
ONLINE OPTIMIZATION HW-2

SIDDHANT CHAUDHARY
BMC201953

Problem 1. Give an algorithm to project a point x ∈ Rn to the n-simplex,
∑

i xi = 1,
1 ≥ xi ≥ 0 for all i.

Solution. For the pseudocode, please refer to Algorithm 1.
We will now give a description of our algorithm. Consider the n-simplex ∆n ⊂ Rn.

We know that the vertices of this simplex are the standard basis vectors {e1, ..., en},
and ∆n is nothing but the convex hull of this set. Now, note that the convex hull of
any subset S ⊂ {e1, ..., en} is a facet of the n-simplex.

Our algorithm consists of a function PROJECT which takes as arguments a point
x ∈ Rn and a set S ⊆ {e1, ..., en}; it returns a pair (p,d), where p is the projection
of x onto the convex hull of S, and d = ||x− p||, i.e the distance between the point
and the projection. So, the final answer will be PROJECT(x, {e1, ..., en}).

Let us now describe the algorithm.
(1) Suppose our input is x ∈ Rn, and S ⊆ {e1, ..., en} is some subset. Suppose

S = {v1, ..., vk}.
(2) If k = 1, then the returned value must be (v1, ||x− v1||), and that is what our

algorithm does.
(3) So suppose k > 1. Note that the convex hull of points in S lies in a translated

k − 1-dimensional vector space. For example, in R3, if we take S = {e1, e3},
then their convex hull, which is just the line segment between e1, e3, is really
a subset of the line containing that line segment. This line can be thought of
as a translation of a 1-dimensional vector subspace of R3. So, lines 12-14 of
the algorithm shifts the origin to a point in S (specifically, point v1), so that
the convex hull lies in an actual vector subspace. This is done because working
with vector subspaces is easier than working with their translations.

(4) It is easy to see that the vectors {v2 − v1, ..., vk − v1} are actually linearly
independent (it is easy to see this because these are standard basis vectors).
So, they span the k − 1 dimensional vector space containing them. Line 18
just converts this basis to an orthonormal basis using the usual Gram-Schmidt
technique. Suppose the orthonormal basis obtained is {v′

2, ..., v
′
k}.

(5) Lines 20-21 find the coordinates of the projection of the point x − v1 (the
translated point) onto this k− 1-dimensional space w.r.t the basis {v′

2, ..., v
′
k}.

Here we are just using the fact that the vector between the point x − v1 and
the projection is orthogonal to the space spanned by {v′

2, ..., v
′
k}; hence the

formula (in the algorithm) for the cis holds. This projection is called x′.
(6) Then, it is checked if x′ + v1 (note that we are adding v1 back to go back to

the original coordinate system) is contained in the convex hull of the points in

Date: 4 November, 2021.
1

2 SIDDHANT CHAUDHARY BMC201953

Algorithm 1 Algorithm to project onto n-simplex ∆n

1: Input: A point x ∈ Rn.
2:
3: function project(x, S) ▷ S is a subset of the standard basis {e1, ..., en}
4: Let C = convex hull of S.
5: The function will return the pair (ΠC(x), ||x− ΠC(x)||).
6:
7: Suppose S = {v1, ..., vk} ⊆ {e1, ..., en}.
8: if k = 1 then ▷ Handling the boundary case
9: return (v1, ||x− v1||)

10: end if
11:
12: x← x− v1 ▷ Lines 12, 13, 14 shift the origin to v1

13: for i = 2 to k do
14: vi ← vi − v1

15: end for
16:
17: Now, {v2, ..., vk} is a basis of span(v2, ..., vk).
18: Use Gram-Schmidt to convert {v2, ..., vk} to an orthonormal basis {v′

2, ..., v
′
k}.

