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Abstract

These are my complementary notes for a course on Linear Programming and Com-
binatorial Optimization. The reference book used for the course was Understanding
and Using Linear Programming by Jiri Matousek and Bernd Gartner.
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1. Linear Programming

1.1 Definition of an LP

1.1.1 The General Form. A linear programming problem (LP) is an optimization
problem of the following form: we are given a set of variables x1, ..., xn, and we want to
maximise a linear function in these variables subject to certain constraints. Formally, the
problem is written as follows.

Maximise: c1x1 + · · ·+ cnxn
Subject to: a11x1 + · · ·+ a1nxn ≤ b1

a21x1 + · · ·+ a2nxn ≤ b2
...
am1x1 + · · ·+ amnxn ≤ bm

This can also be written succinctly as follows.

Maximise: cTx
Subject to: Ax ≤ b

Here c = (c1, ..., cn) and A = (aij) is an m × n matrix. Note that in such a problem,
the solution vector x is allowed to take values in Rn. There is another variation of linear
programs, called integer linear programs. Everything here is the same, except we have an
additional condition, namely x ∈ Zn.

1.1.2 The Equational Form. Suppose we are given an LP in general form as men-
tioned in the above section. It can be shown that such an LP can be converted to an LP
of the following form.

Maximise: cTx
Subject to: Ax = b

x ≥ 0

The idea is to introduce new slack variables as follows. Consider some inequality con-
straint ak1x1+ · · ·+ aknxn ≤ bk, where 1 ≤ k ≤ m. We introduce a new variable sk along
with the following two constraints.

ak1x1 + · · ·+ aknxn + sk = bk

sk ≥ 0

This is just a fancy way of enforcing the originaly inequality constraint. We do this for
all 1 ≤ k ≤ m. However, the job is still not done, as the variables x1, ..., xn are still
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allowed to take negative real values. To solve this problem, we do the following: for each
1 ≤ i ≤ n, we introduce variables x+i and x−i along with the following conditions.

x+i ≥ 0

x−i ≥ 0

Finally, we substitute each xi with the difference x+i − x−i . As an exercise, try to prove
that the new LP is indeed equivalent to the original LP.

1.2 Basic Feasible Solutions

In our analysis of LPs, we will assume that an LP is always in equational form (which
was defined in the previous section). Moreover, any point x which satisfies x ≥ 0 and
Ax = b is called a feasible point.

1.2.1 A basic assumption. Also, we will make the following assumptions on the matrix
A.
(1) The equation Ax = b has a solution. This can be checked efficiently using Gaussian

elimination.
(2) We will assume that the rows of the matrix A are linearly independent. So, if A is

an m × n matrix, then rank (A) = m. Also, it must be true that n ≥ m, because
the column rank is also m.

1.2.2 Basic Feasible Solutions. Consider an LP of maximising cTx subject to Ax = b
and x ≥ 0. A feasible solution x of this LP is said to be a basic feasible solution if there
exists an m-element set B ⊂ {1, 2, ..., n} such that the following are true.
(1) The columns of A indexed by B are linearly independent.
(2) xj = 0 for all j /∈ B.

1.2.3 Equivalence of two definitions of BFSs. In the previous section, we saw
one definition of a basic feasible solution. Here is another definition: a feasible solution
v ∈ Rn is said to be a basic feasible solution if the columns indexed by K = {i | vi > 0}
are linearly independent.

Lemma 1.1. The above two definitions of basic feasible solutions are equivalent.

Proof. Suppose v is a feasible solution. If it satisfies the first definition, then it clearly
satisfies the second definition. So we only need to prove the converse.

So suppose v satisfies the second definition. So, the columns indexed by the set K are
linearly independent. First, suppose |K| = m. Then we can simply take B = K, and the
first definition’s conditions will follow. Also, note that |K| cannot be > m since the rank
of A is m. So, the only case which is left to consider the the case when |K| < m. Now,
because the column space of A has dimension m, there are m columns, say Aj1 , ..., Ajm

of A which are linearly independent and span the column space. Let K = {i1, ..., ik}.
We know that Ai1 , ..., Aik are linearly independent. Now, we keep on adding a column
among Aj1 , ..., Ajm to the set

{
Ai1 , ..., Aik

}
until this new set remains linearly independent;

clearly, when this process stops, we will have found a basis for the column space, and that
can only happen at a point when we have added exactly m − k elements to the set. In
that case, we again will have found the set B. This completes the proof. ■

Remark 1.1.1. It follows that one can use either definition of a BFS. The first solution
is helpful in computations, while the second definition if more helpful in proofs.
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1.2.4 Optimum occurs at a BFS. In this section, we will mention one of the main
results on the nature of solutions to an LP in equational form.

Theorem 1.2. Suppose there exists D ∈ R such that cT v ≤ D for every feasible solution
v (in other words, suppose that the cost function is bounded). Then,
(1) The LP has an optimum.
(2) The optimum occurs at a BFS.

