
ONLINE OPTIMIZATION HW1

SIDDHANT CHAUDHARY
BMC201953

Derivative of Matrix Inverse using differentials. Consider the function F :
GL(n) → GL(n) defined by

F (X) = X−1

In this section, we will compute DXF (X), i.e the derivative of F at some matrix X.
This will be used in Problem 1.

Let U ∈ Mn be a fixed matrix. Let dF denote the differential of F , which is a map
GL(n) → GL(n) defined as follows.

dF (X) = DXF (X)(U) ∀X ∈ GL(n)
Consider the identity map V : GL(n) → GL(n) given by V (X) = X. Clearly, we see
that

dV (X) = U ∀X ∈ GL(n)
Now, for all X ∈ GL(n), we have

(F · V )(X) = In

where In is the identity matrix (where · represents matrix multiplication). Applying
the differential operator d to both sides, we see that

F dV + dF V = 0

where the above equality is an equality of maps (this holds because d as defined is a
derivation). Applying the above map to some X ∈ GL(n), we have

F (X) dV (X) + dF (X)V (X) = 0

which, upon rearranging both sides, gives us
dF (X) = −X−1UX−1(†)

Problem 1. Compute the gradient and Hessian for the following functions and write
down their second order approximation.

(1) f(X) = −log (det(X)), for an n× n matrix X.
(2) f(X) = Tr(AX), for a symmetric matrix A and X symmetric matrix of inde-

terminates.

Solution. Let us consider (1) first. The function is defined as follows.
f(X) = −log(det(X))

where X is an n×n matrix with positive determinant. By the chain rule, the derivative
of f at some matrix X with positive determinant is given by the following.

DXf(X) = −log′(det(X))DXdet(X) =
−1

det(X)
DXdet(X)

So, we only need to compute DXdet(X), i.e the derivative of det at the matrix X.
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Let the entries of X be denoted by Xij. For each 1 ≤ i, j ≤ n, we will compute the
following partial derivative.

∂det(X)

∂Xij

i.e the partial derivative of the determinant at X with respect to the ijth entry.
We know the following holds for any matrix X, where 1 ≤ i ≤ n is any index.

det(X) =
n∑

k=1

Xik · Cof(Xik)

where Cof(Xij) is the cofactor of the ijth entry. So, by the product rule, we have the
following.

∂det(X)

∂Xij

=
n∑

k=1

∂Xik

∂Xij

Cof(Xik) +Xik
∂Cof(Xik)

∂Xij

Now, if j ̸= k, then clearly
∂Xik

∂Xij

= 0

Also, note that for any 1 ≤ k ≤ n, Cof(Xik) does not depend on Xij (by the way
cofactors are defined), and hence for each 1 ≤ k ≤ n, we have

∂Cof(Xik)

∂Xij

= 0

So, we see that
∂det(X)

∂Xij

=
∂Xij

∂Xij

Cof(Xij) = Cof(Xij) = adjT (X)ji

where adj(X) is the adjoint of the matrix X. Also, for any matrix, we know that
adjT (X)ji = det(X)(X−1)Tji

(Recall that X−1 = 1
det(X)

adj(X)). So,

∂det(X)

∂Xij

= det(X)(X−1)Tji

Combining everything, we get the following equation.

DXf(A) =
−1

det(X)
det(X)(X−1)T = −(X−1)T

In the above equation, we can interpret the matrix (X−1)T as an n2× 1 vector in Rn2 ,
to make sure that both sides make sense in terms of dimensions (although the equation
still makes sense if we interpret both sides as matrices). Since we have computed the
entries of the derivative, the gradient is also computed.

Now, let us compute the Hessian. So, we need to compute the following mixed
partial, for all 1 ≤ i, j, l,m ≤ n.

