∣∣∣∣∣∣∣gh − In
h

− A

∣∣∣∣∣∣∣∣
◦
= 0

where || · ||◦ is the operator norm on Mn(R) and In is the identity matrix/map.
As usual let || · || be the standard Euclidean norm. We have the following.∣∣∣∣∣∣∣∣ghx⃗− x⃗

h
− Ax⃗

∣∣∣∣∣∣∣∣ = ∣∣∣∣∣∣∣∣(gh − In
h

− A

)
(x⃗)

∣∣∣∣∣∣∣∣
≤
∣∣∣∣∣∣∣∣gh − In

h
− A

∣∣∣∣∣∣∣∣
◦
· ||x||

The last quantity goes to 0 as h→ 0. So it follows that

lim
h→0

ghx⃗− x⃗
h

= Ax⃗

and hence by definition, Ax⃗ is the phase velocity at x⃗ for {gt}.

Remark 1.9.1. We will soon show that this forces gt = etA for any t ∈ R, where A
is as above. This will show that any one parameter group of linear transformations is
given by an exponential.

Remark 1.9.2. Consider the DE
˙⃗x = Ax⃗

We will show, after exponentials are defined, that {etA} is a one parameter group,
with phase velocity field v⃗(x⃗) = Ax⃗. From Theorem 1.9 it will then follow that
φ⃗a⃗(t) = etAa⃗ gives us a solution of the given DE with the initial condition x⃗(0) = a⃗.

1.11. The Exponential Map. Let n ∈ N be a fixed natural number. Let K ∈ {R,C}.
For R > 0, let

BR = {T ∈ HomK(Kn,Kn) | ||T ||◦ ≤ R}
Let

Sk(T ) =
k∑

m=0

Tm

m!
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For 0 ≤ l ≤ k we have

||Sk(T )− Sl(T )||◦ =

∣∣∣∣∣
∣∣∣∣∣

k∑
m=l+1

Tm

m!

∣∣∣∣∣
∣∣∣∣∣
◦

≤
k∑

m=l+1

||T ||m◦
m!

≤
k∑

m=l+1

Rm

m!

Since
∑

m≥0R
m/m! is convergent, the above chain of inequalities shows that {Sk} is

uniformly Cauchy on BR. Now because HomK(Kn,Kn) is a finite dimensional vector
space, it is a complete space and hence {Sk(T )} is a convergent sequence, and infact
it converges uniformly on BR. So, we conclude that

∞∑
m=0

Tm

m!
converges uniformly on compact subsets of HomK(Kn,Kn)

Definition 1.9. Let T ∈ HomK(Kn,Kn). The exponential eT of T is the element of
HomK(Kn,Kn) given by

eT =
∞∑
m=0

Tm

m!

Theorem 1.10. The exponential series for eT converges on compact subsets of HomK(Kn,Kn).
Also, if S and T are commuting elements of HomK(Kn,Kn) then

eT+S = eT eS

Proof. We only need to prove the second statement of the theorem. Now suppose
S and T are commuting linear maps on Kn. Since S and T commute, the binomial
theorem applies and we see that

||eS+T − Sk(S)Sk(T )||◦ =

∣∣∣∣∣
∣∣∣∣∣

∞∑
m=0

(S + T )m

m!
−

k∑
i=0

Si

i!

k∑
j=0

T j

j!

∣∣∣∣∣
∣∣∣∣∣
◦

=

∣∣∣∣∣
∣∣∣∣∣

∞∑
m=0

(S + T )m

m!
−

k∑
m=0

m∑
l=0

SlTm−l

l!(m− l)!

∣∣∣∣∣
∣∣∣∣∣
◦

=

∣∣∣∣∣
∣∣∣∣∣

∞∑
m=0

(S + T )m

m!
−

k∑
m=0

1

m!

m∑
l=0

(
m

l

)
SlTm−l

∣∣∣∣∣
∣∣∣∣∣
◦

=

∣∣∣∣∣
∣∣∣∣∣

∞∑
m=0

(S + T )m

m!
−

k∑
m=0

1

m!
(S + T )m

∣∣∣∣∣
∣∣∣∣∣
◦

=

∣∣∣∣∣
∣∣∣∣∣

∞∑
m=k+1

(S + T )m

m!

∣∣∣∣∣
∣∣∣∣∣
◦

≤
∞∑

m=k+1

(||S||◦ + ||T ||◦)m

m!
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(Update: there is an error in the above computation, but it can be suitably fixed).
The last term can be made as small as needed by choosing m large enough. So it
follows that Sk(S)Sk(T ) → eT+S as k → ∞, and this proves the claim. ■

1.11.1. Linear DE with constant coefficients. Suppose A ∈Mn(R). We show that etA
is a one-parameter group of linear transformations. Note that the equality

e(t+s)A = etAesA

holds for all t, s ∈ R by Theorem 1.10. So, we only have to check that the map
g : R× Rn → Rn, (t, x⃗) 7→ etAx⃗

is C 2. But this is true, and infact g is C ∞ because of the following: if we fix t ∈ R,
then the map etA : Rn → Rn is a linear map, and hence it is C ∞. Also, if we fix
x⃗ ∈ Rn, then the map etAx⃗ is given by a power series, and hence it is C ∞. So, all the
partial derivatives of g are C ∞, and hence g itself is C ∞.

Now, we show that
detA

dt
|t=0 = A

We have
detA

dt
|t=0 − A = lim

h→0

1

h
(ehA − In)− A

= lim
h→0

1

h

(
∞∑
m=0

hmAm

m!
− In

)
− A

= lim
h→0

∞∑
m=2

hm−1Am

m!

As h→ 0, we can assume that |h| ≤ 1, and hence |hm−1| ≤ |h| for m ≥ 2. So we have∣∣∣∣∣∣∣∣detAdt |t=0 − A

∣∣∣∣∣∣∣∣
◦
≤ lim

h→0
|h|

∞∑
m=2

||A||m◦
m!

≤ lim
h→0

|h|e||A||0 = 0

By definition, it follows that the phase velocity field of {etA} at x⃗ is Ax⃗. We have
actually proven the following theorem.

Theorem 1.11. Let A ∈ Mn(R), a⃗ ∈ Rn and φ⃗ : R → Rn be the map given by
φ⃗(t) = etAa⃗ and gt = etA for t ∈ R. Then φ⃗ is the unique solution to the IVP
˙⃗x = Ax⃗, x⃗(0) = a⃗.

Proof. We have seen that {etA} is a one-parameter group of linear transformations
in Rn, and the phase velocity field is given by v⃗(x⃗) = Ax⃗. Now we can just apply
Theorem 1.9. ■

Corollary 1.11.1. All one parameter groups of linear transformations in Rn are of
the form etA for some A ∈Mn(R).

