ONLINE OPTIMIZATION HW-3

SIDDHANT CHAUDHARY
BMC201953

All the problems below are taken from Chapter 5 from Elad Hazan's book.
Problem 3 of Chapter 5. Let $R(x)=\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}$. We will show that the Bregman divergence corresponding to R is the Euclidean metric.

First, observe that for any \boldsymbol{y}, we have

$$
\nabla R(\boldsymbol{y})=\boldsymbol{y}-\boldsymbol{x}_{0}
$$

So, by the definition of Bregman divergence, we have the following.

$$
\begin{aligned}
B_{R}(\boldsymbol{x} \| \boldsymbol{y}) & =R(\boldsymbol{x})-R(\boldsymbol{y})-\nabla R(\boldsymbol{y})^{T}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}-\frac{1}{2}\left\|\boldsymbol{y}-\boldsymbol{x}_{0}\right\|^{2}-\left(\boldsymbol{y}-\boldsymbol{x}_{0}\right)^{T}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}-\frac{1}{2}\left\|\boldsymbol{y}-\boldsymbol{x}_{0}\right\|^{2}-\left(\boldsymbol{y}-\boldsymbol{x}_{0}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}_{0}-\left(\boldsymbol{y}-\boldsymbol{x}_{0}\right)\right) \\
& =\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}\right\|^{2}+\frac{1}{2}\left\|\boldsymbol{y}-\boldsymbol{x}_{0}\right\|^{2}-\left(\boldsymbol{y}-\boldsymbol{x}_{0}\right)^{T}\left(\boldsymbol{x}-\boldsymbol{x}_{0}\right) \\
& =\frac{1}{2}\left\|\boldsymbol{x}-\boldsymbol{x}_{0}-\left(\boldsymbol{y}-\boldsymbol{x}_{0}\right)\right\|^{2} \\
& =\frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}
\end{aligned}
$$

And this is what we wanted to show.
Now, recall that the projection with respect to this divergence is defined to be the quantity

$$
\underset{\boldsymbol{x} \in \mathcal{K}}{\operatorname{argmin}} B_{R}(\boldsymbol{x} \| \boldsymbol{y})
$$

Hence, in our case, the projection with respect to the divergence is

$$
\underset{\boldsymbol{x} \in \mathcal{K}}{\operatorname{argmin}} \frac{1}{2}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}=\underset{\boldsymbol{x} \in \mathcal{K}}{\operatorname{argmin}}\|\boldsymbol{x}-\boldsymbol{y}\|^{2}=\underset{\boldsymbol{x} \in \mathcal{K}}{\operatorname{argmin}}\|\boldsymbol{x}-\boldsymbol{y}\|
$$

and this is nothing but the standard Euclidean projection. This completes the solution to the problem.

Problem 5 of Chapter 5. For this problem, let us set up some notation. Let 1 denote the all ones vector, i.e all the coordinates of this vector are 1 . For any vector \boldsymbol{z}, let $\log \boldsymbol{z}$ denote the vector in which we have applied the logarithm function to each coordinate of \boldsymbol{z}.
Let \mathcal{K} be the n-dimensional simplex. Let $R(\boldsymbol{x})=\boldsymbol{x}^{T} \log \boldsymbol{x}$ be the negative entropy regularization function. Computing the gradient of R, we get the following.

$$
\nabla R(\boldsymbol{y})=\mathbf{1}+\log \boldsymbol{x}
$$

Then the Bregman divergence is the following.