∂2f(X)

∂Xij∂Xlm

=
∂ (−(X−1)ml)

∂Xij

= −∂(X−1)ml

∂Xij

Now, let eij be the n × n matrix which has all zeros except the ijth entry. From
equation (†), we have that

dF (X−1) = −X−1eijX
−1
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where above dF (X−1) has been defined w.r.t eij. Observe that dF (X−1) defined this
way will satisfy

dF (X−1)lm =
∂(X−1)lm

∂Xij

So we see that
∂(X−1)ml

∂Xij

= dF (X−1)ml = (−X−1eijX
−1)ml = −(X−1)mi(X

−1)jl

and so we see that
∂2f(X)

∂Xij∂Xlm

= (X−1)mi(X
−1)jl

Hence, the Hessian has been computed as well (clearly the above formula shows that
the Hessian is symmetric, which we know from calculus).

Let us now compute the second order approximation for this function. We have
the following for any matrix X with positive determinant. Below, we are interpreting
X, δX and ∇f(X) as vectors in Rn2

f(X + δX) = f(X) + ⟨∇f(X), δX⟩+ 1

2
(δX)T∇2f(X)(δX)

= f(X) +
∑

1≤i≤j≤n

∂f(X)

∂Xij

· (δX)ij +
1

2

∑
1≤i,j,l,m≤n

(δX)ij
∂2f

∂Xij∂Xlm

(δX)lm

= f(X) +
∑

1≤i≤j≤n

(−X−1)ji · (δX)ij +
1

2

∑
1≤i,j,l,m≤n

(δX)ij(X
−1)mi(X

−1)jl(δX)lm

So we’ve found the second order approximation.

We now consider part (2) of the problem. The function is defined as follows.
f(X) = Tr(AX)

where A is a symmetric matrix and X a symmetric matrix of indeterminates. So, note
that f is defined on the space of symmetric matrices; hence, the only independent
variables are Xij for 1 ≤ i ≤ j ≤ n. So, f should be regarded as a function f :

R
n(n−1)

2 → R.
Now, observe that the ijth entry of the product AX is the following.

(AX)ij =
n∑

k=1

AikXkj

So, it follows that the ith diagonal entry of this product is

(AX)ii =
n∑

k=1

AikXki

and hence for input matrix X we have

f(X) = Tr(AX) =
n∑

i=1

n∑
k=1

AikXki =
∑

1≤i,k≤n

AikXki

Because both X and A are symmetric, the above sum can be written as follows.

f(X) =
∑

1≤i,k≤n

AikXki =
∑

1≤i,k≤n

AikXik =
∑

1≤i≤n

AiiXii +
∑

1≤i<k≤n

2AikXik
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Now, let us calculate the partial derivatives. First, for 1 ≤ p ≤ n, the above equality
gives us

∂f(X)

∂Xpp

= App

and for any 1 ≤ p < q ≤ n, we have
∂f(X)

∂Xpq

= 2Apq

So, it follows that the gradient ∇f(X) at some symmetric matrix X is a constant
function (because the partial derivatives are all constant). Clearly, this then implies
that the Hessian ∇2f at all symmetric matrices X is 0.

Finally, let us compute the second order approximation of f(X). Clearly, since the
Hessian at all points is 0, the Hessian term in the second order approximation is zero.
So, the second order approximation is just the following. Below, X, δX and ∇f(X)

are all interpreted as vectors in R
n(n−1)

2 .
f(X + δX) = f(X) +∇f(X)T (δX)

= f(X) +
∑

1≤p≤q≤n

∂f(X)

∂Xpq

· (δX)pq

= f(X) +
∑

1≤p≤n

App(δX)pp +
∑

1≤p<q≤n

2Apq(δX)pq

So finally, the second order approximation is the following.

Tr(A(X + δX)) = Tr(AX) +
∑

1≤p≤n

App(δX)pp +
∑

1≤p<q≤n

2Apq(δX)pq

Problem 2. Let f : Rn → R be a twice differentiable function. Let g : R → R be
defined as g(t) := f(x + t(y − x)). Compute the first and second derivatives of g.
Express

∫ 1

0
g′′ dt in terms of the gradients ∇f of f at points x and y.