Proof. Let {gt} be a one-parameter group of linear transformations on Rn. In section
1.10.2, we showed that the phase velocity vector of {gt} at some x⃗ ∈ Rn is given by
v⃗(x⃗) = Ax⃗, where

A =
dgt

dt
|t=0
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From Theorem 1.9 it follows that the map ψ⃗ : R → Rn given by ψ⃗(t) = gta⃗ is the
unique solution of the IVP ˙⃗x = Ax⃗, x⃗(0) = a⃗. However by Theorem 1.11 we also
know that the map φ⃗(t) = etAa⃗ is also a solution of this IVP. So we see that ψ⃗ = φ⃗,
and hence etA = gt for all t ∈ R. ■

1.12. Jordan Canonical Forms. A Jordan block matrix is a square matrix of the
form

J = J(λ) = Jn(λ) = J =



λ 1 0 0 0 ... 0
0 λ 1 0 0 ... 0
0 0 λ 1 0 ... 0
0 0 0 λ 1 ... 0
0 0 0 0 λ ... 0
... ... ... ... ... ...
0 0 0 0 0 0 λ


(1.1)

i.e the main diagonal consists of λ, and the super-diagonal consists of only 1. The rest
of the entries are 0.

Remark 1.11.1. The following are true of the matrix J(λ) above.
(1) λ is an eigenvalue of J(λ), and {e⃗1} is a basis for the corresponding eigenspace.
(2) Over an algebraically closed field, for any linear transformation T : V → V on

a finite dimensional vector space we can find a basis B = {v1, ..., vn} of V such
that the matrix of T with respect to v1, ..., vn looks something like the below
block-matrix form.

A =


J1

J2 0
0 ...

Jk


Here each Ji is a Jordan block matrix.

(3) The number of Jordan blocks corresponding to an eigenvalue λ is the geometric
multiplicity (i.e the dimension of the corresponding eigenspace) of λ.

(4) The Jordan form above for T is canonical, i.e upto permutation of the blocks
any two Jordan forms for T are the same.

(5) The Jordan decomposition given above decomposes V into a direct sum

V = V1 ⊕ V2 ⊕ · · · ⊕ Vk

with Vi corresponding to the Jordan block Ji and Ji can be regarded as a linear
operator on Vi. The sets B ∩ Vi for 1 ≤ i ≤ k partitions B into disjoint sets,
and for each i, B ∩ Vi is a basis of Vi.

(6) Suppose the field is C. The basis B can be chosen in a way such that the
following holds: if B∩Vi = {u⃗i1, ..., u⃗iri}, then the conjugates u⃗ij for j = 1, ..., ri
are also in B and form an ordered basis for some Vl in the given decomposition.
If the eigenvalue corresponding to Vi is real then Vl = Vk, otherwise Vl 6= Vk.

1.13. Real Jordan Canonical Forms. These are also called real canonical forms.
Let T ∈ HomR(Rn,Rn), and let TC : Cn → Cn be its complexification. Now, we can
find a basis B of Cn such that the matrix of TC with respect to the basis B is in Jordan
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canonical form 
J1

J2 0
0 ...

Jt


Suppose the Jordan decomposition decomposes Cn into a direct sum

Cn = V1 ⊕ · · ·Vt

Let V be one of the Vk and without loss of generality assume V = V1. Let J be the
corresponding Jordan block. Assume the eigenvalue corresponding to J is not real, i.e

λ /∈ R

Let B ∩ V = {u⃗1, ..., u⃗r} where the ordering of the subscripts is the same as the
ordering in B. We immediately see that

TC(u⃗1) = λu⃗1

TC(u⃗i) = u⃗i−1 + λu⃗i, , i = 2, ..., r

If w⃗i = u⃗i for 1 ≤ i ≤ r then as mentioned in point number (6) in Remark 1.11.1 we
see that {w⃗1, ..., w⃗r} is an ordered basis for some Vl 6= V . Without loss of generality,
we assume Vl = V2 and let W = V2. We see that

TC(w⃗1) = λw⃗1

TC(w⃗i) = w⃗i−1 + λw⃗i, , i = 2, ..., r

Also, we see that {u⃗1, ..., u⃗r, w⃗1, ..., w⃗r} is a basis for V ⊕W .
Now, for 1 ≤ j ≤ r, let

c⃗j =
1

2
(u⃗j + w⃗j) , d⃗j =

1

2i
(u⃗j − w⃗j)

and we immediately see that for each 1 ≤ j ≤ r

u⃗j = c⃗j + id⃗j , w⃗j = c⃗j − id⃗j

and the thing to note is that each c⃗j, d⃗j ∈ Rn. Also, note that the span of {u⃗1, ..., u⃗r, w⃗1, ..., w⃗r}
is equal to the span of {c⃗1, ..., c⃗r, d⃗1, ..., d⃗r}, and hence the set {c⃗1, ..., c⃗r, d⃗1, ..., d⃗r} is
a basis of V ⊕W .

If λ = a+ ib, then it can be shown that

T c⃗j =

{
ac⃗j − bd⃗j j = 1

c⃗j−1 + ac⃗j − bd⃗j 2 ≤ j ≤ r

and that

T d⃗j =

{
bc⃗j + ad⃗j j = 1

d⃗j−1 + bc⃗j + ad⃗j 2 ≤ j ≤ r

So, if we modify our basis so that the 2r members are written in the order

c⃗1, d⃗1, c⃗2, d⃗2, ..., c⃗r, d⃗r(∗)
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and if we do this for every pair of eigenvalues which are not real, then the matrix of T
with respect to this basis will look as follows: the blocks corresponding to the elements
as in (∗) will be of the form:

J = J(λ, λ) =


M I2 0

M I2

M
. . .
. . . I2

M

(1.2)

where M is the 2× 2 matrix

M =

[
a b
−b a

]
(1.3)

When λ ∈ R, we have a simple Jordan block of the form (1.1). If λ /∈ R, we have a
block of the form (1.2). These blocks are called real Jordan blocks or real canonical
blocks.

1.14. Revisting Exponentials. First, we will look at a lemma that is useful for
computing exponentials via Jordan decompositions.

Lemma 1.12. Let A ∈Mn(R) and Γ ∈ GLn(R). Then the following hold.
(1) eΓAΓ−1

= ΓeAΓ−1. So, change of basis respects exponentiation in some sense.
(2) If

A =


A1 0 0 · · · 0

A2 0 · · · 0
A3 · · · 0

. . . 0
At


then

eA =


eA1 0 0 · · · 0

eA2 0 · · · 0
eA3 · · · 0

. . . 0
eAt


Proof. For (1), observe that for every N ∈ N we have

N∑
m=0

(ΓAΓ−1)m

m!
= Γ

(
N∑
m=0

Am

m!