Proof. This is Theorem 4.2.3 of the reference book. The proof covered was the one in
the book. ■

1.3 Simplex Algorithm

Throughout this section, we will assume that we are working with an LP in equational
form, i.e we have an LP in which we have to maximise cTx subject to Ax = b and
x ≥ 0. We will assume that x varies in n dimensional Euclidean space, i.e x ∈ Rn. It’s
components will be denoted by x1, ..., xn. Also, A is an m×n matrix, and hence b ∈ Rm.

Definition 1.1. A subset B ⊂ {1, ..., n} is said to be feasible basis if |B| = m and if it
admits a basic feasible solution.

1.3.1 Tableau of a BFS. Let B be any feasible basis. A simplex tableau T (B) is a
system of m + 1 linear equations in the variables x1, ..., xn, z that has the same set of
solutions as the system Ax = b, z = cTx, and in matrix notation this system looks like
the following.

xB = p+QxN
z = z0 + rTxN

Above, xB is the vector of the basic variables, N = {1, ..., n} \ B, xN is the vector of
non-basic variables, p ∈ Rm is any vector, r ∈ Rn−m, z0 ∈ R and Q is some m× (n−m)
matrix.

Lemma 1.3. For each feasible basis B, there exists exactly one tableau T (B), and it is
given by the following.

p = A−1
B b

Q = −A−1
B AN

z0 = cTBA
−1
B b

rT = cTN − (cTBA
−1
B AN )

Proof. We know that B is a feasible basis. Note that the equation Ax = b can be written
as

ABxB +ANxN = b

Here, AB is the m×m matrix in which only those columns indexed by B are taken, and
similarly AN is the m× (n−m) matrix consisting of the rest of the columns. This means
that

ABxB = b−ANxN

Also, we know that AB has rank m (since B is a feasible basis), and hence AB is invertible.
So, we get that

xB = A−1
B b−A−1

B ANxN
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So, for the tableau T (B), we take p = A−1
B b and Q = −A−1

B AN .

Now, also note that

cTx = cTBxB + cTNxN

= cTB(A
−1
B b−A−1

B ANxN ) + cTNxN

= cTBA
−1
B b+ (cTN − cTBA

−1
B AN )xN

So, we take z0 = cTBA
−1
B b and rT = cTN −cTBA

−1
B AN . This proves the existence of a tableau

T (B) for this feasible basis.

Uniqueness is easy to prove and I won’t do it here (look at Lemma 5.5.1 of the book for
the proof). ■

Lemma 1.4. If T (b) is a simplex tableau such that r ≤ 0, then the optimum cost is z0
attained at the BFS corresponding to B.

Proof. Note that for any feasible solution, the cost is given by

z = z0 + rTxN

Since xN ≥ 0 and r ≤ 0, the cost is bounded above by z0. Since the BFS corresponding
to B attains z0, this is the optimum. ■

1.3.2 The Pivoting Step. It can be shown that the pivoting step yields another feasible
basis, but I didn’t have time to write down a proof of this here. Checkout Lemma 5.6.1
of the book for this.

1.3.3 Bland’s Rule. In this section, we will look at Bland’s Rule, which is a pivoting
rule to avoid cycling between degenerate cases. The rule is quite simple: first, we arbi-
trarily index the variables using indices in {1, ..., n} (if there are n variables). At any
pivoting step, if there is a choice of variables to bring into the basis, we pick the one with
the least index. This is known as Bland’s rule. It can be shown that this rule prevents
any degenerate cycles (but I won’t do this here).

1.4 Duality of LPs

1.4.1 The Primal and Dual of an LP. Suppose we have an LP in which we want to
maximise cTx subject to the conditions Ax ≤ b and x ≥ 0, where A is some m×n matrix,
and b is an m × 1 column vector. This LP is called a primal LP. Writing everything in
coordinate form, the goal of the LP is to maximise

c1x1 + · · ·+ cnxn

subject to the conditions

a11x1 + · · · a1nxn ≤ b1

a21x1 + · · · a2nxn ≤ b2
...

am1x1 + · · · amnxn ≤ bm

x1, ..., xn ≥ 0
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The dual LP of the above primal LP is defined as follows: the dual LP has m variables
y1, ..., ym, and the goal is to minimize

b1y1 + · · ·+ bmym

subject to the following constraints.

a11y1 + · · ·+ am1ym ≥ c1

a12y1 + · · ·+ am2ym ≥ c2
...

a1ny1 + · · ·+ amnym ≥ cn

In matrix form, the LP is the following.

Minimize: bT y
Subject to: AT y ≥ c

y ≥ 0

1.4.2 The Weak Duality Theorem. Consider a primal LP

Maximize: cTx
Subject to: ATx ≤ b

x ≥ 0

and it’s corresponding dual LP

Minimize: bT y
Subject to: AT y ≥ c

y ≥ 0

Theorem 1.5 (Weak Duality Theorem). For every feasible solution x′ of the primal
LP and for every feasible solution y′ of the dual LP, the following holds.

cTx′ ≤ bT y′

In other words, the cost of the primal LP at x′ is always bounded above by the cost of the
dual LP at y′.

