
DISCRETE MATH PROBLEMS

SIDDHANT CHAUDHARY

Abstract. These are solutions to problems in discrete mathematics. I solved these
while taking a course in discrete math.

1. Assignment-2

(1). We will show that α ∈ R is irrational if and only if there are sequences {an} and
{bn} of integers such that

lim
n→∞

bnα− an = 0

First, suppose that such sequences {an} and {bn} exist. For the sake of contradiction,

assume that α is rational, and let α =
p

q
, where gcd(p, q) = 1 and q > 0. Then, we

have

lim
n→∞

∣∣∣∣bnpq − an
∣∣∣∣ = 0

Let ε > 0 be arbitrary. Then, there is some N ∈ N such that for all n ≥ N , we have∣∣∣∣bnpq − an
∣∣∣∣ < ε

q

which implies that

|bnp− anq| < ε

for all n ≥ N . Now, observe that bnp− anq ∈ Z, and hence |bnp− anq| ≥ 1. But, since
ε was arbitrary, this is a contradiction. Hence, α must be irrational.

Conversely, suppose α is irrational. Let n ∈ N be fixed. Then, we know that one

of the numbers in {α, 2α, ..., nα} is within
1

n
of some integer. So, let bnα (where

1 ≤ bn ≤ n) be within
1

n
of the integer an. This can be written as

0 ≤ |bnα− an| <
1

n

where the quantity is strictly greater than 0 because α is assumed to be irrational.

Now, since
1

n
→ 0 as n→∞, we see that

|bnα− an| → 0 as n→∞

and hence the required sequences bn and an have been found. This completes the
proof.

Using this, we will now show that
√

2 is irrational.

Date: January 2020.
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(2). First, we will prove the statement when all x1, ..., xn are non-negative. So, sup-
pose x1, ..., xn are real numbers such that 0 ≤ xi ≤ 1 for all 1 ≤ i ≤ n. If xi = xj for
some i 6= j, then the statement is trivial, because

|xi − xj| = 0 <
n

2n − 1

and if we set ak to be 1 if k = i, −1 if k = j and 0 otherwise, we see that∣∣∣∣∣∑
k

akxk

∣∣∣∣∣ = 0 <
n

2n − 1

So, let us assume that each xi is distinct.
Now, consider the set S = {x1, ..., xn}. There are 2n − 1 non-empty subsets of S.

If K is a non-empty subset of S, then the sum of elements of K is in the range [0, n],
because 0 ≤ xi ≤ 1. We divide the interval [0, n] into 2n − 1 subintervals as follows:

[0, n] =

[
0,

n

2n − 1

]
∪
[

n

2n − 1
,

2n

2n − 1

]
∪ ... ∪

[
(2n − 2)n

2n − 1
, n

]
= I1 ∪ I2 ∪ ... ∪ I2n−1

Now, if the sum of the elements of some subset K of S is in the interval I1, then we
are done, because by setting ai = 1 if xi ∈ K and 0 otherwise, we see that∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤ n

2n − 1

So, suppose the sum of every subset K of S has sum in one of the intervals I2, ..., I2n−1.
Since there are 2n − 1 non-empty subsets, by the pigeonhole principle it follows that
two subsets K1 and K2 must have their sums in some interval Ij (2 ≤ j ≤ 2n − 1).

Since the length of every interval is
n

2n − 1
, it follows that∣∣∣∣∣∑

x∈K1

x−
∑
x∈K2

x

∣∣∣∣∣ ≤ n

2n − 1

which implies that ∣∣∣∣∣ ∑
x∈K1−K2

x−
∑

x∈K2−K1

x

∣∣∣∣∣ ≤ n

2n − 1

Hence, if we set ai = 1 if xi ∈ K1 −K2, −1 if xi ∈ K2 −K1 and 0 otherwise, we see
that ∣∣∣∣∣∑

i

aixi

∣∣∣∣∣ ≤ n

2n − 1

and so the ais have been found in all cases.
Now, we prove the general case. Let x1, ..., xn be real numbers such that |xi| ≤ 1

for each i. Let yi = |xi|. By what we proved above, there is a bi ∈ {−1, 0, 1} for each
i such that ∣∣∣∣∣∑

i

biyi

∣∣∣∣∣ ≤ n

2n − 1

Now, we define ai = bi if xi ≥ 0, and ai = −bi otherwise. So, we have∣∣∣∣∣∑
i

aixi

∣∣∣∣∣ =

∣∣∣∣∣∑
i

biyi

∣∣∣∣∣ ≤ n

2n − 1
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(3). Consider the function f1 : N→ N given by

f(n) = 2n

for all n ∈ N. This function is not onto, because the range does not contain any odd
integer. However, it is one-one, because

2n1 = 2n2 =⇒ n1 = n2

Now, consider the function f2 : N→ N given by

f(n) =
⌊n

5

⌋
+ 1

Since n ranges over all naturals, the range of this map is N, and hence it is onto.
However, it is not one-one, because

f(1) = f(2) = 1

(4). Suppose (A,B) is an ordered pair such that A ⊆ B ⊆ {1, 2, ..., n}. Suppose B
has k elements. Then, there are

(
n
k

)
possible choices for B. Then, there are 2k choices

for A, because out of the k elements of B, we are constructing a subset of it. So, the
total number of such pairs are

# of pairs (A,B) =
k∑
k=0

(
n

k

)
2k = (1 + 2)n = 3n

(5). Let n be a natural number.
If n = 1, then it has an odd number of positive divisors, and evidently it is the

square of itself. So, we will assume that n > 1.
Let 1 = a1 < a2 < ... < ak = n be the list of the positive divisors of n. Given any

divisor aq of n, we know that
n

aq
is also a divisor of n. This way, we can pair up the

divisors of n in such a way that a divisor occurs in exactly one (unordered) pair.
Now, suppose n has odd number of factors. If n was not a square number, then

each pair

{
aq,

1

aq

}
would consist of distinct factors of n, and hence the total number

of factors would be even, which is not possible. Hence, n must be a square number.
Conversely, if n = d2, then any divisor aq of n different from d can be paired up

with another divisor
n

aq
of n. So, there are an even number of divisors of n other than

d. So, it follows that n has odd number of divisors in total.

(6). Let us compute the number of monotone functions from [n] to [n].
We claim that the set of monotone functions is in bijection with the set of ordered

pairs (a1, ..., an) where each ai is non-negative, and

a1 + ...+ an = n

Given any integer solution to a1 + a2 + ... + an = n, there is a unique monotonic
increasing function: map the first a1 elements of [n] to 1, the next a2 elements to 2,
and so on. Conversely, given any monotonic function, we check how many elements
are mapped to 1, 2, ..., n, and denote these numbers by a1, ..., an. It is then easy to see
that a1 + ...+ an = n. This establishes the bijection.

Now, as done in class, the number of non-negative integer solutions to

a1 + ...+ an = n
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is equal to (
n+ n− 1

n− 1

)
=

(
2n− 1

n− 1

)
and hence this is equal to the number of monotonic increasing functions.

(7). Consider the expression (2x + 7y2 − 3z)8. We will compute the coefficient of
x2y8z2.

In the product (2x+ 7y2− 3z8)8, there are 8 identical terms. To make a term of the
form x2y8z2, we need to choose two 2x terms, four 7y2 terms and two −3z terms from
each product. Out of the 8 terms in the product, there are

(
8
2

)
ways to choose two

2x terms. Out of the remaining 6 terms, there are
(
6
4

)
ways to choose four 7y2 terms.

Finally, there are
(
2
2

)
ways to choose the remaining two −3z terms. So, it follows that

the coefficient of x2y8z2 is(
8

2

)(
6

4

)(
2

2

)
2274(−3)2 = 36303120

(8). First, we partition [2n] as follows

[2n] = {1, 2n} ∪ {2, 2n− 1} ∪ ... ∪ {n, n+ 1}

Observe that the sum of the two elements in the same part is 2n+ 1. So, a subset of
[2n] which has no two elements adding up to 2n+ 1 must contain atmost one element
from each set in this partition.