$$
\begin{aligned}
B_{R}(\boldsymbol{x} \| \boldsymbol{y}) & =R(\boldsymbol{x})-R(\boldsymbol{y})-\nabla R(\boldsymbol{y})^{T}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\boldsymbol{x}^{T} \log \boldsymbol{x}-\boldsymbol{y}^{T} \log \boldsymbol{y}-(\mathbf{1}+\log \boldsymbol{y})^{T}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\boldsymbol{x}^{T} \log \boldsymbol{x}-\boldsymbol{y}^{T} \log \boldsymbol{y}-\mathbf{1}^{T}(\boldsymbol{x}-\boldsymbol{y})-\boldsymbol{x}^{T} \log \boldsymbol{y}+\boldsymbol{y}^{T} \log \boldsymbol{y} \\
& =\boldsymbol{x}^{T}(\log \boldsymbol{x}-\log \boldsymbol{y})-\mathbf{1}^{T}(\boldsymbol{x}-\boldsymbol{y})
\end{aligned}
$$

So, we conclude that the Bregman divergence is simply the relative entropy plus an additional term. But in our case, note that because $\boldsymbol{x}, \boldsymbol{y}$ are in the n-simplex, we have that $\mathbf{1}^{T} \boldsymbol{x}=\mathbf{1}^{T} \boldsymbol{y}=1$. So, it follows that

$$
B_{R}(\boldsymbol{x} \| \boldsymbol{y})=\boldsymbol{x}^{T}(\log \boldsymbol{x}-\log \boldsymbol{y})
$$

and hence $B_{R}(\boldsymbol{x} \| \boldsymbol{y})$ is indeed the relative entropy.
Now, we will show that D_{R}, the diameter of \mathcal{K} with respect to R, satisfies the upper bound $D_{R}^{2} \leq \log n$. The proof is pretty simple. First, note that by definition, we have

$$
D_{R}^{2}=\max _{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{K}} R(\boldsymbol{x})-R(\boldsymbol{y})=\max _{\boldsymbol{x}, \boldsymbol{y} \in \mathcal{K}} \sum_{i=1}^{n} x_{i} \log x_{i}-\sum_{i=1}^{n} y_{i} \log y_{i}
$$

Now, we focus on the quantity

$$
\sum_{i=1}^{n} x_{i} \log x_{i}-\sum_{i=1}^{n} y_{i} \log y_{i}
$$

Because $0 \leq x_{i} \leq 1$, we see that the sum $\sum_{i=1}^{n} x_{i} \log x_{i} \leq 0$. Infact, this sum is zero if \boldsymbol{x} is a vertex of \mathcal{K}. So, it follows that maximizing the above quantity is the same as maximizing the quantity

$$
-\sum_{i=1}^{n} y_{i} \log y_{i}=\sum_{i=1}^{n} y_{i} \log \frac{1}{y_{i}}
$$

over \mathcal{K}. Now, note that the function $f(x)=\log x$ is concave. So, by Jensen's Inequality for concave functions, we know that if $\boldsymbol{y}=\left(y_{1}, \ldots, y_{n}\right) \in \mathcal{K}$, then

$$
f\left(y_{1} \cdot \frac{1}{y_{1}}+\cdots+y_{n} \cdot \frac{1}{y_{n}}\right) \geq y_{1} f\left(\frac{1}{y_{1}}\right)+\cdots+y_{n} f\left(\frac{1}{y_{n}}\right)
$$

The above inequality implies that

$$
\log n \geq y_{1} \log \frac{1}{y_{1}}+\cdots+y_{n} \log \frac{1}{y_{n}}
$$

Ofcourse, above we assumed that all y_{i} s are non-zero. Even if some of them are zeros, applying the same trick gives us an even stronger upper bound. So, putting everything above together, we see that

$$
\sum_{i=1}^{n} x_{i} \log x_{i}-\sum_{i=1}^{n} y_{i} \log y_{i} \leq \log n
$$

Infact, the above bound is tight; take \boldsymbol{x} to be a vertex of \mathcal{K}, and let \boldsymbol{y} be the uniform distribution. In that case, the first quantity is 0 and the second quantity is $\log n$. This shows that $D_{R}^{2} \leq \log n$.