Proof. The proof of this is quite straightforward. First, we have the following by the
definition of the dual LP.

cTx′ = c1x
′
1 + · · ·+ cnx

′
n

≤
n∑

i=1

(a1iy
′
1 + · · ·+ amiy

′
m)x′i

=
m∑
j=1

(aj1x
′
1 + · · ·+ ajnx

′
n)y

′
j

≤
m∑
j=1

bjy
′
j

= bT y′

This proves the claim. ■

Corollary 1.5.1. The previous theorem implies the following.
(1) If the primal LP is unbounded above, the dual LP is infeasible.
(2) If the dual LP is unbounded below, the primal is infeasible.
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1.4.3 A Dualization Reciple. Infact, for any primal LP (not necessarily in the form we
looked at in the previous section), a dual LP can be constructed. This dualization recipe
is given in section 6.2 in a great way; check that out. The Weak Duality Theorem 1.5
goes through for any dual LP, and the proof is very similar.

1.4.4 The Strong Duality Theorem. In this section, we will look at a stronger version
of the Weak Duality Theorem 1.5 that we saw before.

Theorem 1.6 (Strong Duality Theorem). Consider any primal LP (which we’ll de-
note by P ) and it’s dual LP (which we’ll denote by D); we assume that P is a maximization
problem, while D is a minimization problem. Then, only the following can occur.
(1) Either both P and D are infeasible.
(2) P is unbounded above and D is infeasible.
(3) P is infeasible and D is unbounded below.
(4) Both P and D have optima, and their optimal costs are equal.

The proof of this theorem is a bit involved; just look at section 6.4 of the book.

1.4.5 Farkas’ Lemma and the Convex Cone. Farkas’ Lemma is another useful tool,
which leads to a neat proof of the Strong Duality Theorem 1.6.

Proposition 1.7 (Farkas’ Lemma). Let A be a real matrix with m rows and n columns.
Let b ∈ Rm be a vector. Then, exactly one of the following two possibilities occur.

1. There exists a vector x ∈ Rn satisfying Ax = b and x ≥ 0.
2. There exists a vector y ∈ Rm satisfying yTA ≥ 0 and yT b < 0.

Definition 1.2. Let a1, ..., an ∈ Rm be a set of points. The convex cone generated by
this set of points is defined to be the following set.

{t1a1 + · · ·+ tnan | t1, ..., tn ≥ 0}

So, the convex cone is the set of all non-negative linear combinations of the points.

Convex cones give a very nice geometric interpretation of Farkas’s Lemma. To be more
precise, the lemma says that either the point b lies in the convex cone generated by the
columns of A, or there is a hyperplane passing through the origin that separates the
columns of A and the point b.

We easily see that the following proposition is equivalent to Proposition 1.7.

Proposition 1.8 (Variants of Farkas’ Lemma). Let A be an m× n real matrix, and
let b ∈ Rm. The following statements are equivalent to each other, and are also equivalent
to Farkas’s Lemma.
(1) Ax = b has a non-negative solution iff. for every y ∈ Rm such that yTA ≥ 0, we

have yT b ≥ 0.
(2) Ax ≤ b has a non-negative solution iff. for every non-negative y ∈ Rm such that

yTA ≥ 0, we have yT b ≥ 0.
(3) Ax ≤ b has a solution iff. for every non-negative y ∈ Rm such that yTA = 0, we

have yT b ≥ 0.

Proof. First, we show that statement (1) is equivalent to Proposition 1.7, and then we
will prove that all of the above statements are equivalent to one another.

First, suppose Proposition 1.7 is true. Given this, if Ax = b has a non-negative solution,
then there cannot be any vector y ∈ Rm satisfying yTA ≥ 0 and yT b < 0; hence, for all
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y with yTA ≥ 0, it must be true that yT b ≥ 0, and this proves one direction of (1). The
converse of this is similarly shown. So, it follows that Proposition 1.7 implies (1). It is
not hard to show that (1) implies Proposition 1.7 as well.

For the rest of the proofs, refer to Proposition 6.4.3 of the main book. ■

1.4.6 Complementary Slackness. Consider the LP given by

Maximize: cTx
Subject to: Ax ≤ b

and it’s dual, which is given by

Minimize: bT y
Subject to: AT y = c

y ≥ 0

We will now prove a theorem. Throughout our discussion, we will assume that the first
LP is the primal (P ) and that the second LP is it’s dual (D).

Theorem 1.9. Let x0, y0 be feasible solutions of the primal and the dual respectively.
Then,

x0 and y0 are optima ⇐⇒ cTx0 = bT y0

Proof. First, suppose x0 and y0 are optima of the corresponding LPs. From the strong
duality theorem, the optimum costs of the primal and the dual are equal. And hence,

cTx0 = bT y0

and the forward direction is proven.

Now, suppose x0, y0 are feasible solutions of the primal and the dual such that cTx0 =
bT y0. Now, note that
(1) Both primal and the dual must have optima, since the very existence of x0, y0 shows

that the primal and the dual are feasible. Infact, the above equality shows that both
are bounded (by the Weak Duality Theorem 1.5).

