
ONLINE OPTIMIZATION

SIDDHANT CHAUDHARY

These are my course notes for the Online Optimization course I took in CMI. The
reference book used can be found on arXiv: Introduction to Online Convex Optimi-
sation. Online Learning can also be described as learning from experience.

Contents

1. The Online Learning Model . 2
1.1. Model Description and Restrictions . 2
1.2. Regret of an algorithm . 2
1.3. Expert Advice: An example . 3
1.4. Learning from Expert Advice . 3
1.5. The Weighted Majority Algorithm . 4
1.6. Randomized Weighted Majority Algorithm . 4

2. Introduction to Convexity . 7
2.1. Basic Definitions . 7
2.2. Subgradients . 8
2.3. Alternative Characterisations of Convexity . 8
2.4. Convex bodies and Hyperplanes . 10
2.5. Local Minima are Global Minima . 12
2.6. Convex Projections . 13

3. First Order Convex Optimization . 14
3.1. Gradient Descent . 14
3.2. The Polyak Step Size . 16
3.3. Exponential Convergence for Projected GD in Unconstrained

Optimization . 20
3.4. Online Gradient Descent . 20
3.5. OGD for Strongly Convex Functions . 22
3.6. OGD without knowing D and G . 23
3.7. Stochastic Gradient Descent . 25

4. Regularization . 28
4.1. Follow The Leader (FTL) . 28
4.2. Bregman Divergence . 30
4.3. Regularized Follow The Leader (RFTL) . 30
4.4. Online Mirrored Descent . 33

5. Appendix . 33
5.1. Singular Value Decomposition . 33
5.2. The Moore Penrose Pseudo Inverse . 35
5.3. Matrix Differentials . 36
5.4. Fenchel Conjugates and Fenchel Duality . 36
5.5. A simple fact about projection onto simplex. 36

Date: 21 September, 2021.
1

https://arxiv.org/abs/1909.05207
https://arxiv.org/abs/1909.05207

2 SIDDHANT CHAUDHARY

1. The Online Learning Model

1.1. Model Description and Restrictions. In many kinds of ML problems, getting
the training set is costly and often not possible. In the usual ML setting, one collects
the training data beforehand, and trains a model based on the data. Online learning,
on the other hand, helps us in the situation when data can’t be collected beforehand
(called offline learning). In such situations, the data is fed continuously to the learner,
and the learner learns through experience.

Let us now describe the model. In online convex optimisation, there is an online
learner who interacts with the environment. At each time step t, the learner has to
make decisions without knowing the outcome beforehand. After a decision is made,
the consequences of the decision are revealed. These consequences are given in terms
of losses incurred for making the decision. Also, the losses incurred are unknown
beforehand. The losses can be adversarially chosen, and they depend on the action
taken by the learner.

To make this situation useful, we make the following restrictions.
(1) The losses incurred cannot be unbounded.
(2) The decision set (i.e the set of possible choices that the learner can make)

must be somehow structured/bounded. It doesn’t have to be finite. Usually,
we work with convex subsets of the Euclidean space.

(3) Often, the loss functions are bounded convex functions on the decision set.
Let us now set up some notation, and see how the online learning model works.
(1) The decision set will be denoted by K ⊆ Rn, and this set will be a convex

region. As mentioned above, the loss functions will be functions f : K → Rn.
(2) At each time step, the learner chooses a point xt ∈ K.
(3) After the learner has made the choice, a convex loss function ft ∈ F : K → R

is revealed. Here F is the set of bounded convex loss functions available to the
adversary.

(4) The loss incurred by the learner at time step t is ft(xt). In many situations,
only the value ft(xt) is revealed, and not the whole function ft.

(5) T will denote the total number of time steps the learner plays the game. Often,
T is unknown beforehand.

(6) The total loss incurred by the learner is
T∑
i=1

ft(xt)

1.2. Regret of an algorithm. In this section, we will see how we measure the good-
ness of an OCO algorithm that makes the decisions. This is defined in terms of the
regret of the algorithm.

Definition 1.1. Let A be an algorithm for OCO, which maps a certain history to a
decision in the decision set. The regret of A is defined to be

regretT (A) = sup
{f1,...,fT }⊆F

{
T∑
t=1

ft(xt)−min
x∈K

T∑
t=1

ft(x)

}
Let us disambiguate the above definition. Note that xt is dependent upon {x1, ...,xt−1},
{f1, ..., ft−1} and the algorithm A. Ofcourse, it is assumed that A is a deterministic
algorithm, and hence the choice x1 is fixed if the decision set K is fixed.

ONLINE OPTIMIZATION 3

Remark 1.0.1. Note that, in the above definition, x is fixed in the second summation,
i.e the same choice is made at each step. We can also have the slightly better definition
given below.

regretT (A) = sup
{f1,...,fT }⊆F

{
T∑
t=1

ft(xt)−
T∑
t=1

min
xi∈K

ft(xt)

}

It turns out that this problem is more difficult to solve. In our setting, the regret is
calculated as the difference between the loss incurred by the learner’s choices and that
of the best fixed decision in hindsight.