Finally, we show that projections with respect to this divergence over the simplex amounts to scaling by the ℓ_{1} norm. So let \boldsymbol{y} be any point with positive coordinates (we need this because we take the logarithm of \boldsymbol{y} in the Bregman divergence). As
we've calculated the Bregman divergence above, the projection of the point \boldsymbol{y} onto the simplex \mathcal{K} is the following.

$$
\begin{aligned}
\underset{\boldsymbol{x} \in \mathcal{K}}{\operatorname{argmin}} & =\boldsymbol{x}^{T}(\log \boldsymbol{x}-\log \boldsymbol{y})-\mathbf{1}^{T}(\boldsymbol{x}-\boldsymbol{y}) \\
& =\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}}-\sum_{i=1}^{n} x_{i}+\sum_{i=1}^{n} y_{i} \\
& =\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}}-1+\sum_{i=1}^{n} y_{i}
\end{aligned}
$$

So, minimizing the above quantity is equivalent to minimizing the sum

$$
\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}}
$$

Consider the function $f(x)=x \log x$, which we know is convex. Also note that

$$
\begin{aligned}
\sum_{i=1}^{n} x_{i} \log \frac{x_{i}}{y_{i}} & =\sum_{i=1}^{n} y_{i} \frac{x_{i}}{y_{i}} \log \frac{x_{i}}{y_{i}} \\
& =\sum_{i=1}^{n} y_{i} f\left(\frac{x_{i}}{y_{i}}\right) \\
& =\|\boldsymbol{y}\|_{1} \sum_{i=1}^{n} \frac{y_{i}}{\|\boldsymbol{y}\|_{1}} f\left(\frac{x_{i}}{y_{i}}\right)
\end{aligned}
$$

Now, by Jensen's Inequality for convex functions, we have the following.

$$
\begin{aligned}
\|\boldsymbol{y}\|_{1} \sum_{i=1}^{n} \frac{y_{i}}{\|\boldsymbol{y}\|_{1}} f\left(\frac{x_{i}}{y_{i}}\right) & \geq\|\boldsymbol{y}\|_{1} f\left(\sum_{i=1}^{n} \frac{x_{i}}{\|\boldsymbol{y}\|_{1}}\right) \\
& =\|\boldsymbol{y}\|_{1} f\left(\frac{1}{\|\boldsymbol{y}\|_{1}}\right) \\
& =\log \frac{1}{\|\boldsymbol{y}\|_{1}}
\end{aligned}
$$

Moreover, it can be observed that $\boldsymbol{x}=\frac{\boldsymbol{y}}{\|\boldsymbol{y}\|_{1}}$ achieves the above minimum value. So, it follows that the projection with respect to this Bregman divergence of \boldsymbol{y} onto the simplex is just $\frac{y}{\|y\|_{1}}$, which shows that these projections just amount to scaling by the ℓ_{1} norm. This completes the solution of the problem.

Problem 10 of Chapter 5. First, let $A \succeq B \succ 0$ be two positive definite matrices. We show that $A^{\frac{1}{2}} \succeq B^{\frac{1}{2}}$. Before proving this, we prove a simple lemma.

Lemma 0.1. Let $M \succeq 0$ be any positive semi-definite matrix. If N is any matrix, then $N^{T} M N \succeq 0$. The inequality is strict if in addition it is assumed that $M \succ 0$ and N is invertible.

Proof. It is clear that $N^{T} M N$ is symmetric, because M is symmetric. Next, suppose \boldsymbol{x} is some vector. Then, observe that

$$
\boldsymbol{x}^{T}\left(N^{T} M N\right) \boldsymbol{x}=(N \boldsymbol{x})^{T} M(N \boldsymbol{x}) \geq 0
$$

because M is positive semi-definite. Clearly, if N is invertible and $M \succ 0$, the inequality is actually strict. This completes the proof.