(2) By the same Weak Duality Theorem 1.5), note that for all feasible solutions x
of the primal, we must have cTx ≤ bT y0. Hence, x0 is really the optimum point of
the primal.

(3) Similarly, it can be concluded that y0 is the optimum point of the dual.
■

Theorem 1.10 (Complementary Slackness Condition). Let the LPs be as above, and
let x0, y0 be feasible solutions of the primal and the dual respectively. Then, cTx0 = bT y0
if and only if

(y0)i > 0 =⇒ Aix0 = b ∀i ∈ {1, 2, ...,m}

Here, Ai is the ith row of A.

Remark 1.10.1. Another way of saying this theorem in words is the following.
(1) If the dual variable is slack, then the primal inequality is tight.
(2) If the primal inequality is slack, then the dual variable is tight.
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Proof. Assume that the matrix A is m× n.

First, we prove the forward direction. So, assume that cTx0 = bT y0. We know that
AT y0 = c, since y0 is a feasible point of the dual. This clearly means that Aiy0 = ci,
where Ai is the ith column of A. So, we have the following.

cTx0 =
n∑

i=1

ci(x0)i

=
n∑

i=1

(Aiy0)(x0)i

Now, the last sum can be rearranged as follows.

n∑
i=1

(Aiy0)(x0)i =
m∑
i=1

(Aix0)(y0)i

where Ai is the ith row of A. Now, we’re given that cTx0 = bT y0. So, we get that

m∑
i=1

(Aix0)(y0)i =
m∑
i=1

(y0)ibi

and rearranging, we get

m∑
i=1

(y0)i(bi −Aix0) = 0

Now, because y0 ≥ 0 and because bi −Aix0 ≥ 0 for each i, this is only possible if

(y0)i(bi −Aix0) = 0

for all i. This proves the forward direction.

Now, let us prove the reverse direction. We know from weak duality that

cTx0 ≤ bT y0

And, because of the fact that AT y0 = c, we have the following

cTx0 − bT y0 =
n∑

i=1

(Aiy0)(x0)i −
m∑
i=1

bi(y0)i

As before, rearranging the terms to get the (y0)is together, we get the following.

cTx0 − bT y0 =

m∑
i=1

(Aix0)(y0)i −
m∑
i=1

bi(y0)i

=
m∑
i=1

(y0)i(Aix0 − bi)

From our hypothesis, we know that (y0)i > 0 =⇒ Aix0 = bi. So, this means that

cTx0 = bT y0

and this completes the proof. ■

9



1 Linear Programming Sunday 17th July, 2022, 09:05

1.4.7 Complementary slackness for other primal-dual pairs. For this section, we
consider the following primal-dual pair. The primal LP is given by Consider the LP given
by

Maximize: cTx
Subject to: Ax ≤ b

x ≥ 0

and it’s dual is given by

Minimize: bT y
Subject to: AT y ≥ c

y ≥ 0

A complementary slackness theorem can be stated for this pair too.

Theorem 1.11. Let x0, y0 be feasible solutions of the primal and the dual LPs respec-
tively. Then, cTx0 = bT y0 iff. the following hold.

• (y0)i > 0 =⇒ Aix0 = bi for all i ∈ {1, ...,m}.
• (x0)j > 0 =⇒ AT

j y0 = cj for all j ∈ {1, ..., n}.
Here, Ai and AT

j are the ith and the jth rows of A and AT respectively.

Proof. Let us prove the reverse direction first. So, suppose both the points hold. We
want to show that cTx0 = bT y0. First, note that

cTx0 =

n∑
j=1

cj(x0)j

From the second implication, we know that if (x0)j > 0, then cj = AT
j y0. So, we see that

cTx0 =
n∑

j=1

(AT
j y0)(x0)j

The left hand side can be rearranged in terms of (y0)1, ..., (y0)m, and we get

cTx0 =

m∑
i=1

(Aix0)(y0)i

Then, from the first implication, this in turn can be written as

m∑
i=1

(Aix0)(y0)i = b1(y0)1 + · · ·+ bm(y0)m

= bT y0

and this proves that cTx0 = bT y0.

Now, let us prove the forward direction. So, suppose cTx0 = bT y0. Since y0 is a feasible
point of the dual, we know that c ≤ AT y, which means that cj ≤ AT

j y for all j ∈ {1, ..., n}.
Clearly, this means that

cTx0 ≤ (AT
1 y0)(x0)1 + · · ·+ (AT

ny0)(x0)n

= (A1x0)(y0)1 + · · ·+ (Amx0)(y0)m

≤ b1(y0)1 + · · ·+ bm(y0)m

= bT y0

10
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where the last inequality is true because x0 is a feasible point of the primal LP. But,
because we know that cTx0 = bT y0, it follows that

cTx0 =

m∑
i=1

(Aix0)(y0)i

= bT y0

From here, the same proof trick as in the proof of Theorem 1.10 can be repeated to
prove the claim. ■

Finally, here’s a general complementary slackness theorem that we will state without
proof (although the proof uses ideas similar to those above).