So, for each set in the partition, we have two choices: pick one of the elements. So,
it follows that there are 2n subsets of [2n] of size n such that there are no two elements
in the subset whose sum is 2n+ 1.

9. Here, we count the number of permutations of [n] such that the sum of every
consecutive pair of elements is odd. Such a permutation should have the following
properties: first, no two even numbers can be placed next to each other, and second
no two odd numbers can be placed next to each other. So, it follows that the odd
numbers appear alternatively and the even numbers appear alternatively.

We deal with two cases: first, if n is an even number, then there are n
2

odd elements
in [n], and n

2
even elements in [n]. Now, the desired permutation can start with either

in odd element or an even element. If it starts with an odd element, the total number
of such permutations is

(
n
2

)
!
(
n
2

)
!. Same is the case when the permutation starts with

an even element. So, in all, there are 2
(
n
2

)
!
(
n
2

)
! such permutations.

Next, if n is odd, then the permutation must start with an odd number (because
there are more odd numbers in [n] than even numbers in this case). So, there are(
n−1
2

)
!
(
n+1
2

)
! such permutations in this case.

(10). Let n be a positive integer. Here, we will count the total number of n × n
matrices wit entries in {0, 1} such that the row sum and column sum is even for every
row and columns in the matrix. Let M be such a matrix, and let Mij be the entries
of the matrix.

First, let us introduce some notation. Let An−1 denote the set of all (n−1)×(n−1)
matrices X with entries in {0, 1} such that the sum of all elements of X is even.
Analogously, let A′n−1 be the set of all matrices with total sum odd.

We consider two cases:
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(1) Case 1: Let B be the set of all matrices M having the given property such
that M11 = 0 (i.e, the top-left element is 0). We claim that there is a bijection
from B to An−1. So, let M ∈ B, and we map M to the unique sub-matrix
obtained by removing the first row and the first column. Since the first row
and column of M both have even sum and M11 = 0, it follows that the sum of
the sub-matrix is even, and hence this sub-matrix is in An−1.

Conversely, given a matrix S in An−1, there is a matrix M in B such that S
is the sub-matrix of M : we set M11 = 0, and above every column of S which
has odd sum, we put a 1 in the first row of M , and above every column of S
having even sum, we put a 0 in the first row of M . Similarly, for every row of
S having an odd sum, we put a 1 in the first column of M , and for every row
of S having even sum, we put a 0 in the first column of M . Because S can only
have an even number of rows (and columns) having odd sum (because S is in
An−1), it follows that all rows and columns of M have even sum, and hence
M ∈ B. This establishes the bijection.

(2) Case 2: Let B′ be the set of all matrices M having the given property such
that M11 = 1 (i.e, the top-left element is 1). As in the first case, we claim
that there is a bijection between B′ and A′n−1. So, suppose M ∈ B′, and we
map M to the unique sub-matrix obtained after removing the first row and
the first column of M . Since the first row and column of M have even sum
and M11 = 1, it follows that the sum of the sub-matrix is odd, and hence the
sub-matrix is in A′n−1.

Conversely, given a matrix S in A′n−1, there is a matrix M in B′ such that S
is the sub-matrix of M : we set M11 = 1, and above every column of S which
has odd sum, we put a 1 in the first row of M , and above every column of S
having even sum, we put a 0 in the first row of M . Similarly, for every row of
S having an odd sum, we put a 1 in the first column of M , and for every row
of S having even sum, we put a 0 in the first column of M . Because S can
only have an odd number of rows (and columns) having odd sum (because S is
in A′n−1), it follows that all rows and columns of M have even sum, and hence
M ∈ B′. This establishes the bijection.

So, it follows that we only need to count the number of elements in An−1 and A′n−1.
However, observe that An−1 ∩ A′n−1 = φ, and that

An−1 ∪ A′n−1 = Pn−1

where Pn−1 is the set of all (n− 1)× (n− 1) matrices having entries in {0, 1}. So, it
follows that

|An−1 ∪ A′n−1| = |Pn−1| = 2(n−1)2

and hence this is the total number of required matrices.

2. Assignment 3

(1). First, the total number of compositions of 20 into 5 parts is

# of compositions =

(
20− 1

5− 1

)
=

(
19

4

)
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Next, the total number of compositions of 20 into 5 parts, where the second part is
1 is equal to the total number of compositions of 19 into 4 parts, which is(

19− 1

4− 1

)
=

(
18

3

)
So, the total number of compositions of 20 into 5 parts with the second part not

equal to 1 is (
19

4

)
−
(

18

3

)
= 3060

(2). We will show that
n∑
k=1

(−1)kk!S(n, k) = (−1)n

where S(n, k) is the Stirling number of the second kind.
Without loss of generality, suppose n ∈ N is even. The proof is the same when n is

odd.
First, we note that for 1 ≤ k ≤ n, the number k!S(n, k) denotes the number of ways

of partitioning the set [n] into k parts, where the ordering of the partition matters.
Let An be the number of ordered partitions of [n] into even number of parts, and let
Bn be the number of partitions of [n] into odd number of parts.

We consider a map Pn : S(An)→ Bn as follows (here S(An) is a subset of An): for
a partition in An, look at the element n: if it is a singleton part, then shift it to the
previous part, otherwise make it into a singleton part (a singleton part is a set in the
partition consisting of only one element). For instance, if n = 5, then the following
two partitions are mapped as:

{1, 2} ∪ {5} ∪ {3} ∪ {4} 7→ {1, 2, 5} ∪ {3} ∪ {4}
{1, 5} ∪ {2} ∪ {3} ∪ {4} 7→ {1} ∪ {5} ∪ {2, 3} ∪ {4}

If the partition is of the form {n}∪Q, then we map it to the partition {n}∪Pn−1(Q).
It is clear by our construction that Pn is a one-one map. The only partition which
does not have an image under Pn, i.e the only partition in An that is not in S(An) is
the partition

{n} ∪ {n− 1} ∪ ... ∪ {1}

and hence the cardinality of An is one more than the cardinality of Bn. So, we have∑
k is even

k!S(n, k) = 1 +
∑

k is odd

k!S(n, k)

and hence in this case we have

n∑
k=1

(−1)kk!S(n, k) = 1

and this completes the proof. (The proof of the case when n is odd is exactly the
same)

Note: I discussed this problem with: Shibashis Mukhopadhyay, Pradyot Mohanty
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(3). Let n be a positive integer. As proven in class, the total number of compositions
of n is

n∑
k=1

(
n− 1

k − 1

)
=

n−1∑
k=0

(
n− 1

k

)
= 2n−1

The above expression is the binomial expansion of (1 + 1)n−1. Now, we have

0 = (1− 1)n−1 =
n−1∑
k=0

(−1)k
(
n− 1

k

)
which implies that ∑

0≤k≤n−1
k is odd

(
n− 1

k

)
=

∑
0≤k≤n−1
k is even

(
n− 1

k

)
However, observe that ∑

0≤k≤n−1
k is odd

(
n− 1

k

)
=

∑
1≤k≤n
k is even

(
n− 1

k − 1

)
and ∑

0≤k≤n−1
k is even

(
n− 1

k

)
=
∑

1≤k≤n
k is odd

(
n− 1

k − 1

)
and so we get ∑

1≤k≤n
k is odd

(
n− 1

k − 1

)
=

∑
1≤k≤n
k is even

(
n− 1

k − 1

)
In the above equality, the left hand side counts the number of compositions of n into
odd number of parts, and the right hand side counts the number of compositions of n
into even number of parts. Since the total number of compositions is 2n−1, it follows
that the total number of compositions into even number of parts is 2n−2.

(4). The problem corresponds to finding non-negative integers a1, a2, a3, a4, a5 such
that

a1 + a2 + a3 + a4 + a5 = 10

and that a5 < a4.
Define

A := {(a1, ..., a5)| ai ≥ 0,
∑

ai = 10, a4 > a5}

B := {(a1, ..., a5)| ai ≥ 0,
∑

ai = 10, a4 < a5}

and we are interested in the cardinality of A. We claim that A is in bijection with B.
First, map (a1, ..., a5) ∈ A to the tuple (a1, ..., a5, a4) (swapping the last two elements),
which is evidently a tuple in B. Clearly, this is a one-one map. To show that it is onto,
consider a tuple x = (a1, ..., a5) ∈ B. Then it follows that y = (a1, ..., a5, a4) ∈ A, and
y maps to x under the mapping. So, the mapping is a bijection.