Now, coming back to the main problem, we know that $A-B \succeq 0$. By Lemma 0.1, and using the fact that $B^{-1 / 2}$ is a symmetric matrix (because $B^{1 / 2}$ is), we see that

$$
B^{-1 / 2} A B^{-1 / 2}-I=B^{-1 / 2}(A-B) B^{-1 / 2} \succeq 0
$$

By the same lemma (Lemma 0.1), $B^{-1 / 2} A B^{-1 / 2}$ is a positive definite matrix (since A is); infact, by the above inequality, we see that all eigenvalues of $B^{-1 / 2} A B^{-1 / 2}$ are greater than 1 . Moreover, the above inequality implies that for all \boldsymbol{x} such that $\|\boldsymbol{x}\|=1$,

$$
\left\langle B^{-1 / 2} A B^{-1 / 2} \boldsymbol{x}, \boldsymbol{x}\right\rangle \geq\langle I \boldsymbol{x}, \boldsymbol{x}\rangle=1
$$

Next, we will use the simple identity

$$
\langle A \boldsymbol{x}, \boldsymbol{y}\rangle=\left\langle\boldsymbol{x}, A^{T} \boldsymbol{y}\right\rangle
$$

for any matrix A and vectors $\boldsymbol{x}, \boldsymbol{y}$. For any vector \boldsymbol{x} such that $\|\boldsymbol{x}\|=1$, we have the following.

$$
\left.\begin{array}{rl}
(0.1) \tag{0.1}\\
(0.2)
\end{array} \quad \Longrightarrow\left\langle B^{-1 / 2} A B^{-1 / 2} \boldsymbol{x}, \boldsymbol{x}\right\rangle\right) \geq\langle I \boldsymbol{x}, \boldsymbol{x}\rangle=1
$$

$$
\begin{equation*}
\Longrightarrow\left\langle A^{1 / 2} B^{-1 / 2} \boldsymbol{x},\left(A^{1 / 2}\right)^{T}\left(B^{-1 / 2}\right)^{T} \boldsymbol{x}\right\rangle \geq 1 \quad\left(A=A^{1 / 2} A^{1 / 2}\right) \tag{0.3}
\end{equation*}
$$

$(0.4) \Longrightarrow\left\langle A^{1 / 2} B^{-1 / 2} \boldsymbol{x}, A^{1 / 2} B^{-1 / 2} \boldsymbol{x}\right\rangle \geq 1 \quad\left(A^{1 / 2}, B^{1 / 2}\right.$ are symmetric)

$$
\begin{equation*}
\Longrightarrow\left\|A^{1 / 2} B^{-1 / 2} \boldsymbol{x}\right\| \geq 1 \tag{0.5}
\end{equation*}
$$

Now, consider the matrix $A^{1 / 2} B^{-1 / 2}$. Note that

$$
B^{-1 / 4} A^{1 / 2} B^{-1 / 4}=B^{-1 / 4}\left(A^{1 / 2} B^{-1 / 2}\right) B^{1 / 4}
$$

and this implies that $A^{1 / 2} B^{-1 / 2}$ is similar to the matrix $B^{-1 / 4} A^{1 / 2} B^{-1 / 4}$; this means that they have the same eigenvalues. But, note that $B^{-1 / 4}=\left(B^{-1 / 4}\right)^{T}$ (it is symmetric), and hence by Lemma 0.1, we have that $B^{-1 / 4} A^{1 / 2} B^{-1 / 4} \succ 0$ (because $A^{1 / 2} \succ 0$), and hence all eigenvalues of this matrix are positive (and real). Moreover, inequality (0.5) implies that all eigenvalues of $A^{1 / 2} B^{-1 / 2}$ are greater than 1 in absolute value; so it follows that all eigenvalues of $B^{-1 / 4} A^{1 / 2} B^{-1 / 4}$ are greater than one. This implies

$$
B^{-1 / 4} A^{1 / 2} B^{-1 / 4}-I \succeq 0
$$

By Lemma 0.1, we see that

$$
B^{1 / 4}\left(B^{-1 / 4} A^{1 / 2} B^{-1 / 4}-I\right) B^{1 / 4} \succeq 0
$$

and clearly this implies that $A^{1 / 2}-B^{1 / 2} \succeq 0$, and this proves our claim.