Theorem 1.12. Let x0, y0 be feasible solutions of primal and dual LPs respectively.
Then, cTx0 = bT y0 iff.

1. (y0)i(Aix0 − bi) = 0 for all i ∈ {1, ...,m}.
2. (x0)j(A

T
j y0 − cj) = 0 for all j ∈ {1, ..., n}.

2. Zero Sum Games

2.1 Introduction

2.1.1 Introducing the model. Here we will introduce the model under which we will
work. There are two players: the maximizer and the minimizer. The maximizer has m
strategies, which we will label with {1, ...,m}. Similarly, the minimizer has n strategies,
labelled by {1, ..., n}. We are also given an m × n payoff matrix ; the entry mij for
1 ≤ i ≤ m, 1 ≤ j ≤ n tells us that when the maximizer plays strategy i and the
minimizer plays strategy j, the payoff is mij , i.e the maximizer receives mij from the
minimizer (if mij < 0, then the maximizer has to give this quantity to the minimizer).
The goal of the maximizer is to maximize it’s payoff, and the goal of the minimizer is
to minimize it’s payoff (and hence the names). These kind of games are called zero-sum
games because a player’s loss is the other player’s gain.

2.1.2 Maxmin and Minmax. Given a game represented by payoff matrixM , we define
the following two quantities.

max-min-pure(M) = max
i∈{1,...,m}

min
j∈{1,2,...,n}

mij

min-max-pure(M) = min
j∈{1,...,n}

max
i∈{1,2,...,m}

mij

The choices 1, ..,m for the maximizer are called her pure or deterministic strategies. The
same definition holds for the choices 1, ..., n for the minimizer.

Lemma 2.1. For any game with payoff matrix M , we have

max-min-pure(M) ≤ min-max-pure(M)

Proof. The proof is straightforward. If we fix a row i, then note that

min
j∈{1,...,n}

mij ≤ min
j∈{1,...,n}

max
i∈{1,...,m}

mij

Taking the max over the left hand side, we can conclude the proof. ■
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2.1.3 Saddle Points. An entry mkl of the payoff matrix M is said to be a saddle point
for M if

mkl = min
j∈{1,..,n}

mkj = max
i∈{1,...,m}

mil

In simple words, a saddle point is an entry of the payoff matrix which is the minimum
entry of it’s row and the maximum entry of it’s column.

Proposition 2.2. For any game, max-min-pure=min-max-pure iff there is a saddle point.

Proof. First, suppose for a game with payoff matrix M , we have that

v+ = min
j∈{1,...,n}

max
i∈{1,...,m}

mij = max
i∈{1,...,m}

min
j∈{1,...,n}

mij = v−

Now, let j∗ be the specific column such that v+ = maxi∈{1,...,m}mij∗ and let i∗ be the
specific row such that v− = minj∈{1,...,n}mi∗j . We will show that mi∗j∗ is a saddlepoint.

Note that for any i ∈ {1, ..., n} and j ∈ {1, ...,m} we have the following.

mi∗j ≥ min
k∈{1,...,n}

mi∗k = v− = v+ = max
k∈{1,...,m}

mkj∗ ≥ aij∗

In the above inequality, take j = j∗ on the left hand side and take i = i∗ on the right
hand side to obtain

mi∗j∗ ≥ v− = v+ ≥ mi∗j∗

which implies that mi∗j∗ = v+ = v−. This also shows that for any i ∈ {1, ...,m} and
j ∈ {1, ..., n} we have

mi∗j ≥ mi∗j∗ ≥ mij∗

and this shows that mi∗j∗ is a saddle point.

Conversely, suppose there is a saddle point in M . Suppose mi∗j∗ is a saddle point. Then
we have the following.

v+ = min
j∈{1,...,n}

max
i∈{1,...,m}

mij ≤ max
i∈{1,...,m}

mij∗ = mi∗j∗ = min
j∈{1,...,n}

mi∗j ≤ max
i∈{1,...,m}

min
j∈{1,...,n}

mij = v−

which shows that v− ≥ v+. But, we already know that v− ≤ v+ always holds. So, it
must be true that v+ = v−. This completes the proof. ■

Remark 2.2.1. Such a situation is said to be a Nash equilibrium.

2.1.4 Mixed Strategies. Amixed strategy is a probability distribution over pure strate-
gies. For instance, if the maximizer’s pure strategies are {1, ...,m}, then a mixed strategy
for the maximizer will be a probability distribution (x1, ..., xm) over these strategies. A
similar case holds for the minimizer’s strategies.

Given mixed strategies σ := (x1, ..., xm) and τ := (y1, ..., yn) for the maximizer and the
minimizer, the expected payoff is defined as follows.

Payoff(σ, τ) :=
∑

i∈{1,...,m}

∑
j∈{1,...,n}

xiyjmij = xTMy

Next, suppose the strategy x of the maximizer is fixed. We are interested in finding

min
y

xTMy

i.e the best strategy for the minimizer. Since we have fixed x, this becomes a linear
program as follows.