Solution. First, we compute the derivative of g. Throughout, our interval of interest
will be [0, 1]. Define the function h : [0, 1] → Rn as follows.

h(t) = x+ t(y − x)

So, it is immediately seen that
g = f ◦ h

By the chain rule, we have the following for all t ∈ [0, 1].
g′(t) = Df(x+ t(y − x))×Dh(t)

Now, we see that
Dh(t) = y − x

and so
g′(t) = Df(x+ t(y − x))× (y − x)

By definition, we know that
Df(x+ t(y − x)) = (∇f(x+ t(y − x)))T

and so
g′(t) = (∇f(x+ t(y − x)))T × (y − x) = ⟨∇f(x+ t(y − x)),y − x⟩(0.1)
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Next, let us compute the second derivative g′′. For a vector u ∈ Rn, let ui denote the
ith coordinate of u. Equation (0.1) tells us that for all t ∈ [0, 1],

g′(t) =
n∑

i=1

∇f(x+ t(y − x))i · (yi − xi)

So, we see that for all t ∈ [0, 1],

g′′(t) =
n∑

i=1

d

dt
∇f(x+ t(y − x))i · (yi − xi) =

n∑
i=1

(yi − xi)
d

dt
∇f(x+ t(y − x))i

(0.2)

Now, let 1 ≤ i ≤ n be fixed. Define the function pi : [0, 1] → R as follows.

pi(t) = ∇f(x+ t(y − x))i =
∂f

∂xi

(x+ t(y − x)) =

(
∂f

∂xi

◦ h
)
(t)

Let us compute p′i, again using the chain rule. We have the following for all t ∈ [0, 1].

p′i(t) = D
∂f

∂xi

(x+ t(y − x))×Dh(t) = D
∂f

∂xi

(x+ t(y − x))× (y − x)

As before, we have

D
∂f

∂xi

(x+ t(y − x)) =

(
∇ ∂f

∂xi

(x+ t(y − x))

)T

and hence the last two equations combined give us the following.

p′i(t) =

⟨
∇ ∂f

∂xi

(x+ t(y − x)),y − x

⟩
=

n∑
j=1

∂2f

∂xj∂xi

(x+ t(y − x)) · (yj − xj)

Because f is twice differentiable, we know that the mixed partial derivatives of f are
equal, i.e for any i, j,

∂2f

∂xj∂xi

=
∂2f

∂xi∂xj

So, the last equation gives us

p′i(t) =
n∑

j=1

∂2f

∂xi∂xj

(x+ t(y − x)) · (yj − xj)

Let us now plug in this value of p′i(t) in equation (0.2). Doing so, we get the following.

g′′(t) =
n∑

i=1

n∑
j=1

(yi − xi) ·
∂2f

∂xi∂xj

(x+ t(y − x)) · (yj − xj)(0.3)

=
⟨
∇2f(x+ t(y − x))× (y − x),y − x

⟩
(0.4)

Next, by the fundamental theorem of calculus, we know the following.∫ 1

0

g′′(t) dt = g′(1)−g′(0) = ⟨∇f(y),y − x⟩−⟨∇f(x),y − x⟩ = ⟨∇f(y)−∇f(x),y − x⟩

and hence we’ve computed all the required quantities.
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Problem 3. Let f be a convex function and let K be a closed convex set. Suppose
x∗ is the minimizer of f on K. Show that ⟨∇f(x∗),y − x∗⟩ ≥ 0 for all y ∈ K.

Solution. For the sake of contradiction, suppose the claim is false, i.e there is some
y ∈ K such that

⟨∇f(x∗),y − x∗⟩ < 0

Next, define the function g : [0, 1] → R by the following.

g(t) = f((1− t)x∗ + ty)

Then, observe that
g(0) = f(x∗)

Also, we have the following by the chain rule, for all t ∈ [0, 1].

g′(t) = ⟨∇f((1− t)x∗ + ty),y − x∗⟩

Above, g′(0) should be interpreted as a one-sided limit, where t → 0+. We immediately
see that

g′(0) = ⟨∇f(x∗),y − x∗⟩ < 0

Now, by the definition of the derivative,

g′(0) = lim
t→0+

g(t)− g(0)

t
< 0

This means that, for sufficiently small t ∈ (0, 1),

g(t)− g(0)

t
< 0

which implies that
g(t)− g(0) < 0

and hence
g(t) < g(0)

But, this means that
f((1− t)x∗ + ty) < f(x∗)

which contradicts the fact that x∗ is the minimizer of f .

