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All the problems below are taken from Chapter 5 from Elad Hazan’s book.

Problem 3 of Chapter 5. Let R(x) = 1
2
||x− x0||2. We will show that the Bregman

divergence corresponding to R is the Euclidean metric.
First, observe that for any y, we have

∇R(y) = y − x0

So, by the definition of Bregman divergence, we have the following.
BR(x||y) = R(x)−R(y)−∇R(y)T (x− y)

=
1

2
||x− x0||2 −

1

2
||y − x0||2 − (y − x0)

T (x− y)

=
1

2
||x− x0||2 −

1

2
||y − x0||2 − (y − x0)

T (x− x0 − (y − x0))

=
1

2
||x− x0||2 +

1

2
||y − x0||2 − (y − x0)

T (x− x0)

=
1

2
||x− x0 − (y − x0)||2

=
1

2
||x− y||2

And this is what we wanted to show.
Now, recall that the projection with respect to this divergence is defined to be the

quantity
argmin

x∈K
BR(x||y)

Hence, in our case, the projection with respect to the divergence is

argmin
x∈K

1

2
||x− y||2 = argmin

x∈K
||x− y||2 = argmin

x∈K
||x− y||

and this is nothing but the standard Euclidean projection. This completes the solution
to the problem.

Problem 5 of Chapter 5. For this problem, let us set up some notation. Let 1
denote the all ones vector, i.e all the coordinates of this vector are 1. For any vector
z, let log z denote the vector in which we have applied the logarithm function to each
coordinate of z.

Let K be the n-dimensional simplex. Let R(x) = xT logx be the negative entropy
regularization function. Computing the gradient of R, we get the following.

∇R(y) = 1+ logx
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Then the Bregman divergence is the following.
BR(x||y) = R(x)−R(y)−∇R(y)T (x− y)

= xT logx− yT log y − (1+ log y)T (x− y)

= xT logx− yT log y − 1T (x− y)− xT log y + yT log y
= xT (logx− log y)− 1T (x− y)

So, we conclude that the Bregman divergence is simply the relative entropy plus an
additional term. But in our case, note that because x,y are in the n-simplex, we have
that 1Tx = 1Ty = 1. So, it follows that

BR(x||y) = xT (logx− log y)
and hence BR(x||y) is indeed the relative entropy.

Now, we will show that DR, the diameter of K with respect to R, satisfies the upper
bound D2

R ≤ log n. The proof is pretty simple. First, note that by definition, we have

D2
R = max

x,y∈K
R(x)−R(y) = max

x,y∈K

n∑
i=1

xi log xi −
n∑

i=1

yi log yi

Now, we focus on the quantity
n∑

i=1

xi log xi −
n∑

i=1

yi log yi

Because 0 ≤ xi ≤ 1, we see that the sum
∑n

i=1 xi log xi ≤ 0. Infact, this sum is zero if
x is a vertex of K. So, it follows that maximizing the above quantity is the same as
maximizing the quantity

−
n∑

i=1

yi log yi =
n∑

i=1

yi log 1

yi

over K. Now, note that the function f(x) = log x is concave. So, by Jensen’s Inequality
for concave functions, we know that if y = (y1, ..., yn) ∈ K, then

f

(
y1 ·

1

y1
+ · · ·+ yn ·

1

yn

)
≥ y1f

(
1

y1

)
+ · · ·+ ynf

(
1

yn

)
The above inequality implies that

log n ≥ y1 log 1

y1
+ · · ·+ yn log 1

yn

Ofcourse, above we assumed that all yis are non-zero. Even if some of them are zeros,
applying the same trick gives us an even stronger upper bound. So, putting everything
above together, we see that

n∑
i=1

xi log xi −
n∑

i=1

yi log yi ≤ log n

Infact, the above bound is tight; take x to be a vertex of K, and let y be the uniform
distribution. In that case, the first quantity is 0 and the second quantity is log n. This
shows that D2

R ≤ log n.
Finally, we show that projections with respect to this divergence over the simplex

amounts to scaling by the ℓ1 norm. So let y be any point with positive coordinates
(we need this because we take the logarithm of y in the Bregman divergence). As
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we’ve calculated the Bregman divergence above, the projection of the point y onto the
simplex K is the following.

argmin
x∈K

= xT (logx− log y)− 1T (x− y)