1.3. Expert Advice: An example. Let’s look at an example where OCO can be
used. The learner has to choose among the advice of n given experts. After making
their choice, the learner incurs a loss between 0 and 1. This process is repeated. The
goal of the learner is to do as well as the best expert in hindsight.

In this scenario, the decision set is the n-dimensional simplex ∆n.

K = ∆n :=

{
x ∈ Rn :

∑
i

xi = 1, xi ≥ 0

}

Each point in the decision set is interpreted as a probability distribution over n ele-
ments, which the ith coordinate represents the probability of choosing expert i. Sup-
pose the loss incurred by the ith expert at time step i is gt(i). Let gt be the loss vector
of all n experts. The cost function is then the expected loss incurred at time step i,
i.e

ft(x) = gT
t x

Clearly, the cost functions are linear (hence convex) and bounded.

1.4. Learning from Expert Advice. It turns out that the expert advice example
in the previous section is an important class of problems in OCO.

Again, recall the expert advice problem. Suppose the time steps are t = 1, 2, ...T .
At each time step, the learner faces two choices, namely choice A and choice B (eg.
buy or sell a certain stock). The learner can take advice from N experts. As usual,
after a choice has been made, the loss function at time t is revealed, which describes
how much loss the learner incurred at time t. For simplicity, we will assume that the
loss functions are 0− 1 loss functions, i.e the correct choice has 0 loss and the wrong
choice has 1 loss.

Suppose the learner, at every time step, chooses choices A, B uniformly at random.
We ask the following question, a question about relative performance: can the learner
make as few mistakes as the best expert in hindsight? The following theorem shows
that this is not possible for deterministic learners.

Theorem 1.1. Suppose the best expert in hindsight makes L ≤ T
2

mistakes. Then there
does not exist a deterministic algorithm that can guarantee less than 2L mistakes. So,
all deterministic algorithms can be forced to make ≥ 2L mistakes.

Proof. See Theorem 1.1 in the reference book; the proof provides a counterexample,
this proving the theorem. ■

https://arxiv.org/pdf/1909.05207.pdf

4 SIDDHANT CHAUDHARY

1.5. The Weighted Majority Algorithm. We will now see our first algorithm to
solve the expert advice problem.

Let us first set the problem up (we did it before, but we’ll do it again). We have N
experts, from whom we are taking advice. Each expert at each time step gives advice
either A or B, where A means buy the stock, and B means sell the stock. At time
t, expert i incurs a loss of Mt(i); for simplicity, we assume that the loss is zero for
a correct decision, and the loss is 1 for an incorrect decision. With this assumption,
Mt(i) is the number of mistakes made by the ith expert till time t. Also, we assume
that at each time step, the distribution associated with the N experts is a vertex of the
N -simplex ∆N , i.e exactly one coordinate of the distribution is 1, and all others are 0.
In simple words, at each time step, we go with exactly one expert with probability 1.

The algorithm we use to solve this problem is called the weighted majority algorithm.
The procedure is as follows.

• Each expert i is assigned a weight Wt(i) at every time step t. Initially, at time
t = 1, W1(i) = 1 for all i. This means at t = 1, we keep all the experts at the
same level.
• For t ∈ [T], let St(A), St(B) ⊆ [N] be the sets of all experts with choice A,B

respectively at time step t. Then, we consider the following two sums.

Wt(A) :=
∑

i∈St(A)

Wt(i) Wt(B) :=
∑

i∈St(B)

Wt(i)

We then compare these two sums; if Wt(A) ≥ Wt(B), we make the prediction
A at time step t, otherwise we make the prediction B.
• After the prediction is made, we update the weights of the experts as follows.

Wt+1(i) =

{
Wt(i) if expert i was correct
Wt(i)(1− ϵ) if expert i was wrong

Here ϵ ∈ (0, 1) is a parameter which we can fix. In simple words, we penalise
those experts which gave us a wrong prediction.

A bound on the number of mistakes made by this algorithm is given in Lemma 1.3 of
the reference book. We won’t cover that here; instead, we will analyze a more general
version of this algorithm in the next section.

1.6. Randomized Weighted Majority Algorithm. We now present a randomized
version of the weighted majority algorithm. The algorithm is very similar to the
deterministic one, with a few differences. In this analysis, we will assume that we the
loss functions are f i

t , i.e the loss of the ith expert at time step t is f i
t , where f i

t ∈ [−1, 1].
So, the loss vector function ft is a function experts→ [−1, 1]N .

• Weights are again assigned to each expert at each time step, and all the initial
weights are again 1. In addition to the weights Wt(i), we assign a probability
pt(i) to the ith expert at the ith time step; this is computed as follows.

pt(i) =
Wt(i)∑N
i=1 Wt(i)

The probability pt(i) is interpreted as the probability of choosing the ith expert
at time t.