)
Γ−1

Taking limits on both sides as N → ∞, we get what we want to prove.
For (2), note that

A =


A1 0 0 · · · 0

0 0 · · · 0
0 · · · 0

. . . 0
0

+


0 0 0 · · · 0

A2 0 · · · 0
0 · · · 0

. . . 0
0

+ ...+


0 0 0 · · · 0

0 0 · · · 0
0 · · · 0

. . . 0
At
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and clearly, the matrices in the above sum commute with each other. So keeping
Theorem 1.10 in mind, we can assume without loss of generality that

A2 = ... = At = 0

Let the size of the block Ai be ri × ri. Put

ZN =
N∑
m=0

Am1
m!

− eA1

and let

E =


eA1 · · ·

Ir2 · · ·
Ir3 · · ·

. . .
Irt


Then

N∑
m=0

Am

m!
− E =


ZN

0
0

. . .
0


which is easy to see. Moreover, it is easy to see that the operator norm of the RHS
above is ||ZN ||◦, which easily follows from the definition of the operator norm. So, it
follows that

∞∑
m=0

Am

m!
= E

which means that eA = E. And this is what we had to show. ■

1.15. Structure of solutions of homogeneous linear DEs. Let A be a constant
n× n matrix over R, and consider the DE

˙⃗x = Ax⃗

Let the real Jordan form of A be

J =


J1

J2
. . .

Jt


There is some Γ ∈ GLn(R) such that

A = ΓJΓ−1

As we saw in section 1.13, the blocks Ji for 1 ≤ i ≤ t are either of the form (1.1) if
λ ∈ R, or they are of the form (1.2) if λ /∈ R. Here λ’s are the eigenvalues of A.

Now suppose λi ∈ R and let Ji be the corresponding Jordan block, and let it’s size
be ri × ri. So we see that

Ji = λiIri +B
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where B is the ri × ri matrix whose super-diagonal consists only of 1’s. Since λiIri
and B commute, we see that

etJi = etλiIri+tB = etλiIrietB

= etλiIrie
tB

= etλiIri


1 t t2/2! ... tri−1/(n− 1)!

1 t ... tri−2/(ri − 2)!
1 ... tri−3/(ri − 3)!

... ...

... 1


where in the last step, we have used Problem 2 of QUIZ-1.

On the other hand, if λi /∈ R, then the corresponding Jordan block Ji is of the form
(1.2), i.e

Ji =


Mi I2 0

Mi I2

Mi
. . .
. . . I2

Mi


where Mi is of the form (1.3) with a = ai, b = bi being the real and imaginary parts of
λ. In that case, by problem 4). of HW-5 we see that

etJi =



etMi tetMi t2

2!
etMi · · · t(ri−1)

(ri−1)!
etMi

etMi tetMi · · · t(ri−2)

(ri−2)!
etMi

etMi · · · t(ri−3)

(ri−3)!
etMi

. . .
· · · tetMi

· · · etMi


and

etMi =

[
etaicos(tbi) −etaisin(tbi)
etaisin(tbi) etaicos(tbi)

]
where ai, bi are the real and imaginary parts of λ respectively.

Now, from Theorem 1.11 we know that the solutions of ˙⃗x = Ax⃗ are of the form etAa⃗
(where a⃗ ∈ Rn is fixed but arbitrary). More precisely, the solution of the IVP ˙⃗x = Ax⃗,
x⃗(0) = a⃗ is φ⃗(t) = etAa⃗. So using Lemma 1.12, we see that the solutions of the DE
are of the form φ⃗ : R → Rn where φ⃗ = (φ1, ..., φn) and φi(t) is a linear combination
of {tjetλi | 1 ≤ j ≤ ri− 1, λ ∈ R}, {tjetaicos (tbi) | 1 ≤ j ≤ ri− 1, λi = ai+ ibi, bi 6= 0}
and {tjetaisin (tbi) | 1 ≤ j ≤ ri − 1, λi = ai + ibi, bi 6= 0} as i ranges from 1 to t.

Remark 1.12.1. It is not being claimed that every linear combination is possible
for each entry independent of the other entries, because in that case we will have n2

degrees of freedom. But, we know that the space of solutions of the DE has dimension
n. Moreover, two distinct Jordan blocks Ji, Jj may have the same associated eigenvalue
(real of complex).
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1.16. Scalar nth order Linear DEs (homogeneous). Consider the DE
y(n) + a0y

(n−1) + ...+ an−1y
′ + any = 0(∗)

We know that this is equivalent to the vector valued DE
˙⃗x = Ax⃗(∗∗)

where

A =


0 1 0 ... 0

0 1 ... 0

0
. . . ...
. . . 1

−a0 −a1 −a2 · · · −an−1


i.e the super-diagonal of A is all 1’s, and the last row is the vector −(a0, ..., an−1). If
φ is a solution of (∗), then φ⃗ = (φ, φ′, ..., φ(n−1)) is a solution of (∗∗) and conversely
if φ⃗ = (φ1, ..., φn) is a solution of (∗∗) then φ = φ1 is a solution of (∗). By problem
1). of HW-5, the characteristic polynomial of the DE (∗) is (upto sign) equal to the
characteristic polynomial of the matrix A.

Let
σ(A) = {λ ∈ C | λ is an eigenvalue of A}

and let
S(A) = σ(A)/R

where R is the equivalence relation on σ(A) given by
λRλ′ ⇐⇒ λ′ ∈ {λ, λ}

Note that
σ(A) = σ1(A) ∪ σ2(A)

where σ1(A) = σ(A) ∩ R and σ2(A) = σ(A)− σ1(A). It is also easy to see that
S(A) = S1(A) t S2(A)

where S1(A) = σ1(A)/R and S2(A) = σ2(A)/R, and t represents a disjoint union.
By problem 2). of HW-5 there is a one-to-one correspondence between (complex)
Jordan blocks of A and elements of σ(A). Our discussion on real Jordan blocks then
tells us that there is a one-to-one correspondence between S(A) and the number of
real Jordan blocks.

Let s = [λ] denote the equivalence class of λ ∈ σ(A). Let the corresponding (real)
Jordan block be J̃s. There is a well-defined multiplicity of s, namely the multiplicity
of λ representing s, as a root of the characteristic polynomial. Let this number be rs.
This is half the size of J̃s if s ∈ S2(A) otherwise it is the size of J̃s.

If s ∈ S2(A) let as and bs > 0 be real numbers such that as + ibs represents s, i.e
s = [as + ibs]. Since we are insisting bs > 0, this is well-defined.

From the discussion in section 1.15 it follows that the solutions of (∗) are in the
linear span of

Q =
⋃

s∈S1(A)

rs−1⋃
j=0

{tjetλs} ∪
⋃

s∈S2(A)

rs−1⋃
j=0

{tjeastcos bst, tjeastsin bst}

Since the span of solutions of (∗∗) has dimension n over R (using a homework problem),
it follows that the elements in Q (which are n in number) are linearly independent
and form a basis for the space of solutions of (∗).