19:
20: for i = 2 to k do
21: ci ← ⟨x,v′

i⟩ ▷
∑k

i=2 civ
′
i is the projection of x onto span(v2, ..., vk)

22: end for
23:
24: x′ ←

∑k
i=2 civ

′
i

25: d0 ← ||x− x′||
26: if x′ + v1 ∈ C then ▷ This can be checked easily
27: return (x′ + v1, d0)
28: end if
29:
30: x′ ← x′ + v1

31: for i = 2 to k do ▷ Lines 30, 31, 32 shift the origin back to 0
32: vi ← vi + v1

33: end for
34:
35: (p, d)← (0,∞) ▷ Initialise the pair to be returned
36: for i = 1 to k do
37: S ′ ← S − {vi}
38: (p′, d′)← PROJECT(x′, S ′)
39: if d′ < d then
40: (p, d)← (p′, d′)
41: end if
42: end for
43: return (p,

√
d2 + d20) ▷ By Pythagoras Theorem

44: end function
45:
46: Output: PROJECT(x, {e1, ..., en})

ONLINE OPTIMIZATION HW-2 3

S; this is easy to check, as it can be checked by verifying whether the equality

k∑
i=1

⟨x′ + v1,vi⟩ = 1

holds (note that we are using the fact that {v1, ..., vk} ⊆ {e1, ..., en}), and
hence checking inclusion in convex hull is easy. If yes, the projection is simply
x′ + v1, and along that we return the distance between x− v1 and x′.

(7) So suppose the answer to the previous point is not. Then first, lines 30-32 shift
the coordinate system back to the origin by adding v1 to each vector. So, we
are back in our original space, and the vector x′ + v1 is the projection of the
point x to the k−1-dimensional translated vector space containing the convex
hull of S.

(8) Now, note that the projection of x onto the convex hull of S is nothing but
the projection of x′ + v1 onto the convex hull (Pythagoras Theorem); since
x′ + v1 and the convex hull all lie in the same k − 1-dimensional vector space,
we have reduced the dimension of the problem by 1, and we can hence solve it
recursively.

(9) Now, since the point x′+v1 lies outside the convex hull, it’s projection will be
on the boundary of the convex hull, i.e it will be on some facet of the convex
hull. Any boundary facet will be the convex hull of any k − 1-sized subset of
S. So, for each k− 1-sized subset S ′ of S, we recursively compute the distance
between x′+v1 and it’s projection onto the convex hull of points in S ′; the least
among these distances will be the actual distance between the point x′ + v1

and it’s projection onto the convex hull of points in S.
(10) We simply return the distance

√
d2 + d20 as our answer; this is nothing but the

Pythagoras Theorem, and we return the point p which realizes this distance
from x. Hence, the point p will be the required projection.

I haven’t checked the time complexity of this algorithm, but it looks like poly(n). ■

Problem 2. Assume access to Nesterov’s algorithm that attains a rate of e−
√
γT for

a γ-well conditioned function. Apply a reduction to obtain a β/T 2 rate for β-smooth
functions (upto log factors).

Solution. As usual, let K be a convex body, and let f : K → R be a β-smooth
differentiable function. Let x∗ be the minimizer of f over K. Let D be the diameter
of the convex set K.

Since we have access to Nestorov’s algorithm which only works for γ-well conditioned
functions, we do the following: suppose the initial point to be fed to the algorithm is
x1 ∈ K. Define the function g : K → R as follows.

g(x) = f(x) +
α

2
||x− x1||2

Above, α is some number which will be determined in a moment. Observe that the
function h(x) = α

2
||x− x1||2 is both α-strongly convex and α-smooth; this is true

4 SIDDHANT CHAUDHARY BMC201953

because for any x,y ∈ K, the following equation is true.

h(x) =
α

2
||x− x1||2 =

α

2
||y − x1||2 +

α

2
||x− y||2 + 2

α

2
⟨y − x1,x− y⟩

=
α

2
||y − x1||2 + ⟨∇h(y),x− y⟩+ α

2
||x− y||2

= h(y) + ⟨∇h(y),x− y⟩+ α

2
||x− y||2

So, it follows that the function g is α-strongly convex and α + β-smooth; i.e, the
function g is α

α+β
-well conditioned. So, let

γ =
α

α + β

Now, let ht = f(x) − f(x∗) and let hg
t = g(xt) − g(x∗

g), where x∗
g ∈ K is the

minimizer of g. Clearly, we have that g(x∗) ≥ g(x∗
g).

We run Nesterov’s algorithm with initial point x1 on the function g. Now, observe
the following.

ht = g(xt)− g(x∗) +
α

2
||x∗ − x1||2 −

α

2
||xt − x1||2

≤ g(xt)− g(x∗
g) + αD2

= hg
t + αD2

By the convergence guarantee of Nesterov’s algorithm, we have the following using the
above inequality.

ht ≤ hg
t + αD2

≤ hg
1e

−√
γt + αD2

Now, we will choose

α =
βlog t
D2t2

This gives us the following.