Now, define the set

C := {(a1, ..., a5)| ai ≥ 0,
∑

ai = 10, a4 = a5}
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It is clear that if (a1, ..., a5) ∈ C, then a4 (and hence a5) must be in the set {0, 1, 2, 3, 4, 5}.
So, it follows that the cardinality of C is

5∑
k=0

(
10− 2k + 2

10− 2k

)
where the expression

(
10−2k+2

2k

)
corresponds to the number of tuples (a1, a2, a3) of non-

negative integers such that

a1 + a2 + a3 = 10− 2k

The above sum is(
12

10

)
+

(
10

8

)
+

(
8

6

)
+

(
6

4

)
+

(
4

2

)
+

(
2

0

)
= 161

Now, A∪B ∪C is the set of all tuples (a1, ..., a5) of non-negative integers such that

a1 + a2 + a3 + a4 + a5 = 10

Also, A, B and C are pairwise disjoint, and as we have shown above, |A| = |B|. So,
we have

2|A|+ 161 =

(
10 + 5− 1

5− 1

)
= 1001

and hence
|A| = 420

(5). Let n ∈ N be a positive integer. Here, we will find the sum of the first parts of
all compositions of n. But first, we will prove a formula:

Lemma: For any positive integer n, we have
n∑
k=1

k2−k = 2−n(−n+ 2n+1 − 2)

Proof: For real x 6= 1, consider the geometric sum
n∑
k=1

xk =
x(xn − 1)

x− 1

Differentiating both sides, we see that
n∑
k=1

kxk−1 =
nxn+1 − (n+ 1)xn + 1

(x− 1)2

multiplying both sides by x, we see that
n∑
k=1

kxk =
nxn+2 − (n+ 1)xn+1 + x

(x− 1)2

Putting x =
1

2
, we see that

n∑
k=1

k2−k = 2−n(−n+ 2n+1 − 2)

Now, we do the problem. We know that for a positive integer n, the total number
of compositions are 2n−1. Observe that in any composition, the first part is in the set
{1, 2, ..., n}. The number of compositions of n where the first part is k (1 ≤ k < n) is
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equal to the number of compositions of n − k. There is only one composition where
the first part is n. So, it follows that the sum of the first parts of all compositions of
n is

sum of first parts = n+
n−1∑
k=1

k(# of compositions of n− k)

= n+
n−1∑
k=1

k2n−k−1

= n+ 2n−1
n−1∑
k=1

k2−k

= n+ (1− n+ 2n − 2)

= 2n − 1

where we have used the previous Lemma.
So, it follows that the sum of first parts of all compositions of n is 2n − 1.

(6). Here, we will show that S(n, n−m) is a polynomial of degree 2m, where S(n, k)
denotes the Stirling number of the second kind.

Let’s do so by induction on m. For the base case, we let m = 0. Then, for any
n ∈ N, we have

S(n, n−m) = S(n, n) = 1

which is evidently a polynomial of degree 0 in n. So, the base case has been proven.
Now, suppose the statement holds for some m − 1 ∈ N, i.e, S(n, n − (m − 1)) is a

polynomial of degree 2m− 2 in n, where n ≥ m.
Now, consider m ∈ N, and suppose n ≥ m+ 1 is any integer. We have

S(n, n−m) = S(n− 1, n− 1−m) + (n−m)S(n− 1, n− 1− (m− 1))

We now repeat the same process with the first term above, i.e we do

S(n− 1, n− 1−m) = S(n− 2, n− 2−m) + (n− 1−m)S(n− 2, n− 2− (m− 1))

We repeat the same process k times, where n− k = m+ 1. So, we get

S(n, n−m) = S(n− k, 1) +
n−m−1∑
k=0

(n−m− k)S(n− (k + 1), n− (k + 1)− (m− 1))

= 1 +
n−m−1∑
k=0

(n−m− k)S(n− (k + 1), n− (k + 1)− (m− 1))

Now, by our induction hypothesis, suppose

S(p, p− (m− 1)) = a2m−2p
2m−2 + a2m−3p

2m−3 + ...+ a0 = P (p,m− 1)

for all p ≥ m, which is a degree 2(m− 1) polynomial. So, we get

S(n, n−m) = 1 +
n−m−1∑
k=0

(n−m− k)P (n− (k + 1),m− 1)

For each k, the term
(n−m− k)P (n− (k + 1),m− 1)

is a degree 2m−1 polynomial, and the leading term of this polynomial is a2m−2n
2m−1.

Since we are summing this leading term n−m times, it follows that S(n, n−m) is a
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polynomial whose leading term is a2m−2n
2m, and hence it is a degree 2m polynomial.

By induction, the proof is complete.

3. Assignment-4

(6). Consider the sequence

(d1, d2, d3, d4) = (3, 3, 1, 1)

Clearly, d1 + d2 + d3 + d4 is even, and each di ≤ 3. However, we will show that there
is no simple graph with this degree sequence.

By Havel-Hakimi theorem, (3, 3, 1, 1) is graphic if and only if (2, 0, 0) is graphic.
However, it is easy to see that (2, 0, 0) is not a graphic sequence, and hence (3, 3, 1, 1)
is also not graphic.

(7). Let G be a graph, and let A,B be two vertices.
Suppose there is a trail between A and B. So, the set of all trails between A and

B is non-empty. Let p be the element of this set of minimum length. We claim that
p is a path between A and B. To prove it, suppose p is not a path, i.e suppose some
vertex is repeated. We represent the trail as

p = v1
e1−→ v2

e2−→ v3...vi
ei−→ vi+1...vj

ej−→ vj+1...vk−1
ek−1−−→ vk

where each ei is an edge, and v1 = A and vk = B, and vi = vj (i 6= j) is the repeated
vertex. Then, observe that the trail

p = v1
e1−→ v2

e2−→ v3...vi
ej−→ vj+1...vk−1

ek−1−−→ vk

is also a trail from A to B, but of shorter length, which is a contradiction. So, p must
be a path.

In the above proof, we never actually used anything about trails. The same proof
works if we replace the word ”trail” by ”walk”.

8. Suppose each vertex in a simple graph has degree 4. Without loss of generality
suppose the graph is connected. If it is not connected, then we will apply the following
argument to every connected component, and hence we will be done.

Since G is connected and each vertex has degree 4, there is an Euler tour in the
graph. Take a vertex v0 ∈ G, and start the Euler tour from any edge of this vertex.

(9). In this problem, we determine the possible degrees and number of vertices in
regular (simple) graphs which have a total of 22 edges. Let d be the common degree
of each vertex in such a graph. We know that∑

v∈V

dv = 2|E|

and hence in this case we have ∑
v∈V

d = 44

which implies that

d|V | = 44

So, d must be in the set {1, 2, 4, 11, 22, 44}. Clearly, d = 1 and |V | = 44 is possible.
Also, d = 2 and |V | = 22 is also possible. It is not hard to see that d = 4 and |V | = 11
is also possible. Finally, it is very easy to see that no other case is possible.
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(10). Let G be a simple graph such that every vertex has degree k. We will show that
G contains a cycle of length greater than or equal to k + 1.

4. Partially Ordered Sets and Mobius Inversion

A partially ordered set (or poset) P is a set with a relation ≤ which is reflexive,
anti-symmetric and transitive.

We say that two posets P and Q are isomorphic if there is an order preserving
bijection between them. This bijection is also called the isomorphism between the two
posets.

Next, we introduce the notion of an incidence algebra on a poset. For a poset P ,
we define the incidence algebra I(P ) as

I(P ) := {f : P × P → P | f(x, y) = 0 if x � y}

For instance, the zero function is in I(P ), the Krocker-Delta (δ) function is in I(P ).
Consider the zeta function ζ defined as ζ(x, y) = 1 if x ≤ y, and 0 otherwise. It is
clear that ζ ∈ I(P ). It is not hard to see that I(P ) forms a vector space over R.