DIFFERENTIAL EQUATIONS 31

2. Manifolds

An n-dimensional manifold M is a Hausdorff, second countable topological space
together with data A , called an atlas. A is a collection of pairs of the form (U,φ) (such
a pair is called a chart) with U an open subset of M , φ : U → φ(U) a homeomorphism,
where φ(U) ⊂ Rn is an open set, such that the following hold.

(1) M =
⋃

(U,φ)∈A U

(2) If (U,φ) and (V, ψ) are two charts in A then the map θ given by the commu-
tative diagram below is a diffeomorphism.

U ∩ V

ψ(U ∩ V ) φ(U ∩ V )

via ψ via φ

∼
θ

To represent this situation in a more geometrical way, we have the following picture.

2.1. The Tangent Bundle. Let M be an n-dimensional manifold. For any p ∈ M ,
we use the notation Tp to denote the space Derp, i.e the space of all R-linear maps
D : C ∞

p → R which satisfy
D(fg) = f(p)Dg + g(p)Df

for all f, g ∈ C ∞(M). Here, C ∞
p is the germ of such functions, as defined in the notes

on vector fields.
Put

T (M) :=
⋃
p∈M

Tp

The above union is a disjoint union because Ta ∩ Tb = ϕ if a 6= b. So, we have a map
ω : T (M) → M such that ω(D) = p if D ∈ Tp. Here, Tp = ω−1(p). The tangent
bundle of M is the pair (T (M), ω).

Example 2.1. Suppose M is an open subset of Rn and v⃗ = ˙⃗γ is a velocity vector of
some path γ passing through p⃗ with γ(0) = p⃗. Then f 7→ d

dt

∣∣∣∣
t=0

(f ◦γ) is a derivation,

and all derivations look like this for such M .

2.2. DEs over Manifolds. In this section, we will try to make sense of differential
equations over manifolds.

Given a C 1 path γ : I → M with I an open interval, and a point t ∈ I, define γ̇(t)
to be the derivation on C ∞

γ(t) given by

(γ̇(t))(f) =
d
ds(f ◦ γ)(s)

∣∣∣∣
s=t

(f ∈ C ∞
γ(t))

It is clear that the right hand side above can be evaluated by taking a representation
for a germ, and the choice of the representative will not matter in the calculation. So,
γ̇(t) ∈ Tγ(t)(M) for t ∈ I. So, we have a map γ̇ : I → T (M). Since γ is C 1, it is not
hard to see that γ̇ is continuous. Also, the following diagram commutes.

T (M)

I M

ω
γ̇

γ

https://www.cmi.ac.in/~pramath/DEQN21/notes/Derivations.pdf
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Definition 2.1. A vector field v on M is a map v : M → T (M) such that for every
p ∈ M , v(p) ∈ Tp(M), i.e v(p) is a derivation on C ∞

p at p. Equivalently, v is a vector
field if v is such that ω ◦ v = 1M .

T (M)

M

ωv

If v is a vector field on M , then we have a DE of the form

ẋ = v(x)

A solution is a C 1 path φ : I →M on an open interval I such that φ̇(t) = v(φ(t)) for
t ∈ I, where the equality is an equality of points in T (M).

If p ∈M and τ ∈ R we can talk about the IVP

ẋ = v(x) , x(τ) = p

where the meaning of a solution φ to this IVP is clear.

2.2.1. The non-autonomous case. Let Ω be an open subset of R×M . Let π : Ω →M
be the second projection. We regard Ω as the extended phase space. Let v : Ω → T (M)
be a continuous map such that ω ◦ v = π (this is very similar to the vector field
definition). The corresponding DE here is

ẋ = v(t, x)

A solution is a C 1 map φ : I → M on an open interval I such that (t, φ(t)) ∈ Ω for
all t ∈ I and φ̇(t) = v(t, φ(t)) for t ∈ I. Ofcourse, we can have an IVP

ẋ = v(t, x) , x(τ) = p

where (τ, p) ∈ Ω, and the meaning of a solution to the IVP is also clear.

2.3. First Integrals. Let v be a smooth vector field on a manifold M . A first integral
for v is a smooth function f on an open set in M such that f is not constant on any
open subset of its domain and v(f) = 0. The notation is: v(p) is a derivation for each
p ∈M , and v(f) is the function on the domain of f that maps a point p to v(p)(f).

If M is a domain in Rn, and if we interpret v⃗ to be a smooth map from M to Rn

where v⃗ = (v1, ..., vn) then as proven in the supplementary notes on vector fields we
have

v⃗(f) =
∑
i

vi
∂f

∂xi
= 〈∇(f), v⃗〉

So, if f is a first integral for v⃗, then ∇(f) and v⃗ are orthogonal. Let f be a first
integral for v⃗, p⃗ a point in the domain of f and let c = f(p⃗). Let S be the hypersurface
S = f−1(f(p⃗)) = f−1(c). Since ∇f(p⃗) is orthogonal to the level set S, it follows that
v⃗(p⃗) is tangential to S at p⃗. Moreover, f is constant along any phase curve of v⃗.

Example 2.2. Look at Example 1.1.1 in Lecture 14.

https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture14.pdf
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2.4. Integral Hypersurfaces. We are interested in solving the DE
ẋ = v(x)

on a manifold M , where v :M → T (M) is a C 1 vector field.
Temporarily, we assume that M is an open subset of Rn. Using vector notations,

we can write
x⃗ = v⃗(x⃗)(2.1)

Let the components of v⃗ be (v1, ..., vn). Let g :M → R be a first integral for v⃗ so that
n∑
i=1

vi
∂g

∂xi
≡ 0 on M

Now if I is an open interval of existence of (2.1) and φ⃗ : I →M is a solution of (2.1)
then we claim that g ◦φ : I → R is a constant function. This is actually a consequence
of the chain rule, because

d
dt{(g ◦ φ⃗)(t)} =

n∑
i=1

(
∂g

∂xi
(φ⃗(t))

)
φ̇i(t)

=
n∑
i=1

(
∂g

∂xi
(φ⃗(t))

)
vi(φ⃗(t))

= v⃗(φ⃗(t))(g)

= 0

since g is a first integral for v⃗.
Now, suppose c ∈ g(M), where g is as above. Let S ⊆M be the hypersurface g = c.

Such surfaces are called integral hypersurfaces, since they come from first integrals.
Suppose p⃗0 ∈ S. Let t0 ∈ R, and let φ⃗ : I →M be a solution of the IVP

˙⃗x = v⃗(x⃗) , x⃗(t0) = p⃗0

where I is an open interval of existence. Above we have seen that g ◦ φ⃗ is a constant
function, which means that

g(φ⃗(t)) = g(φ⃗(t0)) = g(p⃗0) = c

for all t ∈ I. So, φ⃗(t) ∈ S for all t ∈ I. So we have proved the following result.