12
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Minimize: xTMy
Subject to: y1 + y2 + · · · + yn = 1

y1 y2, ..., yn ≥ 0

The dual of the above primal LP is the following LP, which can be easily checked.

Maximize: x0

Subject to:


1
1
...
1

x0 ≤ MTx

Now, observe that the primal LP is bounded, because the feasible region (which is the
simplex) is compact, and hence the primal LP has an optimum. By the Strong Duality
Theorem 1.6, we see that the optimum of the primal LP is equal to the optimum of the
dual LP.

To put everything together, for a fixed x, to find the value

min
y

xTMy

it is enough to solve the dual LP (which has no mention of the strategy y of the minimizer).
So, in the dual LP, we treat x as a variable itself, i.e we add the conditions of x to the
dual LP to get the following LP.

Maximize: x0

Subject to:


1
1
...
1

x0 ≤ MTx

x1 + x2 + · · · + xm = 1
x1, x2, ..., xm ≥ 0

The optimum of the above LP gives us the following quantity.

max
x

min
y

xTMy = max-min(M)

Now, let’s try to repeat the same process for the case when the strategy y of the minimizer
is fixed. In that case, we are interested in finding

max
x

xTMy

i.e the best strategy for the maximizer. Again, because y is fixed, this can be written as
the following linear program.

Maximize: xTMy
Subject to: x1 + x2 + · · · + xm = 1

x1 x2, ..., xm ≥ 0

Let’s now write down the dual of the above primal LP, which is easily seen to be the
following LP.

Minimize: y0

Subject to:


1
1
...
1

 y0 ≥ My

13
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Note that above, there is no mention of the vector x. So, again, we treat y as a variable
in the above LP to get the following LP.

Minimize: y0

Subject to:


1
1
...
1

 y0 ≥ My

y1 + y2 + · · · + yn = 1
y1, y2, ..., yn ≥ 0

The optimum of the above LP gives us the following quantity.

min
y

max
x

xTMy = min-max(M)

Finally, it can be checked that the two duals we have derived are actually form a primal-
dual pair. Since both have optimums, their optimum is actually the same, and this gives
us the following equation for mixed strategies.

max-min(M) = min-max(M)

3. Combinatorial Optimization

3.1 Integer Linear Programs

3.1.1 Overview. An integer linear program (ILP) is just a linear program with an
additional integrality constraint on the variables. This is really all that is there to these
problems.

3.1.2 Complexity of solving ILPs. It can be shown that the decision version of the
problem of solving ILPs is NP-complete (we won’t show this here). So, our goal will be
to approximate the solution of an ILP using LP techniques. This will be our focus for the
next section.

3.1.3 Totally Unimodular Matrices. Let A be an m × n matrix. A is said to be
totally unimodular if all square submatrices of A have determinant in the set {−1, 0, 1}.
A square submatrix is a square matrix obtained from A by deleting some rows or columns.

Proposition 3.1. If A is a totally unimodular matrix, then all entries of A are in the
set {−1, 0, 1}.

Proof. This is clear from the definition; if we remove all rows and all columns barring a
single cell of the matrix, we can conclude the claim. ■

Example 3.1. Let G = (V,E) be a bipartite graph. Consider the problem of finding the
size of a maximum matching in G. This problem can be formulated as an ILP as follow:
for each edge e ∈ E, we will have a variable xe. The constraint on xe will be that xe ∈ Z
and that 0 ≤ x ≤ 1. Then, for a vertex v, we will have the constraint∑

e∈E s.t e is incident on v

xe ≤ 1

14
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We can think of each variable xe as an indicator variable, denoting whether the edge e is
chosen or not. Finally, the objective that we want to maximise will be∑

e∈E
xe

It can be shown that the matrix corresponding to this LP is totally unimodular (Show
this! Induction might be used here; induction on the size of the square submatrix).

Theorem 3.2. Let A be an m × n totally unimodular matrix. Consider the following
ILP.

Maximize: cTx
Subject to: Ax ≤ b

x ≥ 0
x ∈ Zn

If b ∈ Zm, then every BFS of this ILP is integral.

Proof. First, we claim that if we add a standard basis vector to A as a column, then the
resultant matrix will be totally unimodular (here by a standard basis vector we mean the
usual basis {e1, ..., en}). This is actually very easy to see, and we will not explicitly write
the proof.

Now, having the above fact in our toolbox, we do the following: first, we convert the given
ILP to equational form by introducing m slack variables; the resultant matrix will be the
matrix [

A Im×m

]
(1)

and this matrix will be totally unimodular by the above claim. Now, let B be the set of
basic coordinates, and let N be the set of non-basic. So, in any BFS, every variable in N
is zero, and we have

xB = A−1
B b

where AB is the matrix obtained by the columns indexed by B. Then, for each i in B,
we will have

(xB)i =
det(i(AB, b))

det(AB)

by Cramer’s rule. Here, i(AB, b) is the matrix AB with the ith column replaced by the
vector b. Since b is also integral, and since det(AB) is in {−1, 1}, we see that xB is also
integral. This completes the proof. ■

Corollary 3.2.1. If A is unimodular, then every ILP with matrix A and it’s corresponding
LP (without the integrality constraint) have the same optimum, provided the the LP is
unbounded.