We now make I(P ) into a ring by introducing the convolution of two functions. For
f, g ∈ I(P ), define the Dirichlet convolution as

(f ∗ g)(x, y) =
∑
x≤z≤y

f(x, z)g(z, y)

Let us prove some properties of convolutions:

Theorem 4.1. Let f, g, h ∈ I(P ) for some poset P . Then:

(1) (f ∗ g) ∗ h = f ∗ (g ∗ h)
(2) f ∗ δ = δ ∗ f = f , where δ is the Kronecker function.

Proof: To prove (1), let x, y ∈ P . Then,

(f ∗ g) ∗ h(x, y) =
∑
x≤z≤y

(f ∗ g)(x, z)h(z, y)

=
∑
x≤z≤y

( ∑
x≤z1≤z

f(x, z1)g(z1, z)

)
h(z, y)

=
∑
x≤z≤y

( ∑
x≤z1≤y

f(x, z1)g(z1, z)

)
h(z, y)

=
∑
x≤z≤y

∑
x≤z1≤y

f(x, z1)g(z1, z)h(z, y)

=
∑

x≤z1≤y

f(x, z1)
∑
x≤z≤y

g(z1, z)h(z, y)

=
∑

x≤z1≤y

f(x, z1)
∑

z1≤z≤y

g(z1, z)h(z, y)

=
∑

x≤z1≤y

f(x, z1)(g ∗ h)(z1, y)

= f ∗ (g ∗ h)
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We now prove (2). Observe that

f ∗ δ(x, y) =
∑
x≤z≤y

f(x, z)δ(z, y) = f(x, y)

and hence we are done.
We now see when functions in I(P ) are invertible w.r.t the convolution:

Theorem 4.2. f ∈ I(P ) is invertible if and only if f(x, x) 6= 0 for all x ∈ P .

Proof: First, suppose f is invertible. Then,

f ∗ f−1(x, x) =
∑
x≤z≤x

f(x, z)f−1(z, x) = δ(x, x) = 1

and hence

f(x, x)f−1(x, x) = 1

which implies that f(x, x) 6= 0. Infact, this gives us the formula

f−1(x, x) =
1

f(x, x)

Now, suppose f(x, x) 6= 0 for all x ∈ P . We construct f−1 as follows: set

f−1(x, x) =
1

f(x, x)

Take any x, y ∈ P such that x 6= y. We want

f−1 ∗ f(x, y) =
∑
x≤z≤y

f−1(x, z)f(z, y) = δ(x, y) = 0

and so we get ∑
x≤z<y

f−1(x, z)f(z, y) + f−1(x, y)f(y, y)

and hence

f−1(x, y) =
−1

f(y, y)

∑
x≤z<y

f−1(x, z)f(z, y)

So, f−1 can be computed by induction.
Note: Note that, by our construction, we have only shown that f−1 is the left

inverse of f . We need not check that f−1 is also the right inverse, because in any
associative operator that has left inverses, left and right inverses are the same.

From the previous theorem, it follows that the ζ function is invertible, for any poset.
We denote its inverse by µ, and call it the Mobius function.

The Mobius function has a very important application which we now prove, called
Mobius inversion:

Theorem 4.3. Suppose P is any poset, and let f : P → R be any function. Suppose
p has a minimal element, say m. Then, put

g(y) =
∑
x≤y

f(x)

so that g : P → R. Then,

f(y) =
∑
x≤y

µ(x, y)g(x)
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Proof: Let m be the minimal element. First, we extend f to P × P as follows: if
for any y ∈ P , put

f ′(m, y) = f(y)

and for any (x, y) ∈ P such that x 6= m, put

f ′(x, y) = 0

Clearly, we can see that f ′ ∈ I(P ). Similarly, we extend g to P × P and call it g′.
We claim that

g′ = f ′ ∗ ζ
To prove this, first suppose y ∈ P . Then,

g′(m, y) = g(y) =
∑
x≤y

f(x) =
∑

m≤x≤y

f ′(m,x)ζ(x, y)

and if x 6= m, we have

g′(x, y) = 0 =
∑
x≤z≤y

f ′(x, z)ζ(z, y)

and the claim is true. So, we have

f ′ = g′ ∗ µ
and so for any y ∈ P , we have

f(y) = f ′(m, y) =
∑

m≤z≤y

g′(m, z)µ(z, y) =
∑
x≤y

g(x)µ(x, y)

and the proof is complete.

Mobius function for the Boolean algebra: Suppose P is a boolean algebra on n
elements. Let X, Y ∈ P . Then, we claim

µ(X, Y ) = (−1)|Y−X|

Proof: First, it is easy to see that

µ(X, Y ) = µ(φ, Y −X)

Now, observe that

µ(φ, φ) = 1

Suppose the statement is true for all Y and X such that |Y −X| ≤ k for some positive
integer k.

Mobius function for the divisor lattice: Here, we have

µ(d, n) = µ
(

1,
n

d

)
We know that

n =
∑
d|n

φ(d)

and applying Mobius inversion, we get

φ(n) =
∑
d|n

dµ(d, n) =
∑
d|n

dµ
(n
d

)
where µ is the Mobius function which we defined for natural numbers.
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Inclusion-Exclusion: Here we prove the IEP using Mobius inversion. The proof is
as follows: Let I ⊆ {1, 2, ...,m}

f(I) = |{x| x occurs in exactly in Aj, j ∈ I}|
and let

g(I) = |{x| x is present in Ai, i ∈ I}|
So, we have that

g(J) =
∑
J⊆I

f(I)

We can again apply Mobius inversion above, except the relation has reversed. So,
we get

f(J) =
∑
J⊆I

µ(J, I)g(I)

Now, observe that
f(φ) = |X/A1 ∪ A2 ∪ ... ∪ An|

and hence we get

f(φ) =
∑
φ⊆I

µ(φ, I)g(I)

=
∑
φ⊆I

(−1)|I|g(I)

=
∑
φ⊆I

(−1)|I|g(I)

which gives us the inclusion-exclusion principle.

5. Graph Theory

A graph is a pair G = (V,E) where E ⊆ V × V . For us, there are no self loops.
The neighborhood of a vertex is the set of vertices to which the vertex is directly

connected, and the vertex itself. The degree of a vertex is the number of edges incident
to that vertex. We use the notation ∆(G) to denote the largest degree in the graph,
and similarly δ(G) is the smallest degree in the graph. A vertex is called isolated if its
degree is zero.

Here are some interesting properties of graphs:

Theorem 5.1. For any graph G = (V,E), we have∑
v∈V

deg(v) = 2|E|

Proof: It is a very easy proof.
Now, we will discuss the degree sequence of a graph. Given a graph G = (V,E), the

degree sequence is the sequence

d1 ≥ d2 ≥ ... ≥ d|V |

where each di is the degree of some vertex of the graph, and we arrange these in
descending order. A sequence (d1, ..., dn) of non-negative integers is said to be a graphic
sequence if it is the degree of some graph on n vertices. Let us now prove a simple
fact about degree sequences, which will enable us to find a way of checking whether a
sequence is a graphic sequence or not:
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Theorem 5.2. Let (d1, ..., dn) be a non-increasing sequence of non-negative integers.
Then, it is a graphic sequence if and only if there is a simple graph G on n ver-
tices having the same degree sequence, such that vertex v1 is connected to vertices
v2, v3, ..., vd1+1.

Proof: One direction of the statement is clear. So, let’s prove the other direction.
Suppose (d1, .., dn) is a graphic sequence. Let G be the graph in which vertex v1 is
connected to the maximum number of vertices in the set {v2, ..., vd1+1} (such a maximal
graph can be found since there are only finite number of graphs). We claim that in
this graph, v1 must be connected to all vertices in the set {v1, ..., vd1+1}. Suppose this
is not true. Let s be a vertex in this set to which v1 is not connected, and let w be a
vertex outside this set to which v1 is connected (w must exist because deg(v1) = d1).
Now, there must be some vertex q in the graph to which s is connected, and w is
not connected (this is true because deg(s) ≥ deg(w)). We now make a new graph:
remove the edges (v1, w) and (s, q), and add the edges (v1, s) and (w, q). Note that
the degrees of all vertices are preserved, and we have generated a new graph, in which
v1 is connected to more vertices in the set {v2, ..., vd1+1}, which contradicts the fact
that G is maximal. This completes the proof.

