ONLINE OPTIMIZATION HW-3
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All the problems below are taken from Chapter 5 from Elad Hazan’s book.

Problem 3 of Chapter 5. Let R(z) = 3 || — xo||>. We will show that the Bregman
divergence corresponding to R is the Euclidean metric.

First, observe that for any y, we have
VR(y) =y — o
So, by the definition of Bregman divergence, we have the following.

Br(z|ly) = R(z) — R(y) — VR(y)" (z —y)
= 2Nl =l ~ 5 1y~ @0l ~ (3~ 20)" (=~ )
= 5 Nl = ol = 5 lly — ol ~ (3 — 20)7 (@ — 20— (3 — 20)
= 2 Nl =@l + 511y — ol ~ (3 — 20)" (= — z0)
= Sl — 20— (y —20)]
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And this is what we wanted to show.
Now, recall that the projection with respect to this divergence is defined to be the
quantity

argmin Bg(x||y)
zelkl

Hence, in our case, the projection with respect to the divergence is

1

argmin = ||z — y||* = argmin ||z — y||* = argmin ||@ — y||
zek 2 zek zek

and this is nothing but the standard Euclidean projection. This completes the solution

to the problem.

Problem 5 of Chapter 5. For this problem, let us set up some notation. Let 1
denote the all ones vector, i.e all the coordinates of this vector are 1. For any vector
z, let log z denote the vector in which we have applied the logarithm function to each
coordinate of z.

Let K be the n-dimensional simplex. Let R(x) = x’logx be the negative entropy
regularization function. Computing the gradient of R, we get the following.

VR(y)=1+logx
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Then the Bregman divergence is the following.
Br(z|ly) = R(z) — R(y) = VR(y)" (x — y)
=z logx — y"logy — (1 +1logy)" (z — y)
=x’logx —y'logy — 17 (x — y) — x’logy + y'logy
=z (logzx — logy) — 17 (z — y)
So, we conclude that the Bregman divergence is simply the relative entropy plus an

additional term. But in our case, note that because x, y are in the n-simplex, we have
that 17z = 1Ty = 1. So, it follows that

Br(x|ly) = =" (logz — logy)
and hence Bg(z||y) is indeed the relative entropy.

Now, we will show that Dg, the diameter of K with respect to R, satisfies the upper
bound D% < logn. The proof is pretty simple. First, note that by definition, we have

D? = max R(x) — R(y) = max Zx, log x; — Zyl log v;

7y€’C ,yElC

Now, we focus on the quantity

i rilogxz; — i yilog y;
i=1 i=1

Because 0 < x; < 1, we see that the sum Z?:l x;log x; < 0. Infact, this sum is zero if
x is a vertex of . So, it follows that maximizing the above quantity is the same as
maximizing the quantity

_Zyilogyi = Zyz-logl_
i=1 i=1 Yi

over IC. Now, note that the function f(z) = logx is concave. So, by Jensen’s Inequality
for concave functions, we know that if y = (y1, ..., y,) € K, then

f(yl.i+...+yn.i> Zylf(i)++ynf(i>
hn Yn hn Yn

The above inequality implies that

1 1

logn >y log — + -+ + y, log —

n n

Ofcourse, above we assumed that all ;s are non-zero. Even if some of them are zeros,

applying the same trick gives us an even stronger upper bound. So, putting everything
above together, we see that

in log z; — Zyilogyi < logn

i=1 i=1
Infact, the above bound is tight; take & to be a vertex of K, and let y be the uniform
distribution. In that case, the first quantity is 0 and the second quantity is logn. This
shows that D% < logn.

Finally, we show that projections with respect to this divergence over the simplex

amounts to scaling by the /1 norm. So let y be any point with positive coordinates
(we need this because we take the logarithm of y in the Bregman divergence). As
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we’ve calculated the Bregman divergence above, the projection of the point y onto the
simplex K is the following.

argmin = 2’ (logx — logy) — 17 (xz — y)
zek
S DA D
i=1 Yi = i=1
“Y a1+ 30
i=1 Yi i=1

So, minimizing the above quantity is equivalent to minimizing the sum

n z;
izl x;log E

Consider the function f(z) = xlogx, which we know is convex. Also note that

;xllog—i :;yiglog%
n z;
= Zyif (;)

= llslh Zuyul ()

Now, by Jensen’s Inequality for convex functions, we have the following.

I3 s (32) = ol f<z|| [ )

= llslh J;(|y|1>

= log

Yl
Moreover, it can be observed that a W achieves the above minimum value. So,

it follows that the projection with respect to this Bregman divergence of y onto the
simplex is just Tolls || , which shows that these projections just amount to scaling by the

¢1 norm. This completes the solution of the problem.

Problem 10 of Chapter 5. First, let A > B > 0 be two positive definite matrices.
We show that A2 = Bz. Before proving this, we prove a simple lemma.

Lemma 0.1. Let M > 0 be any positive semi-definite matriz. If N is any matriz,
then NTMN = 0. The inequality is strict if in addition it is assumed that M = 0 and
N is invertible.

Proof. It is clear that NTMN is symmetric, because M is symmetric. Next, suppose
x is some vector. Then, observe that

' (N"MN)x = (Nz)" M(Nzx) >0

because M is positive semi-definite. Clearly, if N is invertible and M > 0, the in-
equality is actually strict. This completes the proof. |
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Now, coming back to the main problem, we know that A— B > 0. By Lemma 0.1,
and using the fact that B~'/2 is a symmetric matrix (because B/? is), we see that
BY2AB™Y? =B Y*(A-B)BY? >0
By the same lemma (Lemma 0.1), B~Y2AB~'/2 is a positive definite matrix (since
A is); infact, by the above inequality, we see that all eigenvalues of B~'/2AB~1/2

are greater than 1. Moreover, the above inequality implies that for all & such that
||| = 1,

(BT'PAB™ P, x) > (Iz,z) = 1
Next, we will use the simple identity
(Az,y) = (x, ATy)

for any matrix A and vectors x,y. For any vector @ such that ||z|| = 1, we have the
following.
0.1 B Y2AB Pz 2\ > (Iz,xz) =1
(0.1) ( , :
(0.2) = (AB "’z (B/*)Tz) > 1
(0.3)
—_— <A1/2B_1/2$, (Al/z)T(B_1/2)T.’,B> > 1 (A _ A1/2A1/2)
04) = <A1/2B_1/2:13,A1/2B_1/233> > 1 (AY2, BY/? are symmetric)
(0.5) || A2 2 1

Now, consider the matrix A/2B8~1/2. Note that
B4 AR — Brl/A( 412 B1/2) B/

and this implies that AY/2B~1/2 is similar to the matrix B~/*AY2B~1/4; this means
that they have the same eigenvalues. But, note that B~Y/4 = (B~Y/4)T (it is symmet-
ric), and hence by Lemma 0.1, we have that B~1/4AY2B~1/4 = ( (because A2 = 0),
and hence all eigenvalues of this matrix are positive (and real). Moreover, inequality
(0.5) implies that all eigenvalues of AY2B~/2 are greater than 1 in absolute value; so
it follows that all eigenvalues of B~1/*AY2B~1/* are greater than one. This implies
Bfl/4A1/QBfl/4 7] - 0
By Lemma 0.1, we see that
B1/4(B—1/4A1/2B—1/4 _ ])Bl/4 i 0

and clearly this implies that A2 — BY2 > 0, and this proves our claim.
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