Proposition 2.1. Let φ⃗ : I →M be a solution of the IVP (2.1) and suppose for some
t0 ∈ I, φ⃗(t0) ∈ S. Then φ⃗(t) ∈ S for all t ∈ I.

2.5. n − 1 first integrals. Now suppose we have n − 1 first integrals f1, ..., fn−1 for
v⃗. Let

f⃗ = (f1, ...., fn−1)

Let c⃗ = (c1, ..., cn−1) ∈ Rn−1 be in the image of f⃗ , and let

C = f⃗−1(c⃗) ⊆M

Assume that
rank(f⃗ ′(p⃗)) = n− 1 ∀p⃗ ∈ C

In such a case, we say that f1, ..., fn−1 are functionally independent. Then from the Im-
plicit Function Theorem, we know that C is a one-dimensional manifold. For instance,
if the last n−1 columns of J f⃗(p⃗) are linearly independent at some point p⃗ = (p1, ..., pn)
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then there is an open interval (p1 − ϵ, p1 + ϵ) and a map φ⃗ : (p1 − ϵ, p1 + ϵ) → Rn−1

such that
(x, φ1(x), ..., φn−1(x)) ∈ C x ∈ (p1 − ϵ, p1 + ϵ)

and such that φi(p1) = pi+1 for i = 1, ..., n− 1.
Let p⃗0 ∈ C. Let φ⃗ : J →M be a maximal solution of the IVP (with t0 ∈ J fixed)

˙⃗x = v⃗(x⃗) , x⃗(t0) = p⃗0

From Proposition 2.1 we see that
φ⃗(t) ∈ C ∀t ∈ J

Indeed, if Si is the hypersurface f−1
i (ci), then Proposition 2.1 implies that φ⃗(t) ∈

Si ∀t ∈ J , and hence φ⃗(t) ∈ ∩n−1
i=1 Si = C.

Again, note that we are interested in the DE
˙⃗x = v⃗(x⃗)

and so it is enough to concentrate on the regular locus of v⃗, because if v⃗(p⃗0) = 0, then
the only solution of ˙⃗x = v⃗(x⃗), x⃗(t0) = p⃗0 is the constant solution φ⃗ = p⃗0. So from
now on, we assume that v⃗ is nowhere vanishing on M .

Let f⃗ , c⃗ = (c1, ..., cn−1) and C = f⃗−1(c⃗) be as in the beginning of this section.
From ANA2, the space of velocity vectors at a point p⃗ ∈ C is the null space of f⃗ ′(p⃗).
Moreover, we know that v⃗(fi) ≡ 0 on M for i = 1, ..., n − 1, since the f ′

is are first
integrals. This means that

n∑
i=1

v1(p⃗)
∂fi
∂x1

(p⃗) + · · ·+ vn(p⃗)
∂fi
∂xn

(p⃗) = 0

for each 1 ≤ i ≤ n − 1, where v⃗ = (v1, ..., vn). This implies that v⃗(p⃗) lies in the null
space of f⃗ ′(p⃗). Now, as remarked before, C can be locally parametrized because it is a
one-dimensional manifold, which follows from the Implicit Function Theorem. Thus,
if p⃗0 ∈ C, there is an open neighborhood of p⃗0 in C which is homeomorphic to (−ϵ, ϵ)
in R. So, C can be described locally as

γ⃗(t) = (γ1(λ), ..., γn(λ))

in parametric form: C is locally
x1 = γ1(λ)

x2 = γ2(λ)

...
xn = γn(λ)

Moreover, dγ⃗
dλ (λ) does not vanish since γ⃗ is a diffeomorphism to C. Since the null

space of f⃗ ′(p⃗0) is one-dimensional (since its rank is n−1), and since neither v⃗(p⃗0) nor
γ⃗ ′(λ0) vanish (where λ0 is such that γ⃗(λ0) = p⃗0) therefore each is a non-zero multiple
of the other, because γ⃗ ′(λ0) is a velocity vector passing through p⃗0.

In general we therefore get a nowhere vanishing function u such that
γ⃗ ′(λ) = u(λ)v⃗(γ⃗(λ)) , λ ∈ I

for some interval I. It is easy to see that u(λ) is continuous, being the ratio of two
continuous functions.



DIFFERENTIAL EQUATIONS 35

Now fix p⃗0 ∈ C as above. Again, consider the IVP
˙⃗x = v⃗(x⃗) , x⃗(t0) = p⃗0

and suppose λ0 is in the domain of γ⃗ such that γ⃗(t0) = p⃗0. Let

t = t0 +

∫ λ

λ0

u(y)dy(2.2)

n Since u(y) does not vanish anywhere on I, the above function is a monotone function
of λ, i.e t is a monotone function of λ. It can be inverted, and hence we see that

λ = λ(t)

which we obtain by solving for λ in the equation (2.2). Consider the function

φ⃗(t) = γ⃗(λ(t))

Then we see that

˙⃗φ(t) =
dλ
dt

dγ⃗
dλ

=
dλ
dt (u(λ(t))v⃗(γ⃗(λ(t))))

=
dλ
dt (u(λ(t))v⃗(φ⃗(t)))

=
1

dt/dλ(u(λ(t))v⃗(φ⃗(t)))

=
1

u(λ(t))
(u(λ(t))v⃗(φ⃗(t)))

= v⃗(φ⃗(t))

and hence φ⃗ is a solution of our IVP.

2.6. DEs on Compact Manifolds. The main result of this section will be the fol-
lowing.

Proposition 2.2. Let M be a compact manifold, v a C 1 vector field on M and x0 a
point on M . Then the maximal interval of existence for the IVP

ẋ = v(x) , x(0) = x0

is R.

Proof. Let φa : J(a) →M be the maximal solution for the IVP

ẋ = v(x) , x(0) = a

Soon, we will prove that there exists a neighborhood (−ϵa, ϵa)×Ua in R×M of (0, a)
where Ua is an open neighborhood of a in M such that for all b ∈ Ua, (−ϵa, ϵa) ⊆ J(b).