Using this fact, we will now prove the Havel-Hakmimi algorithm to determine
whether a sequence is graphic or not:

Theorem 5.3. Havel-Hakimi: A sequence (d1, ..., dn) is graphic if and only if the
sequence (d2 − 1, ..., dd1+1 − 1, ...dn) is a graphic sequence.

Proof: This is straightforward. Applying the previous theorem, we just delete the
first vertex and all its edges, and consider the new graph.

Now let us define some new terms. A trail is a sequence of distinct edges, such that
consecutive edges share a common vertex. A closed trail is a trail where the starting
vertex and the ending vertex are the same. A walk is a sequence of edges which are
not necessarily distinct. A closed walk is analogously defined. A path is a trail in
which no vertex is repeated. Two vertices u and v are said to be connected if there is
a path between them.

In the next theorem, we will see when a connected graph has an Euler tour : an
Euler tour is a closed trail which consists of all edges of the graph.

Theorem 5.4. A connected graph G has an Euler tour if and only if every vertex has
odd degree.

Proof: First, suppose that a connected graph G has an Euler tour. Let v0 be the
starting vertex. Let us show that v0 has even degree. To see this, observe that every
time the trail leaves v0, it must enter it as well. So, we can pair up edges incident
on v0, and hence the degree of v0 is even. Now, suppose v is a vertex that is not the
starting vertex. If the degree of v is zero, then there is nothing to prove. If the degree
is non-zero, then the Euler tour must visit all edges incident on v. So, every time the
tour enters v, it must exit it as well, and hence the degree of v is even.

Conversely, suppose all vertices have even degree. Pick any vertex v0 in the graph.
We similarly define the notion of an Euler trail. An Euler trail is a trail starting at

a vertex and ending at another distinct vertex, such that all edges are visited in the
trail. We can prove a simple criteria for determining when a graph has an Euler trail:

Theorem 5.5. Let G be a finite connected graph. Then, G has an Euler trail if and
only if there are exactly two vertices of odd degree.
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Proof: Let u, v be the distinct vertices of odd degree. We make a new edge (u, v).
Then, observe that the resultant graph has only even degree vertices, and hence there
is an Euler tour in the resultant graph. Start this tour from the edge (u, v). Then,
removing this edge from the tour, we obtain a trail starting at v and ending at u and
visiting all edges.

Conversely, suppose G has an Euler trail. Suppose the trail starts at a vertex u and
ends at a vertex v, both of which are distinct. So, it must be true that the degrees of
u and v are even. For all other vertices, the trail enters and leaves the vertices equally
often, and hence all other vertices have even degree.

6. Trees

A tree is a minimally connected simple graph. Another definition can be a connected
acylic graph, which is guaranteed by the following easy to prove theorem:

Theorem 6.1. Let G be a connected simple graph. Then, G is minimally connected
if and only if G is acylic.

Yet another definition could be the following: a simple graph G in which between
any two vertices there is exactly one path is called a tree. It is also easy to show that
a connected simple graph is a tree if and only if the number of edges in it is |V | − 1.

The next result is highly non-trivial:

Theorem 6.2. The number of trees on [n] vertices is nn−2.

We will see this after proving the matrix tree theorem. However, I would recommend
the reader to refer to the proof of this theorem given by André Joyal.

From this, it is easy to see that the number of rooted trees on n vertices is nn−1,
and the number of rooted forests (a forest is just an acylic graph) on n vertices is

7. Spectral Graph Theory

In this section, we will study graph theory algebraically, i.e studying graphs using
matrices associated with them.

Consider the adjacency matrix AG of a directed (or undirected) graph. The following
is a fundamental result:

Theorem 7.1. Let i, j be vertices of G. Then, the number Akij is the number of walks
of length k between the vertices i and j.

Proof: It is a simple proof by induction. Try doing it.
AG gives some simple tests regarding graph connectivity. The first one is the fol-

lowing:

Theorem 7.2. Let G be a simple graph on n vertices, and let AG be the adjacency
matrix. Then, G is connected if and only if (I + A)n−1 consists of strictly positive
entries.

Proof: First, consider the following elementary fact:

(I + A)n−1 =
n−1∑
k=0

(
n

k

)
Ak

Let i, j be any two vertices. If G is connected, then for some k, Akij is non-zero

(because the maximum path length is n − 1), and hence all entries of (I + A)n−1 are
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strictly positive. Conversely, if all entries are strictly positive, there must be some
0 ≤ k ≤ n− 1 for which Akij is positive, and hence there is a walk from i to j, meaning
that there is a path. The claim follows.

We now introduce the Laplacian of a simple graph. It is defined as

LG = DG − AG
where DG is the diagonal matrix consisting of the degrees of the vertices, and AG is
the usual adjacency matrix.

8. Assignment-5

(1). Let G be a loopless undirected graph. We will show that L(G) (Laplacian) is a
sum of |E| positive semi-definite matrices of rank 1.

Suppose (u, v) ∈ E, where u, v ∈ {1, 2, ..., n}, where the vertices are labelled with
numbers {1, 2, ..., n}. Define a matrix B(u,v) by the rule

B(u,v)(ij) =


1, i = j = u or i = j = v

−1, i = u, j = v or i = v, j = u

0, otherwise

We claim that

L(G) =
∑

(u,v)∈E

B(u,v)

First, consider a diagonal entry L(G)(ii). The sum on the right hand side contributes
deg(i) to the diagonal entry, because each edge of the vertex i is considered exactly
once. Now, let L(G)(ij) be an off diagonal entry. If (i, j) is an edge, the sum on
the right hand side will contribute −1 to both the off diagonal entries L(G)(ij) and
L(G)(ji). If (i, j) is not an edge, then the right hand side will contribute nothing to
the off diagonal entries. This shows the equality.

Now, the second claim is that B(u,v) is a positive semi-definite matrix for each edge
(u, v). Without loss of generality suppose u < v. Let x = (x1, ..., xu, ..., xv, ..., xn) be
any vector in Rn. Then, we have

B(u,v)x =



0
0
...

xu − xv
...

xv − xu
...
0


where xu−xv is the uth row, and xv−xu is the vth row, which follows by the definition
of B(u,v) and matrix multiplication. Hence, we have

xTB(u,v)x = xu(xu − xv) + xv(xv − xu) = (xu − xv)2 ≥ 0

and hence B(u,v) is positive semi-definite. Since L(G) is a sum of positive semi-definite
matrices, it follows that L(G) is also positive semi-definite.

(2). Let G be an undirected simple graph. We will first prove the following lemma:
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Lemma 1: If G has k (k > 1) connected components, then the multiplicity of the
0 eigenvalue of L(G) is exactly k. If G is connected, then the multplicity of the 0
eigenvalue of L(G) is exactly 1.

Proof: First, we prove the second part of the theorem, and let G be connected. We
know that L(G) is of the form

L(G) =


d1 ... ... ...
... d2 ... ...
... ... ... ...
... ... ... dn


where {d1, ..., dn} are the degrees of the vertices {1, ..., n}. Also, we know that (1, 1.., 1)
(n times) is an eigenvector with eigenvalue 0.

Now, suppose vertex 1 is connected to the vertices {i11, i12, ..., i1d1} (there will
be d1 vertices in this list). In general, suppose vertex k is connected to vertices
{ik1, ik2, ..., ikdk} where 1 ≤ k ≤ n. Now, suppose x = (x1, ..., xn) ∈ Rn is an eigenvec-
tor with eigenvalue 0. So, we know that

L(G)x = 0

and hence by multipliying the two matrices explicitly, we get that

L(G)x =


d1x1 − xi11 − ...− xi1d1
d2x2 − xi21 − ...− xi2d2

...
dnxn − xin1 − ...− xindn

 = 0

and hence we get the following equations:

d1x1 = xi11 + ...+ xi1d1
d2x2 = xi21 + ...+ xi2d2
... = ...

dnxn = xin1 + ...+ xindn

Now, without loss of generality suppose max{x1, ..., xn} = xn. Then, the last equation
above implies that

xn = xin1 = ... = xindn

because xn is greater than or equal to each of xinj
, and dn is a positive integer.