Problem 4. Show that the set of PSD matrices is convex.

Solution. Let X,Y be two positive semi-definite n × n matrices, and let t ∈ (0, 1).
we will show that tX +(1− t)Y is also positive semi-definite. To that end, let x ∈ Rn

be any point. Then, we have the following.

⟨(tX + (1− t)Y )x,x⟩ = ⟨tXx+ (1− t)Y x,x⟩
= ⟨tXx,x⟩+ ⟨(1− t)Y x,x⟩
= t ⟨Xx,x⟩+ (1− t) ⟨Y x,x⟩
≥ 0

because t ∈ (0, 1), and X,Y are positive semi-definite. This completes the proof of
the claim.
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Problem 5. Is the negative entropy function
∑

i xilog(xi) restricted to the positive
orthant with vectors of norm atmost G strongly convex?

Solution. Let the negative entropy function be denoted by f . Let Rn
+ denote the

positive orthant (which is an open set). Then f : Rn
+ → R is defined as follows.

f(x) =
n∑

i=1

xilog(xi)

We claim that f is twice differentiable, and we will show this by actually computing
the derivative. First, if 1 ≤ i ≤ n, then note that

∂f

∂xi

(x) = 1 + log(xi)

and since xi > 0 for all i (because x ∈ Rn
+), we see that all partial derivatives exist at

all points. Hence, the function f is differentiable. Next, let 1 ≤ i, j ≤ n. If i = j, we
have

∂2f

∂x2
i

(x) =
1

xi

and this exists because xi > 0. If i ̸= j, we have

∂2f

∂xi∂xj

=
∂

∂xi

(1 + log(xj)) = 0

and hence this exists too. So, f is twice differentiable, because all mixed partials exist.
Infact, we have shown above that ∇2f(x) is a diagonal matrix at all points x ∈ Rn

+.
Now, we check whether f is strongly convex in the given domain, which is the

intersection Rn
+∩B(0, G). To check whether f is strongly convex, it is enough to check

if for some α ∈ R, the Hessian ∇2f(x) satisfies the following for all x ∈ Rn
+∩B(0, G).

∇2f(x) ≽ αI

We claim that α = G works. To show this, let x ∈ Rn
+ ∩ B(0, G). This means that

for each i,

0 < xi ≤ G =⇒ 1

xi

≥ 1

G

Now, we have shown above that the Hessian ∇2f(x) is a diagonal matrix, and the ith
diagonal entry is given by the following.

[∇2f(x)]ii =
1

xi

≥ 1

G

Now, all eigenvalues of the Hessian are the diagonal entries, i.e the eigenvalues are 1
xi

for 1 ≤ i ≤ n. So, all eigenvalues are atleast 1
G

, which means that

∇2f(x) ≽ 1

G
I

Hence, it follows that f is 1
G

-strongly convex.
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Problem 6. Let χ be a Euclidean vector space with norm ⟨., .⟩. We say f : χ → R∪∞
is α-strongly convex with respect to norm ||·|| if for all x, y and t ∈ (0, 1) we have the
following.

f(tx+ (1− t)y) ≤ tf(x) + (1− t)f(y)− 1

2
αt(1− t) ||x− y||2

f is said to be β-smooth with respect to ||·|| if

f(x+ y) ≤ f(x) + ⟨∇f(x),y⟩+ β

2
||y||2

For a function f define the conjugate of f by
f ∗ := maxx ⟨x,y⟩ − f(x)

Let f be a closed convex function. Show that f is α-strongly convex with respect to
||·|| if and only if f ∗ is 1

α
-smooth with respect to the dual norm ||·||∗. For y ∈ χ, the

dual norm is defined as follows.
||y||∗ = sup

||x||≤1

⟨y,x⟩

Solution. Didn’t get time to do this.
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