The Ua’s cover M . Since M is compact, there is a finite open cover Ua1 , ...., Uan .
Let ϵ = min{ϵa1 , ..., ϵan}. Then (−ϵ, ϵ) ⊆ J(b) for all b ∈ M . It follows that the IVP
ẋ = v(x), x(0) = a has a solution in (−ϵ, ϵ) for all a ∈ M , and ϵ is independent of a.
By Problem 7 of the mid-term exam, we are done. ■

https://www.cmi.ac.in/~pramath/DEQN21/exams/mid-term_solutions.pdf
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2.7. The Logistic Equation. Consider the DE
dy
dt = y(1− y)

and let y(0) = y0. So, we have that v(y) = y(1−y). When y0 = 0, 1, then the solutions
by uniqueness are y ≡ 0, y ≡ 1 respectively. Suppose now that y0 is a regular point,
i.e y0(1− y0) 6= 0. Solving this DE, we get

ln
∣∣∣∣ y

y − 1

∣∣∣∣ = t+ ln
∣∣∣∣ y0
y0 − 1

∣∣∣∣
which gives us

t = ln
∣∣∣∣y0 − 1

y0
· y

y − 1

∣∣∣∣
Now, if y is a solution to the IVP, we see that y(t) /∈ {0, 1} for all t in the maximal
interval of existence, and this is an easy consequence of uniqueness of solutions, since
we assumed that y0 /∈ {0, 1}. Now suppose C is one of the connected components of
R \ {0, 1}. From what we just remarked, it follows that if y0 ∈ C, then y(t) ∈ C for
all t in the maximal interval of existence (because y is continuous). So, it follows that

y0 − 1

y − 1
> 0 ,

y

y0
> 1

and so we can write
t = ln

{
y0 − 1

y0

y

y − 1

}
and so we get

y(t) =
y0e

t

y0et − y0 + 1
, t ∈ J(y0)

where J(y0) is the maximal interval of existence. Note that the above formula works
even when y0 = 0 or y0 = 1. Consider the following.

(1) Note that if y0 ∈ (0, 1), then J(y0) = R. This can be seen by noting that in
this case, y0et − y0 + 1 > 0 for all t ∈ R.

(2) Now suppose y0 > 1. Then
y0e

t − y0 + 1 = 0

has a solution (in t), namely

t∞ = lny0 − 1

y0

and so in this case J(y0) = (t∞,∞) and also t∞ < 0.
(3) Finally suppose y0 < 0. Once again, y0−1

y0
> 0, and in fact y0−1

y0
> 1. Also, the

equation
y0e

t − y0 + 1 = 0

has t∞ = ln y0−1
y0

as a solution. Therefore J(y0) = (t∞,∞) and in this case
t∞ > 0.

In cases (2) and (3) above, our solution does not extend to all of R. The problem is
that R is not compact. So in the next section, we will try to compactify R, and study
the same equation over that compact set.

2.8. The logistic equation on a circle. See the instructor notes for lectures 17 and
18.

https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture17and18.pdf
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2.9. Change of coordinates. Let Ω be open in Rn+1 and assume that Ω = I × U

where I is an open interval in R and U is open in Rn. Let F⃗ : U
∼−→ W be a

diffeomorphism, where W is an open subset of Rn, and suppose that F⃗ is atleast C 2.
Let Ω′ = I ×W . Let v⃗ : Ω → Rn be a C 1 vector field. Let

G⃗ = F⃗−1

Let w⃗ : Ω′ → Rn be the map

w⃗(t, y⃗) = F⃗ ′(G⃗y⃗)v⃗(t, G⃗y⃗)(2.3)

where J is the Jacobian. Then w⃗ is a C 1 map, being a composite of C 1 maps.

Proposition 2.3. A map φ⃗ : I → U on an open interval I is a solution of the DE
˙⃗x = v⃗(t, x⃗) if and only if the map ψ⃗ := F⃗ ◦ φ⃗ is a solution of ẏ = w⃗(t, y⃗).

Proof. This is a straightforward application of the chain rule. Since F⃗ and G⃗ are
inverse functions, we see that

(F⃗ ′)−1(x⃗) = G⃗′(F⃗ (x⃗))

for any x⃗ ∈ U . So by equation (2.3) it follows that

v⃗(t, x⃗) = G⃗′(F⃗ (x⃗))w⃗(t, F⃗ (x⃗))

and this establishes a symmetry between v⃗ and w⃗. So, it is enough to prove one
direction of the proposition. Suppose φ⃗ : I → U is a solution of the DE ˙⃗x = v⃗(t, x⃗)

and let ψ⃗ = F⃗ ◦ φ⃗, where I is some open interval. Then we have the following.
˙⃗
ψ(t) = F⃗ ′(φ⃗(t)) ˙⃗φ(t)

= F⃗ ′(φ⃗(t))v⃗(t, φ⃗(t))

= F⃗ ′(G⃗(ψ⃗(t)))v⃗(t, G⃗(ψ⃗(t)))

= w⃗(t, ψ⃗(t))

and hence ψ⃗ is a solution of the DE ˙⃗y = w⃗(t, y⃗). This completes the proof. ■

2.10. Estimates. Let v⃗ : Ω → Rn be a continuous function which is Lipschitz in x⃗
with Lipschitz constant L on a domain Ω contained in R × Rn. We will consider the
DE

˙⃗x = v⃗(t, x⃗)

and we will be interested in the behavior of this DE as we vary the initial conditions,
i.e the initial time point and the initial phase. Let ξ⃗ = (τ, a⃗) be a point in Ω. The
symbol (∆)(τ,⃗a) or (∆)ξ⃗ will denote the IVP

˙⃗x = v⃗(t, x⃗) , x⃗(τ) = a⃗(∆)(τ,⃗a)

Also, J(ξ⃗) or J(τ, a⃗) will denote the maximal interval of existence for solutions of
(∆)(τ,⃗a), and φ⃗ξ⃗ or φ⃗(τ,⃗a) will denote the solution of (∆)(τ,⃗a).

Definition 2.2. We say that φ⃗ is an ϵ-approximate solution of (∆)(τ,⃗a) on an interval
I if (t, φ⃗(t)) ∈ Ω for all t ∈ I and

||φ⃗(t)− v⃗(t, φ⃗(t))|| < ϵ ∀ t ∈ I
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Now suppose φ⃗ and ψ⃗ are C 1 functions on an interval I, with φ⃗ and ϵ1-approximate,
and ψ⃗ an ϵ2-approximate solution. Suppose further that we have a specified point
τ0 ∈ I and that ||φ⃗(τ0)− ψ⃗(t0)|| ≤ δ. From problem 8) of HW-4 we have the following
fundamental estimate:

||φ⃗(t)− ψ⃗(t)|| ≤ δeL|t−t0| +
ϵ1 + ϵ2
L

(eL|t−t0| − 1)(FE)

for all t ∈ I.
Lemma 2.4. Suppose v⃗ is bounded, M <∞ an upper bound for v⃗, and ξ⃗0 = (τ0, a⃗0)
a point in Ω. Let [c, d] be an interval of existence for (∆)ξ⃗0 such that [c, d]×{a⃗0} ⊂ Ω.
Let φ⃗0 : (c, d) → Rn be the solution to (∆)ξ⃗0 on [c, d]. Then

||φ⃗0(t)− a⃗0|| ≤
M

L
(eL|t−τ0| − 1) (t ∈ [c, d])