Now, we repeat the same argument with the coordinates xin1 till xindn
. Since G is

connected, this finite process will show that x1 = x2 = ... = xn. And hence

x = x1(1, 1, ..., 1)

so that the (geometric) multiplicity of the 0 eigenvalue is 1. Since L(G) is diagonalis-
able, it follows that the algebraic multiplicity of 0 is also 1.

We now prove the first part of the theorem. Suppose G has k connected components.
Let the k connected components be C1, ..., Ck. If necessary, relabel the vertices so that
the first C1 labels are in C1, then next C2 labels are in C2 and so on. In that case, the
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Laplacian L(G) is a block diagonal matrix of the form

L(G) =


L1 0 ... 0
0 L2 ... 0
... ... ... ...
0 0 0 Ln


where Li is the Laplacian matrix of the ith connected component. Now, the charac-
teristic polynomial of L is

det(L− xI) = det(L1 − xI1)... det(Lk − xIk)

where the last equation is true because of the diagonal blocks of L, and Ij is the
identity square matrix of size |Cj|. Since each Lj represents a connected graph, it
follows that the multiplicity of 0 in the polynomial det(Lj − xIj) is exactly one (by
what we proved above), and hence the multiplicity of 0 in det(L − xI) is exactly k.
Since L is diagonalisable (being real symmetric), it follows that the algebraic and
geometric multiplicities of 0 are both k.

The above lemma proves that: if G has k connected components (where k ≥ 1),
then the multiplicity of the 0 eigenvalue of L(G) is exactly k. Note that this also
proves that if the multiplicity is k, then G must have k-connected components.

We now give a set of linearly independent eigenvectors. If G is connected, the
set is (1, 1, ..., 1) (n times). If G has k connected components which are denoted by
C1, ..., Ck, where k > 1, then as before let the matrix L(G) be of the form

L(G) =


L1 0 ... 0
0 L2 ... 0
... ... ... ...
0 0 0 Lk


where each Li is the Laplacian of the ith connected components. Let v1 be the vector
whose first |C1| coordinates are 1 and the rest 0. Let v2 be the vector whose next
|C2| coordinates are 1 and the rest 0. Similarly, let vi be the vector whose coordinates
are all 0, except those coordinates which are indexed by the vertices in Ci. It is clear
that these are k linearly independent vectors. Also, observe that these are actually
eigenvectors with eigenvalue 0, because the coordinates of Lvi indexed by vertices in Ci
are just the coordinates of Li(1, 1, ..., 1) (here 1 occurs |Ci| times), and Li(1, ..., 1) = 0.
So, this is the set of linearly independent eigenvectors.

3. Suppose G is the star graph on n vertices, and without loss of generality suppose
vertex 1 has degree n − 1, and all other vertices have degree 1. Then, the adjacency
matrix of G is of the form

A(G) =


0 1 1 ... 1
1 0 0 ... 0
1 0 0 ... 0
... ... ... ... ...
1 0 0 ... 0


Since A(G) is real and symmetric, all its eigenvalues are real. So, suppose λ is an
eigenvalue, and suppose x = (x1, ..., xn) 6= O is an eigenvector. Then, we have

A(G)x = λx
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and by multiplying the matrices, we get that
0 1 1 ... 1
1 0 0 ... 0
1 0 0 ... 0
... ... ... ... ...
1 0 0 ... 0

x =


x2 + ...+ xn

x1
x1
...
x1

 = λ


x1
x2
x3
...
xn


and hence we get the system of equations

λx1 = x2 + ...+ xn

x1 = λx2

x1 = λx3

... = ...

x1 = λxn

Now, if λ = 0, then x1 = 0, and x2 + ...+ xn = 0. So, we can find n− 2 linearly inde-
pendent eigenvectors with eigenvalue 0, and hence the geometric (as well as algebraic,
since A(G) is diagonalisable) multiplicity of 0 is n− 2. If λ 6= 0, then we obtain

x2 = x3 = ... = xn =
x1
λ

and hence

λx1 = (n− 1)
x1
λ

and hence (since x1 6= 0 because x is an eigenvector)

λ2 = (n− 1)

and hence the non-zero eigenvalues are ±
√
n− 1.

4. Let G be a cycle of length n. Then, the graph G looks like

...––n––1––2––3––...

and hence the adjacency matrix is

A(G) =


0 1 0 ... 1
1 0 1 ... 0
0 1 0 ... 0
... ... ... ... ...
1 0 0 ... 0


So, every row of A(G) has exactly two 1s, and the same is true for every column as
well. Now, consider the two permutations

1→ 2→ 3→ ...→ n− 1→ n→ 1

and

n← 1← 2← 3← ...← n− 1...← n

which are clearly inverses of each other. Let P be the matrix representing the first
permutation, and let P−1 be the matrix representing the second permutation. Then,
P (i, i + 1) = 1 for each 1 ≤ i ≤ n − 1, and P (n, 1) = 1, and all other entries are 0.
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Similarly, P−1(i, i−1) = 1 for each 2 ≤ i ≤ n, and P−1(1, n) = 1, and all other entries
are 0. It is then easy to see that

A(G) = P + P−1

and hence A(G) is a sum of a permutation matrix and its inverse.
We first make a remark: observe that the degree matrix D(G) is nothing but 2In,

because G is a 2-regular graph. So, the eigenvalues of L(G) are translates of the
eigenvalues of A(G): specifically, eigenvalues of L(G) are of the form 2 − λ, where λ
is an eigenvalue of A(G). Also, the multiplicities of the eigenvalues are the same as
those of the multiplicities in A(G). So, it suffices to work with A(G).

So, we will now compute the eigenvalues of A(G) using the permutation matrix P .
Now, suppose λ is an eigenvalue of P . Clearly, λ 6= 0 because P is invertible, and

hence λ−1 is an eigenvalue of P−1 (the eigenvector being the same). So, it follows that
eigenvalues of A are of the form λ+ λ−1, where λ is an eigenvalue of P .

Now, if λ is an eigenvalue of P (for now we allow λ to be complex as well), and if
x = (x1, ..., xn) is an eigenvector, then we have

Px = λx

which implies that

(x2, ..., xn, x1) = λ(x1, ..., xn)

which implies that

x1 = λx1 = ... = λnx1

and hence x1 6= 0 (because x is an eigenvector), and hence we have

λn = 1

which implies that λ is an nth root of unity. So, the spectrum of P is the set of nth

roots of unity, which are

λ = cos

(
2πk

n

)
+ i sin

(
2πk

n

)
for k = 0, ..., n− 1. So, we have

λ+ λ−1 = 2 cos

(
2πk

n

)
for k = 0, ..., n − 1, and hence these are the eigenvalues of A(G). Note that since
A(G) is diagonalisable, all its eigenvalues are real, and since we have found n dis-
tinct eigenvalues, it follows that the geometric (as well as algebraic, because A(G) is
diagonaliable) multiplicity of each eigenvalue is 1.

Now, the eigenvalues of L(G) are

λ = 2

(
1− cos

(
2πk

n

))
for k = 0, ..., n−1. By the matrix tree theorem, we know that the number of spanning
trees of G the product of the non-zero eigenvalues divided by n, and hence

#of spanning trees =
1

n

n−1∏
k=1

2

(
1− cos

(
2πk

n

))
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Now, it is easy to see that the number of spanning trees of the cycle graph is n,
because removing any edge gives a spanning tree. So, it follows that

1

n

n−1∏
k=1

2

(
1− cos

(
2πk

n

))
= n

which is the required trigonometric identity.

5. Let G be a d-regular graph on n vertices and consider the matrix M =
1

d
A(G).