=
n∑

i=1

xi log xi

yi
−

n∑
i=1

xi +
n∑

i=1

yi

=
n∑

i=1

xi log xi

yi
− 1 +

n∑
i=1

yi

So, minimizing the above quantity is equivalent to minimizing the sum
n∑

i=1

xi log xi

yi

Consider the function f(x) = x log x, which we know is convex. Also note that
n∑

i=1

xi log xi

yi
=

n∑
i=1

yi
xi

yi
log xi

yi

=
n∑

i=1

yif

(
xi

yi

)

= ||y||1
n∑

i=1

yi
||y||1

f

(
xi

yi

)
Now, by Jensen’s Inequality for convex functions, we have the following.

||y||1
n∑

i=1

yi
||y||1

f

(
xi

yi

)
≥ ||y||1 f

(
n∑

i=1

xi

||y||1

)

= ||y||1 f
(

1

||y||1

)
= log 1

||y||1
Moreover, it can be observed that x = y

||y||1
achieves the above minimum value. So,

it follows that the projection with respect to this Bregman divergence of y onto the
simplex is just y

||y||1
, which shows that these projections just amount to scaling by the

ℓ1 norm. This completes the solution of the problem.

Problem 10 of Chapter 5. First, let A ⪰ B ≻ 0 be two positive definite matrices.
We show that A

1
2 ⪰ B

1
2 . Before proving this, we prove a simple lemma.

Lemma 0.1. Let M ⪰ 0 be any positive semi-definite matrix. If N is any matrix,
then NTMN ⪰ 0. The inequality is strict if in addition it is assumed that M ≻ 0 and
N is invertible.
Proof. It is clear that NTMN is symmetric, because M is symmetric. Next, suppose
x is some vector. Then, observe that

xT (NTMN)x = (Nx)TM(Nx) ≥ 0

because M is positive semi-definite. Clearly, if N is invertible and M ≻ 0, the in-
equality is actually strict. This completes the proof. ■
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Now, coming back to the main problem, we know that A−B ⪰ 0. By Lemma 0.1,
and using the fact that B−1/2 is a symmetric matrix (because B1/2 is), we see that

B−1/2AB−1/2 − I = B−1/2(A− B)B−1/2 ⪰ 0

By the same lemma (Lemma 0.1), B−1/2AB−1/2 is a positive definite matrix (since
A is); infact, by the above inequality, we see that all eigenvalues of B−1/2AB−1/2

are greater than 1. Moreover, the above inequality implies that for all x such that
||x|| = 1, 〈

B−1/2AB−1/2x,x
〉
≥ ⟨Ix,x⟩ = 1

Next, we will use the simple identity
⟨Ax,y⟩ =

〈
x, ATy

〉
for any matrix A and vectors x,y. For any vector x such that ||x|| = 1, we have the
following. 〈

B−1/2AB−1/2x,x
〉
≥ ⟨Ix,x⟩ = 1(0.1)

=⇒
〈
AB−1/2x, (B−1/2)Tx

〉
≥ 1(0.2)

=⇒
〈
A1/2B−1/2x, (A1/2)T (B−1/2)Tx

〉
≥ 1 (A = A1/2A1/2)

(0.3)

=⇒
〈
A1/2B−1/2x, A1/2B−1/2x

〉
≥ 1 (A1/2, B1/2 are symmetric)(0.4)

=⇒
∣∣∣∣A1/2B−1/2x

∣∣∣∣ ≥ 1(0.5)
Now, consider the matrix A1/2B−1/2. Note that

B−1/4A1/2B−1/4 = B−1/4(A1/2B−1/2)B1/4

and this implies that A1/2B−1/2 is similar to the matrix B−1/4A1/2B−1/4; this means
that they have the same eigenvalues. But, note that B−1/4 = (B−1/4)T (it is symmet-
ric), and hence by Lemma 0.1, we have that B−1/4A1/2B−1/4 ≻ 0 (because A1/2 ≻ 0),
and hence all eigenvalues of this matrix are positive (and real). Moreover, inequality
(0.5) implies that all eigenvalues of A1/2B−1/2 are greater than 1 in absolute value; so
it follows that all eigenvalues of B−1/4A1/2B−1/4 are greater than one. This implies

B−1/4A1/2B−1/4 − I ⪰ 0

By Lemma 0.1, we see that
B1/4(B−1/4A1/2B−1/4 − I)B1/4 ⪰ 0

and clearly this implies that A1/2 − B1/2 ⪰ 0, and this proves our claim.
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