Proof. Let ψ⃗ : [c, d] → Rn be the constant map ψ⃗ = a⃗0. By hypothesis, we see that
(t, ψ⃗(t)) ∈ Ω for all t ∈ [c, d]. So, for t ∈ [c, d] we have

|| ˙⃗ψ(t)− v⃗(t, ψ⃗(t))|| = ||v⃗(t, ψ(t))|| ≤M

Thus ψ⃗ is an M -approximate solution of (∆)ξ⃗0 . On the other hand φ⃗0 is an exact
solution. So the fundamental estimate (FE) with δ = 0, ϵ1 = 0 and ϵ2 = M gives the
reuslt. ■
2.11. Continuity with respect to initial conditions. For this section, we fix a
solution

φ⃗ : [c, d] → Rn

of the DE (∆)ξ⃗. For each δ > 0, let

Uδ = {(τ, a⃗) ∈ Rn+1 | τ ∈ [c, d], ||⃗a− φ⃗(τ)|| < δ}

Lemma 2.5. There exists δ1 > 0 such that the closure Uδ1 of Uδ1 in Rn+1 is a compact
subset of Ω.
Proof. The map f : [c, d]× Rn → [c, d]× Rn given by

f(t, a⃗) = (t, a⃗+ φ⃗(t))

is a homeomorphism with inverse g given by
g(t, a⃗) = (t, a⃗− φ⃗(t))

This means that Uδ = f([c, d]×B(⃗0, δ)) is an open subset of [c, d]×Rn for every δ > 0.
Next, let Ω′ = f−1(Ω ∩ [c, d] × Rn). Then Ω′ is open in [c, d] × Rn and contains

[c, d]×{0}. If d(t, a⃗) is the distance between (t, a⃗) and the closed subset [c, d]×Rn \Ω′

of [c, d] × Rn, then d is continuous on [c, d] × Rn. Since K = [c, d] × {0} is compact,
the infimum of d on K is attained on K and is a positive number η. Pick δ1 < η.
Then [c, d]×B(⃗0, δ1) ⊆ Ω′. It follows that Uδ1 = f([c, d]×B(⃗0, δ1)) is compact and is
contained in Ω ∩ [c, d]× Rn. ■
Theorem 2.6. Let the notations be as above. Then, there is some δ > 0 such that the
following are true.

(1) Uδ ⊆ Ω.
(2) For every ξ⃗ = (τ, a⃗) ∈ Uδ the solution φ⃗ξ⃗ of (∆)ξ⃗ exists on [c, d].
(3) The map (t, τ, a⃗) 7→ φ⃗(τ,⃗a)(t) is uniformly continuous on V = [c, d]× Uδ.
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Proof. Let δ1 be as given by Lemma 2.5, i.e Uδ1 is compact and contained in Ω. Let
D = {δ | 0 < δ < e−L(d−c)δ1}

First, we show that (1) and (2) are true for every δ in D. Let

U =
⋃
δ∈D

Uδ

It can be checked that U = Uδm , where δm = e−L(d−c)δ1.
For ξ⃗ ∈ U , the fundamental estimate (FE) (with ϵ1 = ϵ2 = 0) gives

||φ⃗(t)− φ⃗ξ⃗(t)|| < δ1

for all t ∈ [c, d] ∩ J(ξ⃗), where as before, J(ξ) is the maximal interval of existence of
the DE (∆)ξ⃗. We want to argue that [c, d] ⊆ J(ξ⃗). Note that we have just shown
that (t, φ⃗ξ⃗(t)) ∈ Uδ1 for all t in J(ξ⃗) ∩ [c, d]. Since (t, φ⃗ξ⃗(t)) must exit the compact
set [c, d]× Uδ1 , the above inequality forces it to exit at {c} × Rn and {d} × Rn. Thus
[c, d] ∩ J(ξ⃗) = [c, d]. This proves (1) and (2).

Now, let F⃗ : [c, d]× U → Rn be the map given by the formula
F (t, τ, a⃗) = φ⃗(τ,⃗a)(t)

We have to show that F⃗ is continuous. Since U is a subset of Uδ1 which is compact, v⃗
is bounded on U . Let M be the supremum of ||v⃗|| on the compact set Uδ1 . Since Uδ1
is compact, M <∞.

Let ξ⃗0 = (τ0, a⃗0) ∈ U , and let us examine the continuity of F⃗ at (s, ξ⃗0) ∈ [c, d]×U .
Since U is open in [c, d] × Rn, there exists a rectangle W = [α, β] × B(a⃗0, r) in U

containing ξ⃗0, and hence for every ξ⃗ = (τ, a⃗) ∈ W , the line segment [α, β] × {a⃗} lies
in U ⊆ Ω. By Lemma 2.4, we see that

||⃗a− φ⃗(τ,⃗a)(τ0)|| ≤
M

L
(eL|τ−τ0| − 1) (ξ⃗ = (τ, a⃗) ∈ W )(†)

We claim that φ⃗ξ⃗ → φ⃗ξ⃗0
uniformly on [c, d] as ξ⃗ → ξ⃗0. We may assume that ξ⃗

approaches ξ⃗0 through points in W . By the fundamental estimate (FE) we get that
||φ⃗ξ⃗0

(t)− φ⃗ξ⃗(t)|| ≤ ||φ⃗ξ⃗0
(τ0)− φ⃗ξ⃗(τ0)||e

L(d−c)

= ||⃗a0 − φ⃗(τ,⃗a)(τ0)||eL(d−c)

≤ ||⃗a0 − a⃗||eL(d−c) + ||⃗a− φ⃗(τ,⃗a)(τ0)||eL(d−c)

≤ ||⃗a0 − a⃗||eL(d−c) +
M

L
(eL|τ − τ0| − 1)eL(d−c)

where in the last step we have used (†). Now, the expression that we have obtained,
namely

h⃗(ξ⃗) = h(τ, a⃗) = ||⃗a0 − a⃗||eL(d−c) +
M

L
(eL|τ−τ0| − 1)eL(d−c)

is a continuous function of ξ⃗, which is independent of t ∈ [c, d]. Moreover, h(ξ⃗) → 0

as ξ⃗ → ξ⃗0. So, it follows that φ⃗ξ⃗ → φ⃗ξ⃗0
uniformly on [c, d] as ξ⃗ → ξ⃗0.