First, if x = (x1, ..., xn) ∈ Rn is any vector, then we have

xTMx =
n∑
i=1

n∑
j=1

Mijxixj

which is clear by the definition of inner products.
Next, we have

n∑
i=1

n∑
j=1

Mij(xi + xj)
2 =

n∑
i=1

∑
j=1

Mijx
2
i +Mijx

2
j + 2Mijxixj

=
n∑
i=1

n∑
j=1

Mijx
2
i +

n∑
i=1

∑
j=1

Mijx
2
j + 2

n∑
i=1

n∑
j=1

Mijxijj

=
n∑
i=1

n∑
j=1

Mijx
2
i +

n∑
j=1

n∑
i=1

Mjix
2
j + 2xtMx

= 2
n∑
i=1

n∑
j=1

Mijx
2
i + 2xtMx

where in the second last step we used the fact that M is symmetric, and that order of
summation can be changed in finite sums. Continuing this, we get

n∑
i=1

n∑
j=1

Mij(xi + xj)
2 = 2

n∑
i=1

n∑
j=1

Mijx
2
i + 2xtMx

= 2
n∑
i=1

x2i

n∑
j=1

Mij + 2xtMx

= 2
n∑
i=1

x2i + 2xtMx

= 2xtx+ 2xtMx

= 2(xtx+ xtMx)

where we used the fact that the sum of a row in M is equal to 1, because the graph is
d-regular.

Now, observe that the sum
n∑
i=1

n∑
j=1

Mij(xi + xj)
2

is non-negative for all x ∈ Rn. So, it follows that

2(xtx+ xtMx) ≥ 0
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for all unit vectors x ∈ Rn. If λn is the minimum eigenvalue of M , then we have (by
the formula λn = inf xtMx for unit vectors x)

2(1 + λn) ≥ 0

which implies that

λn ≥ −1

Now, we will prove that λn = −1 if and only if G has a bipartite component.
Without loss of generality, we assume that G is connected(the proof when G is not
connected is given after this).

First, suppose G is bipartite. We know that a graph is bipartite if and only if its
spectrum is symmetric. Observe that 0 is always an eigenvalue of the Laplacian of
G, and hence d is always an eigenvalue of A(G), which means that 1 is always an
eigenvalue of M . So, it follows that −1 is also an eigenvalue, and hence λn = −1.

Conversely, suppose λn = −1, and let x = (x1, ..., xn) be an eigenvector. So, it
follows that

2(xtx+ xtMx) = 2(xtx− xtx) = 0

which implies that
n∑
i=1

n∑
j=1

Mij(xi + xj)
2 = 0

which implies that Mij(xi + xj)
2 = 0 for each 1 ≤ i, j ≤ n, and hence if ij is an edge,

then xi = −xj. For the sake of contradiction, suppose G is not bipartite, i.e it has an
odd cycle. Let i1i2...in be the odd cycle, where in = i1. Because n is odd (odd cycle),
it follows that

xi1 = −xi2 = xi3 = ... = xin = −xi1
and hence xi1 = xi2 = ... = xin . Since G is connected, this implies that x1 = x2 = ... =
xn = 0, which means that x = 0. But, this is a contradiction, because x was assumed
to be an eigenvector. Hence, G must be bipartite, and we are done.

Now if G is disconnected, suppose C1, ..., Ck are the connected components, and we
write the matrix M as

M =


M1 0 0 ... 0
0 M2 0 ... 0
... ... ... ...
0 0 0 ... Mk


where each Mi is the corresponding matrix for the ith connected component. So,
if G has a bipartite component, −1 will be an eigenvalue for some Mi (for some
connected component), and hence it will be an eigenvalue for M (we can just put
zeroes at coordinates which are not indexed by the vertices in Ci to get an eigenvector).
Conversely, if −1 is an eigenvalue of M , it is an eigenvalue for some Mi, and in that
case the component Ci will be bipartite. So the statement is true for G.

9. Assignment-6

1. Let A be a square matrix with non-zero entries such that the sum of every row and
every column of the matrix is r, where r > 0 is an integer. We will show that A can
be written as a sum of permutation matrices. We will do so by induction on r.

First, if r = 1, then for every row and every column has exactly one 1, implying
that A is a permutation matrix. So the base case is done.
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For the inductive case, suppose the statement is true for some r ∈ N, and let A
be a matrix such that the row and column sum is r + 1. We will show that we can
deduct a permutation matrix from A, i.e there is some permutation matrix P such
that A−P has column sum and row sum equal to r. Then, by applying the induction
to the matrix A− P , the claim will be proven.

So, consider the following graph: let X = Y = {1, ..., n} and consider the bipartite
graph with bipartition (X, Y ), where there is an edge between i and j if Aij > 0. We
show that this graph has a perfect matching, i.e there is some permutation σ such that
Ai,σ(i) > 0 for each i, and then the permutation matrix to delete from A will be the
matrix P given by

Pij =

{
1, if j = σ(i)

0, otherwise

To show that the graph has a perfect matching, we will prove that the graph satisfies
Hall’s condition. Let I ⊂ X. Let i ∈ I. Then observe that∑

j∼i

Aij = r + 1

where j ∼ i means that there is an edge between i and j. So, we see that

|I| = 1

r + 1

∑
i∈I

∑
j∈N(I)

Aij

=
1

r + 1

∑
j∈N(I)

∑
i∈I

Aij

≤ 1

r + 1

∑
j∈N(I)

∑
i∈X

Aij

= |N(I)|

and hence the graph satisfies Hall’s condition. This completes the proof of the existence
of the matching, and hence the induction proof is complete.

So, A can be written as a sum of permutation matrices.

2. Here, we will give an example of a graph which is color critical with chromatic
number 3. Consider a pentagon, i.e a 5-cycle. It is easy to see that the chromatic
number of a pentagon is 3. Deleting a vertex results in a path of length 3, and it is
clear that the chromatic number of a path of length 3 is 2. So, a pentagon is a valid
example.

3. Here, we will prove Hall’s theorem from Tutte’s theorem.
Let G be a bipartite graph with bipartition (X, Y ).
First, suppose G has a matching M that saturates every vertex of X. Then, if

S ⊂ X, then it is easy to see that |N(S)| ≥ |S| (because for every vertex in X we can
find a corresponding vertex in N(S) via the matching), and hence one direction of the
theorem is trivial.

Conversely, suppose G satisfies Hall’s condition, so that |Y | ≥ |X|. Define H to be
the following graph: if |V (G)| is odd, then add a vertex in Y and complete Y , i.e add
edges so that the Y -induced graph is complete (if |V (G)| is even then we don’t add a
vertex to Y , we just complete it). We will now show that G has a matching saturating
X if and only if the graph H has a perfect matching.
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First, suppose H has a perfect matching M . This means that all vertices in X are
saturated. Moreover, we never added a new edge to H between X and Y , and hence
M is actually a matching of G, so that M is a matching of G that saturates X.

Conversely, suppose G has a matching that saturates X. Now, if |X| = |Y |, then it
this matching is a perfect matching of H. If |Y | > |X|, then two cases are possible:
If both |X| and |Y | are even (or both odd), then no new vertex was added in H,
and hence the remaining vertices of Y that are not matched to any vertices in H can
be paired up, and hence matched (because Y is a clique in H). If |X| + |Y | is odd
(i.e their parities are different), then a vertex was added in H, and hence again the
remaining vertices of Y (plus the new vertex) that are not matched to any vertex of
X can be paired up, and hence matched. So, in any case, a perfect matching of H has
been found.

Finally, since G satisfies Hall’s condition, we will show that H satisfies Tutte’s
condition, and hence this will prove Hall’s theorem (by the fact we proved in the
previous paragraph). For the sake of contradiction, suppose H does not satisfy Tutte’s
condition, and let T be some subset of V (H) such that o(H − T ) > |T |, where o(·)
denotes the number of odd components. Since Y is a clique in H, there is some
component C of H − T which contains all vertices of Y − T , and the rest of the
components are singleton sets in X. Let k be the number of singleton sets. If |C| is
even, then o(H − T ) = k, but observe that k ≤ |T |, which is a contradiction to the
assumption that o(H − T ) > T . So, |C| must be odd.