γ =
α

α + β
=

log t
log t+D2t2

For large t, we know that
log t ≤ D2t2

This means, for large t, we have
log t

log t+D2t2
≥ log t

2D2t2
≥ 1

2D2t2

The above inequality implies that for large t,

e
√
γt ≥ e

√
1

2D2t2
t
= e

√
1

2D2

which implies that
e−

√
γt ≤ e

−
√

1
2D2

for large t, which implies that e−
√
γt = O(1). So, this means that

hg
1e

−√
γt + αD2 = O

(
βlog t
t2

)

ONLINE OPTIMIZATION HW-2 5

where above we are ignoring the constant hg
1 (which is positive). So, we have shown

that with the choice α = βlogt
t2

, we have

ht ≤ O

(
βlog t
t2

)
which is what we wanted to show. ■

Problem 3. Show that SGD for a strongly convex function with appropriately chosen
ηt converges at Õ(1/T). You may assume that gradients are bounded by G. Recall
that the Õ-notation hides all kinds of log-factors.

Solution. In class, we have proven the following theorem: Let K be a convex set,
x1 ∈ K an initial point, and T a time horizon. Let ft be the revealed cost functions.
Suppose each ft is α-strongly convex. Then, doing OGD with step sizes ηt =

1
αt

gives
the following regret bound.

regretT ≤
G2

2α
(1 + logT)

Here G is an upper bound on the gradients. Using this theorem, we will prove the
statement given in the problem.

So, let f be an α-strongly convex function. For each t, we define the following
function.

gt(x) =
⟨
∇̃t,x

⟩
+

α

2
||x− x1||2

Here ∇̃t is the gradient oracle, i.e

∇̃t = O(xt)

It is clear that gt is an α-strongly convex function for each t. Next, we have the
following.

E [f(xT)]− f(x∗)

≤ 1

T
E
[∑

t

f(xt)

]
− f(x∗) (Jensen’s Inequality)

=
1

T
E
[∑

t

[f(xt)− f(x∗)]

]
(Expectation of a constant)

≤ 1

T
E
[∑

t

⟨∇f(xt),xt − x∗⟩ − α

2
||xt − x∗||2

]
(Strong convexity)

=
1

T
E
[∑

t

⟨
∇̃t,xt − x∗

⟩
− α

2
||xt − x∗||2

]
(Gradient Oracle)

Now, using the trivial inequality

−α

2
||xt − x∗||2 ≤ α

2
||xt − x1||2 −

α

2
||x∗ − x1||2

6 SIDDHANT CHAUDHARY BMC201953

we get the following.

1

T
E
[∑

t

⟨
∇̃t,xt − x∗

⟩
− α

2
||xt − x∗||2

]

≤ 1

T
E
[∑

t

⟨
∇̃t,xt − x∗

⟩
+

α

2
||xt − x1||2 −

α

2
||x∗ − x1||2

]

=
1

T
E
[∑

t

gt(xt)− gt(x
∗)

]
(Definition of gt)

≤ regretT
T

≤ G2

2α

(1 + log T)
T

(By theorem mentioned above)

= Õ

(
1

T

)
Note that we are heavily relying on the fact that the theorem mentioned above holds
for every choice of the revealed loss functions. This proves the claim. ■

Problem 4. Design an OCO algorithm attaining the same bounds as OGD, upto
factors logarithmic in D and G, without knowing G and D to begin with.

Solution. In class, we have shown that OGD with step sizes ηt = D
G
√
t

gives the
following regret bound.

regretT ≤
3

2
GD
√
T = O(

√
T)

We will now design an OCO algorithm that achieves the same asymptotic regret bound,
without even knowing G and D.

So, let f be a convex function on a convex domain K. Also, assume that there exists
G such that ||∇f(x)|| ≤ G for all x ∈ K, and assume that the diameter of K is D.
Note that we are only assuming that these numbers exist, and we don’t actually know
their values. Also, suppose x1 ∈ K is the initial point.