We now show that F⃗ : [c, d] × U → Rn is continuous. Let φ⃗0 = φ⃗ξ⃗0
. Since φ⃗ξ⃗

converges uniformly on [c, d] to φ⃗0 as ξ⃗ → ξ⃗0, therefore given ϵ > 0 we can find η1 > 0
such that

||φ⃗ξ⃗(s)− φ⃗0(s)|| < ϵ (s ∈ [c, d])
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whenever ||ξ⃗ − ξ⃗0|| < η1. Now φ⃗0 is uniformly continuous on the compact set [c, d],
and hence there exists η2 > 0 such that

||φ⃗0(t)− φ⃗0(s)|| < ϵ

whenever |s− t| < η2. Since

||F⃗ (t, ξ⃗)− F (s⃗, ξ⃗0)|| = ||φ⃗ξ⃗(t)− φ⃗0(s)||
≤ ||φ⃗ξ⃗(t)− φ⃗0(t)||+ ||φ⃗0(t)− φ⃗0(s)||

it follows that
||F⃗ (t, ξ⃗)− F⃗ (s, ξ⃗0)|| < 2ϵ

whenever ||ξ⃗ − ξ⃗0|| < η1 and |t− s| < η2. Thus F⃗ is continuous on [c, d]× U .
It remains to show that F⃗ is uniformly continuous on Uδ for any δ ∈ D. Now,

Uδ ⊂ U = Uδm . To see this, let
f : [c, d]× Rn → [c, d]× Rn

be f(t, a⃗) = (t, a⃗+ φ⃗(t)) Recall that f is a homeomorphism, and

Uδ = f([c, d]×B(⃗0, δ))

and
Uδ = f([c, d]×B(⃗0, δ))

Since δ < δm = e−L(d−c)δ1 , therefore

[c, d]×B(⃗0, δ) ⊆ [c, d]×B(⃗0, δm)

Hence Uδ ⊆ Uδm = U . Thus F is defined on Uδ, and Uδ is compact. It follows that F⃗
is uniformly continuous on Uδ. ■

2.12. Topological Straightening. Let us fix ξ⃗0 = (τ0, a⃗0) ∈ Ω and we fix an interval
of existence I = [τ0 − c, τ0 + c] for the solution φ⃗ξ⃗0

of (∆)ξ⃗0 .
Let Uδ be the set of points ξ⃗ = (τ, a⃗ + φ⃗ξ⃗0

(t)) ∈ I × Rn such that ||⃗a|| < δ. We
showed in Lemma 2.5 that there exists δ1 > 0 such that Uδ1 ⊂ Ω and Uδ1 is compact.
Let δm be defined by the formula

δm = e−L(2c)δ1

We have seen that if ξ⃗ ∈ Uδm then [τ0 − c, τ0 + c] ⊆ J(ξ⃗). Note that Uδm ⊆ Uδ1 since
δm < δ1.

If a⃗ ∈ Rn is such that ||⃗a− a⃗0|| < δm, then (τ0, a⃗) ∈ Uδm ⊂ Uδ1 ⊂ Ω. Moreover, by
Theorem 2.6 part (2), I is an interval of existence for φ⃗(τ0 ,⃗a). By the fundamental
estimate (FE) it is then easy to see that (t, φ⃗(τ0 ,⃗a)(t)) ∈ Uδ1 for all t ∈ I.

So, we have a map Φ : I ×B(a⃗0, δm) → Uδ1 given by
Φ(t, a⃗) = (t, φ⃗(τ0 ,⃗a)(t))

Note that
Φ(t, a⃗) = (t, F⃗ (t, τ0, a⃗))

So the image of Φ is the graph of F⃗ |S where S = I×{τ0}×B(a⃗0, δm). Also note that
Φ is continuous. Below, we assume that δ ∈ (0, δm).

(1) By the uniqueness of solutions of (∆)ξ⃗0 , we see that Φ is a one-one map.
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(2) Let R◦
δ = (τ0 − c, τ0 + c)×B(a⃗0, δ), Rδ = I ×B(a⃗0, δ) and Rδ = I ×B(a⃗0, δ).

Set
V ◦
δ = Φ(R◦

δ), Vδ = Φ(Rδ), and V δ = Φ(Rδ)(2.4)
Since Φ is a one-one continuous map, we can apply a result on the invariance
of domain for Rn+1 to conclude that V ◦

δ is an open subset of Rn+1 and that
Φ|R◦

δ
is a homeomorphism between R◦

δ and V ◦
δ . Also, since Φ is injective and

Rδ is compact, the restriction Φ|Rδ
is a homeomorphism. Hence, Φ|Rδ

is also
a homeomorphism.

Some nice pictures are given in section 2 of the Lecture 21 notes.
2.13. Differentiability with respect to initial phase. We now assume that v⃗ is
C 1 in x⃗. So, the all partial derivatives ∂v⃗

∂xi
exist on Ω and are continuous in (t, x⃗).

Clearly, being C 1 implies that v⃗ is locally Lipschitz in x⃗.
2.13.1. The equation of variations. Let

D2(t, x⃗) =


∂v1
∂x1

· · · ∂v1
∂xn... · · · ...

∂vn
∂x1

· · · ∂vn
∂xn


Define the map

A : Rδm →Mn(R)
by

A(t, x⃗) = D2(Φ(t, x⃗))

Clearly, for each fixed t and x⃗, A(t, x⃗) is a linear map. We now consider the equation
of variations

˙⃗z = A(t, x⃗)z⃗ , z⃗(τ0) = e⃗j(2.5)
where e⃗1, ..., e⃗n is the standard basis of Rn.

Let ζ⃗ be the unique solution of the linear IVP (2.5). We know that I is an interval
of existence for ζ⃗ (since this is a linear IVP). Note that ζ⃗ depends upon x⃗. Therefore,
we think of ζ⃗ as a function of x⃗ and write ζ⃗(t, x⃗).

2.13.2. Differentiability with respect to x. Since Uδ1 is compact and in Ω, and since v⃗
is C 1, therefore D2 is bounded on Uδ1 . Let 0 < M <∞ be such that

||D2(t, a⃗)|| ≤M (t, a⃗) ∈ Uδ1

Recall that F⃗ : I × δm → Rn is the map (t, ξ⃗) 7→ φ⃗ξ⃗(t). Note that if x⃗ and x⃗ + he⃗j
both lie in B(a⃗0, δm) then for t ∈ I, by the fundamental estimate (FE) we have

||F⃗ (t, τ0, x⃗+ he⃗j)− F⃗ (t, τ0, x⃗)|| ≤ |h|e2Lc(2.6)
This follows from the fundamental estimate and the fact that φ⃗τ0 ,⃗a is an ϵ-approximate
solution with ϵ = 0.
Theorem 2.7. Suppose, as above, v⃗ is C 1 in x⃗. Let τ0 ∈ I be a fixed initial time
point. Then F⃗ (t, τ0, x⃗) is C 1 as a function of (t, x⃗) on R◦

δm
.

Proof. See Theorem 3.2.3 in Lecture 22. ■

https://en.wikipedia.org/wiki/Invariance_of_domain
https://en.wikipedia.org/wiki/Invariance_of_domain
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture21and22.pdf
https://www.cmi.ac.in/~pramath/DEQN21/Lectures/Lecture21and22.pdf
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