Now, we have |V (H)| = |T | + k + |C|. Since |C| is odd and |V (H)| is even, we see
that |T | + k is odd. Also, o(H − T ) = k + 1 > |T | and hence k ≥ |T |. Since |T | + k
is odd, it follows that k > |T |, but if we put S to be the set of these k vertices, then
we have that N(S) ⊂ T ∩ Y , and hence |N(S)| ≤ |T | < k = |S|, which contradicts
the fact that G satisfies Hall’s condition. So, H must satisfy Tutte’s theorem. This
completes the proof of Hall’s theorem from Tutte’s theorem.

4. Let X be a largest independent set in G, and let α(G) = |X|. We will show that
V/X is a minimum vertex covering of G.

First, suppose uv is an edge in G. It follows that both u and v cannot be in X,
and hence atleast one of them is in V/X, which proves that V/X is a vertex cover.
To prove that it is a minimal vertex covering, let K be the set of vertices that lie on
an edge such that one vertex of the edge lies in X and the other lies in V/X. We
will prove that K contains atleast |V/X| vertices, which will prove that V/X is a
minimum covering. For the sake of contradiction, suppose K contains less than |V/X|
vertices, and hence there is some vertex v in V/X that is not in K. But, since X is a
largest independent set, there must be some edge between v and and some vertex in
X, contradicting the fact that v is not in K. This completes the proof.

Hence, it follows that α(G) + τ(G) = n.

5. Here, we will deduce Hall’s theorem from Konig’s theorem. So, suppose G is a
bipartite graph with bipartition (X, Y ).

One direction of Hall’s theorem is trivial to prove (as we did in problem 3.). So, we
will only prove the harder direction.

Suppose G satisfies Hall’s criterion. It then follows that |Y | ≥ |X| (because N(X) ⊂
Y and |N(X)| ≥ |X|). So it follows that X is a covering of G. Moreover, because
|N(v)| ≥ 1 for each v ∈ X, it follows that X is a minimum covering of G. Since
G is bipartite, it follows that |M | = |X|, where M is the maximal matching in G.
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So, it follows that G has a matching that saturates every vertex in X, proving Hall’s
theorem.

6. Suppose G is a bipartite graph, and let uv be an edge.
Suppose, for the sake of contradiction, that neither u nor v has the given property.

So, we can find a maximum matchings M1 and M2 such that u is M1-unsaturated and
v is M2 unsaturated. Moreover, because the matchings are maximum, v must be M1-
saturated and u must be M2-saturated. Consider the symmetric difference M1∆M2,
and consider the graph induced by this symmetric difference.

In this graph, every vertex has degree atmost 2, because atmost one edge of M1 can
be incident to a vertex, and atmost one edge of M2 can be incident to a vertex. So,
the graph can be written as a union of disjoint even length cycles (cycle cannot be odd
because the cycle will have alternate edges in M1 and M2, and odd cycle will have two
adjacent edges of the same matching, which is not possible) and disjoint paths. Now,
observe that the degrees of u and v are both 1, and hence u lies on a path. Let T be
this path. Now, the length of T cannot be odd (i.e the first and last edges cannot both
belong to M2), because there are no M1 augmented paths in G (Berge’s theorem). So,
it follows that T must be of even length. Also, the last vertex of this path cannot be
v, because otherwise T ∪ {uv} will be an odd length cycle in G, which is not possible
because G is bipartite.

Finally, consider the path vu ∪ T in G. Clearly, this is an M2-alternating path
(because uv 6 M2), and hence this is an M2- augmenting path (because the length
of T was even), which contradicts Berge’s theorem. This completes the proof via
contradiction.

7. SupposeG is a bipartite graph with bipartitionA = {a1, ..., an} andB = {b1, ..., bn}.
Consider the matrix M whose ijth entry is one if and only if aibj is an edge. Also,
suppose det(M) 6= 0. We know that

det(M) =
∑
σ

ε(σ)M1σ(1)...Mnσ(n)

where σ ranges over all permutations of [n] and ε is the sign of the permutation. Since
the determinant is non-zero, atleast one of these terms is non-zero, i.e atleast one of
the products M1σ(1)...Mnσ(n) is non-zero, which means a perfect matching of G exists
(where the edges of the matching are iσ(i)).

10. Extremal Graph Theory

First, let us start with a discussion about bipartite graphs. We know that a graph
G is bipartite if and only if it contains no odd cycle.

Now, consider the following simple bound:

Theorem 10.1. Let G be a graph on n vertices. If G is bipartite, then

|E| ≤
⌊
n2

4

⌋
Proof: This is a very simple bound. Suppose A and B are the bipartite components.

So, |A| + |B| = n, and the maximum number of edges between these components is

|A||B|. Clearly, we have that |A|, |B| ≤ n

2
, and hence |A||B| ≤ n2

4
, proving the claim.
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By the above theorem, if G has more than

⌊
n2

4

⌋
edges, then it must have an odd

cycle. The following theorem, called Mantel’s theorem, asserts a stronger implication:

Theorem 10.2. Mantel’s theorem: If

|E| ≥
⌊
n2

4

⌋
+ 1

then G has a triangle.

Proof: We will prove this by induction on n.
If n = 3, then the theorem is clear. So, suppose the statement is true for some

n ∈ N, and we will prove it for n + 1. Consider a graph on n + 1 vertices having

atleast

⌊
(n+ 1)2

4

⌋
+ 1 vertices. Take any two vertices x and y, such that xy is an

edge. If x and y share a common vertex, then we are done. Otherwise, they don’t
share a common vertex. Then, remove x and y from G to get a resultant graph G′.
The number of edges |E ′| in G′ will be

|E ′| = |E| − d(x)− d(y) + 1

Observe that d(x) + d(y)− 1 ≤ n− 1 and hence we have that

|E ′| ≥ |E|+ 1− n

≥
⌊

(n+ 1)2

4

⌋
− 4(n− 1)

4
+ 1

=

⌊
(n+ 1)2

4
− 4(n− 1)

4

⌋
+ 1

=

⌊
n2 + 1 + 2n− 4n+ 4

4

⌋
+ 1

=

⌊
(n− 1)2

4

⌋
+ 2

and by induction G′ contains a triangle. Hence we are done.
We next ask the following question: describe all graphs on n vertices having exactly⌊
n2

4

⌋
edges and not having a triangle.

Clearly, one such graph is the complete bipartite graph. We claim that the complete
bipartite graph is the only such possibility:

Theorem 10.3.

11. Exercises on page 259

(4). Let G be a bipartite graph in which every vertex of X has degree at least as large
as the degree of any vertex in Y . We show that there is a matching M saturating
every vertex in X. We will show that G satisfies Hall’s condition.

Let S ⊂ X be any non-empty subset of X. For the sake of contradiction, suppose
|N(S)| < |S|. Suppose |S| = x, and let |N(S)| = y, y < x. Suppose x = ky+ r, where
0 ≤ r < y. We consider two cases.

(1) Suppose x = ky, where k ≥ 2. Because each vertex in S is connected to some
vertex in N(S), there is atleast one vertex in N(S) of degree greater than or
equal to k ≥ 2. So, each vertex in S has degree atleast 2. Now, again, by
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the pigeon hole principle, this means there is some vertex in N(S) with degree
atleast 2k. Continuing this way, we can conclude that the degree of some vertex
in N(S) with arbitrarily large degree, a contradiction.

(2) Suppose x = ky+ r, with r > 0 , k ≥ 1. We can now keep invoking the php as
above.

(5). This can be done by induction and the formula

p(n,G) = p(n,G− uv)− p(n,G/uv)

where uv is an edge in G, and G/uv represents edge contraction.

(6). This can be easily done by induction. The base case with n = 2 is clear. For the
inductive case, consider a triangle free graph with chromatic number n. Then, for any
vertex x ∈ G, make a new vertex x′ whose neighbors are exactly those of x. Do this
for all vertices of G. Finally, add a new vertex y whose neighbors are all the newly
added vertices. This completes the proof.