3.1.4 Matchings, Covers and Kőnig’s Theorem. In this section, we will prove a
useful theorem using LP techniques.

Theorem 3.3 (Kőnig). Let G = (X∪Y,E) be a bipartite graph. The size of a maximum
matching equals the size of a minimum vertex cover.

15
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Proof. Recall from Example 3.1 the ILP for maximum matchings. We write it again
here for the sake of brevity: we want to maximise

∑
e∈E xe such that for any vertex v,∑

e incident on v

xe ≤ 1

and xe ∈ {0, 1} for all e ∈ E.

Now, let us write down the ILP for computing the size of a minimum cover. For each
vertex v, we maintain a variable xv; we then want to minimize∑

v∈V
xv

such that xu + xv ≥ 1 for all edges (u, v) ∈ E, and xv ∈ {0, 1} for all v ∈ V .

Now we have two ILPs. The idea will be to convert these to LPs, and show that they are
duals of each other. Since the matrices in both the LPs will be totally unimodular, we
can conclude the statement of the theorem.

For the first ILP, we remove the integrality constraint xe ∈ {0, 1}, and instead we add
the constraint 0 ≤ xe (note that xe ≤ 1 is already forced by the summation constraint).
For the second ILP, we remove the integrality constraint xv ∈ {0, 1}, and instead we add
the constraint xv ≥ 0. That the resultant LPs are duals of each other is not hard to see;
the statement of the theorem follows. ■

Next, consider the case of non-bipartite graphs. It turns out that Konig’s Theorem 3.3
doesn’t hold anymore; for a counterexample, consider a triangle. If one investigates the
incidence matrix of a triangle, then one can see that the incidence matrix is not totally
unimodular.

3.1.5 Minimum vertex covers for general graphs. Now, again consider the case of
a general graph. In this section, we will see how the solution of the ILP for the minimum
vertex cover problem and the solution of it’s relaxation to an LP are related. Recall that
the ILP is to minimize ∑

v∈V
xv

such that xu + xv ≥ 1 for all edges (u, v) ∈ E, and xu ∈ {0, 1}. The relaxed LP for
this ILP is the same problem, with the integrality constraint removed, and the constraint
xv ≥ 0 added for all v ∈ V .

Now, suppose x∗ is the optimum of the LP. We claim that all coordinates of x∗ are atmost
1. Suppose not, and let v ∈ V be such that x∗v > 1. In that case, reducing x∗v to 1 gives
us a feasible solution with a lesser cost, which is a contradiction. So, it certainly is true
that all coordinates of x∗ are atmost 1.

Now, consider the set SLP defined as follows.

SLP :=

{
v ∈ V | x∗v ≥ 1

2

}
Here, the coordinates x∗v are the coordinates of the optimal solution x∗ of the LP. We
claim that SLP is a vertex cover, which is pretty easy to see: note that for each edge
(u, v), we must have x∗u + x∗v ≥ 1. Hence, atleast one of x∗u or x∗v is ≥ 1

2 , and hence one of
u or v is in SLP .
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Next, we claim that

|SLP | ≤ 2|SILP |

where |SILP | is the size of a minimum vertex cover of the graph. So suppose y∗ is the
ILP optimum. Clearly, we see that ∑

v∈V
x∗v ≤

∑
v∈V

y∗v

Now, observe that

|SLP | ≤ 2
∑
v∈V

x∗v

and this just follows from the definition of SLP . So, it follows that

|SLP | ≤ 2
∑
v∈V

x∗v ≤ 2
∑
v∈V

y∗v = 2|SILP |

and this completes the proof.

3.2 Primal Dual Algorithms

In combinatorial optimization, a primal dual algorithm is an algorithm which solves a
combinatorial problem by making use of a pair of primal-dual LPs. In this section, we
will see examples of this.

3.2.1 A general template. Suppose that the primal LP is of the form

Minimize: cTx
Subject to: Ax ≥ b

x ≥ 0

and it’s dual will be given by

Maximize: bT y
Subject to: AT y ≤ c

y ≥ 0

The general strategy is the following.
(1) Frame the optimization problem as an integer linear program (ILP).
(2) Generate an LP from the given ILP.
(3) Write down the dual of the LP.
(4) Find a feasible solution y0 of the dual. Typically for the problems under consider-

ation, c ≥ 0 and hence y = 0 will be feasible. This is called the initialization step
(or the zeroth step).

(5) After the ith step, say we have a feasible solution yi. Let (A
T )′ denote the rows of

the dual that are tight at yi, i.e

(AT )′yi = c′

where c′ is c restricted to the rows in (AT )′.
(6) If possible, find a y such that (AT )′y ≤ 0 and bT y > 0.
(7) Then, find the greatest ϵ > 0 such that

AT (yi + ϵy) ≤ c
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(8) Set yi+1 = yi + ϵy.
(9) When the iterative step cannot be performed anymore, we terminate.