For each t ∈ [T], define Dt as follows.
D1 = 1

Dt =

{
Dt−1 , if ||xt − x1|| ≤ Dt−1

2Dt−1 , otherwise

Similarly, for each t ∈ [T], define Gt as follows.
G1 = ||∇1||
Gt = max(Gt−1, ||∇t||)

Then, we claim that with step sizes ηt = Dt

Gt

√
t
, the usual OGD algorithm gives

regretT ≤ O(
√
T). Let us now prove this.

As usual, let

x∗ = argmin
x∈K

T∑
t=1

ft(x)

ONLINE OPTIMIZATION HW-2 7

First, observe that D1 ≤ D2 ≤ · · · ≤ DT and similarly G1 ≤ G2 ≤ · · · ≤ GT . This is
easy to see from the definitions of these sequences.

Now, we know that xt+1 = ΠK(yt+1) for each t. This implies the following.
||xt+1 − x∗||2 ≤ ||yt+1 − x∗||2 = ||xt − ηt∇t − x∗||2

The above is true by the Pythagorean Theorem. So, we get the following.
||xt+1 − x∗||2 ≤ ||xt − ηt∇t − x∗||2

= ||xt − x∗||2 + η2t ||∇t||2 − 2ηt ⟨∇t,xt − x∗⟩
Rearranging the above inequality, we get the following.

2 ⟨∇t,xt − x∗⟩ ≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηt ||∇t||2

Moreover, by convexity of ft, we know the following.
ft(xt)− ft(x

∗) ≤ ⟨∇t,xt − x∗⟩
Combining the last two inequalities, we get the following.

2(ft(xt)− ft(x
∗)) ≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηt ||∇t||2

Note that the above inequality is true for all t ∈ [T]. So, summing over all t, we
get the following, where the convention is 1/η0 = 0 and we are using the fact that
||xT+1 − x∗|| ≥ 0.

2 · regretT ≤
T∑
t=1

||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+

T∑
t=1

ηt ||∇t||2

≤
T∑
t=1

||xt − x∗||2
(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt ||∇t||2

≤
T∑
t=1

D2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt ||∇t||2

≤ D2

ηT
+

T∑
t=1

Dt

Gt

√
t
G2

t

=
D2GT

√
T

DT

+
T∑
t=1

DtGt√
t

≤ D2GT

√
T

DT

+DTGT

T∑
t=1

1√
t

≤ D2GT

√
T

DT

+ 2DTGT

√
T

Above, we have used the facts that Dt, Gt are non-decreasing sequences. Now, observe
that GT ≤ G (because G is an upper bound on the gradients, and GT is the maximum
norm of a gradient seen till time T). So, we get that

2 · regretT ≤
D2G

√
T

DT

+ 2DTG
√
T

8 SIDDHANT CHAUDHARY BMC201953

Now, we consider two cases.
(1) In the first case, we have DT ≤ D. Also, we know that 1 = D1 ≤ DT . So, in

this case we see that
D2G

√
T

DT

+ 2DTG
√
T ≤ D2G

√
T + 2DG

√
T = O(

√
T)

and hence we have an O(
√
T) regret bound. Note that we cannot do any better

than the D2G term, because the bound must hold for all T , in particular T = 1.
For that case, we have DT = 1, and the only bound we know on ||x1 − x∗||2 is
D2.

(2) In the second case, we have D < DT . Suppose t0 + 1 ≤ T is the last time step
when the sequence Dt was updated, i.e

Dt0+1 = 2Dt0

Clearly, we see that DT = Dt0+1 = 2Dt0 . Also, by our definition, this update
happened only because

Dt0 < ||xt0+1 − x1|| ≤ D

So, we have that
Dt0 < D < DT

which is the same as the inequality
DT

2
< D < DT

In this case, we have that
D2G

√
T

DT

+ 2DTG
√
T ≤ DG

√
T + 4DG

√
T = O(

√
T)

and hence in this case as well, we have an O(
√
T) regret bound.

So, in all cases the given regret bound follows, and this completes the proof of the
claim. ■
Problem 5. Implement SGD for SVM training. Run the results on CIFAR-10 and
also MNIST. Compare the results with offline GD algorithm. Compare the accuracies
on test data.
Solution. Here is the GitHub link: https://github.com/codetalker7/ogd-vs-sgd.

■

https://github.com/codetalker7/ogd-vs-sgd

	Problem 1
	Problem 2
	Problem 3
	Problem 4
	Problem 5