(10) From the final y that is obtained at the end of the algorithm, generate a primal
solution x and use either complementary slackness or strong duality to show that x
and y are optima of the primal and the dual respectively.

3.2.2 Shortest Paths. We are given a directed graph G, and for every edge a non-
negative weight. There are source and target vertices s and t. Our goal is to compute
the weight of the shortest path from s to t. We will also assume that s only has outgoing
edges, and t only has incoming edges.

We use an incidence matrix to represent the graph. Here, the rows of the matrix will be
indexed by the vertices, and the columns will be indexed by the edges. For a pair (u, e)
of a vertex and an edge, the entry in row u and column e of the matrix will contain
(1) A +1, if u is the source vertex of the edge.
(2) A −1, if u is the target vertex of the edge.
(3) 0 if u is not a part of the edge.

Let us now write the shortest path problem as an ILP. For each edge e ∈ E, we will have
a variable xe which takes value in the set {0, 1}. Now, note that a subset P of edges is a
path from s to t iff.

• there is exactly one outgoing edge from s in P .
• for every v /∈ {s, t} in the path, the number of incoming edges to v in P equals the
number of outgoing edges from v in P .

• There is exactly one incoming edge to t in P .
Also, we assume that the graph has m vertices and n edges. So, the incidence matrix has
dimension m× n. Then, the above constraint can be represented as the equation

A



xe1
xe2
xe3
xe4
...

xen


=



1
0
0
0
...
−1


Our objective will be to minimize the cost∑

e∈E
cexe

Now with our ILP set up, we will form an LP out of it. To do this, we will relax the
inequality constraint to

0 ≤ xe ≤ 1

Infact, we will remove the xe ≤ 1 constraint, and we will just put 0 ≤ xe. It will turn out
that for the final LP that we will obtain, there is an optimum that assigns either 0 or 1
to each xe, and hence the constraint xe ≤ 1 can be safely removed.

So to put everything together, we have the following LP.
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Minimize:
∑

e cexe

Subject to: Ax =



1
0
0
0
...
−1


x ≥ 0

Moreover, we know that

optimumLP ≤ optimumILP

We can see that the dual of the above LP is the following.

Maximize: ys − yt
Subject to: yu − yv ≤ cuv, for all edges (u, v)

y ≥ 0

We can now repeat the steps of the general template and apply it to this primal-dual pair
(This needs to be completed!).

3.2.3 Minimum Vertex Cover. We are given an undirected graph G = (V,E) with
weights on vertices w : V → N. Our goal is to find a vertex cover of minimum weight. In
this section, we will see how to come up with a primal-dual algorithm for this problem.

It turns out that the decision version of this problem is NP-hard. So, we will see that
the primal-dual algorithm that we come up with gives us a 2-approximate solution to the
problem.

Now, let us construct the ILP for our problem. For each vertex u, we will maintain a
variable xu that will take a value in {0, 1}. Our constraints will be

xu + xv ≥ 1 ∀(u, v) ∈ E

and the objective that we want to minimize will be∑
u∈V

wuxu

Here, our matrix is the transpose of the incidence matrix, in which the rows are indexed
by the edges, and the columns indexed by the vertices. The entry (e, u) of the matrix will
be 1 iff. edge e is incident on u.

Next, as per our primal-dual template, we try to relax this ILP. To do this, we will remove
the integrality constraint, and add the constraint 0 ≤ xu ≤ 1 for each vertex u. Infact,
we will even remove the constraint xu ≤ 1, and only have xu ≥ 0 for each vertex u. This
will be our primal LP. Again, note that

optimumLP ≤ optimumILP

Let us now compute the dual of the above primal LP. For each edge e ∈ E, we will have
a variable ye, and for each vertex u we will have the constraint∑

e incident on u

(yi)e ≤ wu
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and we will have ye ≥ 0 for each e ∈ E. Our objective will be to maximise the quantity∑
e∈E

ye

This LP is our dual LP.

Now, we pick y0 = 0 as our initial feasible point of the dual. Suppose we have some yi,
and we want to compute yi+1. Let T ⊆ V be the set of all vertices for which the dual
constraint is tight, i.e for all u ∈ T , ∑

e incident on u

ye = wu

Next as per our template, we want to find some y such that (A)′y ≤ 0 and
∑

e ye > 0.
For this, we will do the following.
(1) Suppose there is some edge ei = (ui, vi) such that the dual constraints of ui, vi on

yi are not tight. Let S be the set of all such edges. In that case, we let y to be
such that y(u,v) = 1 if (u, v) ∈ S, and 0 otherwise. Note that no edge in S can be
incident to any vertex in T . It is clear that y satisfies

∑
e ye > 0 and that (A)′y ≤ 0

(infact, (A)′y = 0).
(2) If there is no such edge, we terminate the algorithm.

Once we’ve computed S as in point (1) above, we will increase the value of some edge
e ∈ S until the constraint of some vertex becomes tight (i.e, we will choose an appropriate
ϵ).

From here, it is not that hard to argue that this algorithm gives a 2-approximation to the
optimum solution. (Because of time constraints, I couldn’t finish this section)
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