ONLINE OPTIMIZATION 5

• There is a minor change in the updating rule of the weights as well; let ϵ > 0
be a parameter. We update the weights as follows.

Wt+1(i) = Wt(i)(1− ϵf i
t)

Observe that if f i
t is positive, i.e the ith expert incurs a positive loss at time

t, we are penalising him by reducing his weight. Similarly, if f i
t is negative, we

are increasing the weight of the expert.
This sort of update rule is known as the multiplicative weight update rule. We now
prove an important bound.

Theorem 1.2. For all t ∈ [T], assume that ||ft||∞ ≤ 1, and let 0 < ϵ ≤ 1

2
. Let pt be

the distribution at time step t, and as usual let ft be the loss vector at time t. Then
T∑
i=1

〈pt, ft〉 − inf
p

T∑
i=1

〈p, ft〉 ≤
lnN

ϵ
+ ϵT

The first sum is the total expected loss incurred by the algorithm, and the second term
(over which the infimum is taken) is the least average loss in hindsight.

Corollary 1.2.1. If ϵT =
lnN

ϵ
i.e T =

lnN

ϵ2
, the error is atmost 2ϵT , and hence the

average error is atmost
2ϵT

T
= 2ϵ

Proof. Define Φt to be the sum of the weights at time t, i.e

Φt =
N∑
i=1

Wt(i)

So, we have that Φ1 = N . Observe the following.

Φt+1 =
N∑
i=1

Wt+1(i)

=
N∑
i=1

Wt(i)(1− ϵf i
t)

=
N∑
i=1

Wt(i)− ϵ

N∑
i=1

Wt(i)f
i
t

=
N∑
i=1

Wt(i)− ϵΦt

N∑
i=1

Wt(i)f
i
t

Φt

= Φt − ϵΦt

N∑
i=1

pt(i)f
i
t

= Φt − ϵΦt 〈pt, ft〉
= Φt(1− ϵ 〈pt, ft〉)
≤ Φte

−ϵ⟨pt,ft⟩

6 SIDDHANT CHAUDHARY

where in the last step we have used the inequality 1 − x ≤ e−x. Writing this out for
each t inductively, we get

ΦT+1 ≤ Φ1e
−ϵ

∑T
t=1⟨pt,ft⟩ = Ne−ϵ

∑T
t=1⟨pt,ft⟩(∗)

■

This gives us an upper bound on ΦT+1. Now we will try to find a lower bound. Note
that trivially, we have ΦT+1 ≥ WT+1(i) for each i ∈ [N]. This gives us the following
for each i ∈ [N].

ΦT+1 ≥ WT+1(i)

= WT (i)(1− ϵf i
T)

= WT−1(i)(1− ϵf i
T−1)(1− ϵf i

T)

...

= W1(i)
T∏
t=1

(1− ϵf i
t)

=
T∏
t=1

(1− ϵf i
t) ≥ e

∑T
t=1 −ϵf i

t−ϵ2(f i
t)

2

where in the last step we have used the inequality e−x−x2 ≤ 1− x. So, we get

ΦT+1 ≥ e−ϵ
∑T

t=1 f
i
t−ϵ2

∑T
t=1(f

i
t)

2(†)

Inequalities (∗) and (†) give us the following inequality.

e−ϵ
∑T

t=1 f
i
t−ϵ2

∑T
t=1(f

i
t)

2 ≤ Ne−ϵ
∑T

t=1⟨pt,ft⟩

Taking the logarithm of both sides, we get the following.

−ϵ
T∑
t=1

f i
t − ϵ2

T∑
t=1

(f i
t)

2 ≤ lnN − ϵ
T∑
t=1

〈pt, ft〉

Rearranging the above, we get the following.

ϵ
T∑
t=1

〈pt, ft〉 − ϵ
T∑
t=1

f i
t ≤ lnN + ϵ2T

where above we have crucially used the fact that ||ft||∞ ≤ 1. Note that the above
inequality is true for each i ∈ [N]. Now, suppose p = (p1, ..., pN) is any element of the
N -simplex ∆N . Above, we multiply the ith inequality by pi (possible because each
pi ≥ 0), and add all the obtained inequalities. Since p1 + · · · + pN = 1, we get the
following.

ϵ
T∑
t=1

〈pt, ft〉 − ϵ
T∑
t=1

〈p, ft〉 ≤ lnN + ϵ2T

Since p ∈ ∆N was arbitrary, the claim follows.

ONLINE OPTIMIZATION 7

2. Introduction to Convexity

2.1. Basic Definitions. Through, we will use the notation K for the convex set in
question.
Definition 2.1. A subset K ⊆ Rd is said to be convex if for all points x,y ∈ K and
α ∈ [0, 1], it is true that

αx+ (1− α)y ∈ K
This means that the line segment between the points lies in the set.
Example 2.1 (LP). Convex sets are really useful in linear programming. Suppose we
are given a matrix inequality of the form

Ax ≤ b

where the variables are the coordinates of x, A is some m× n matrix, and the vector
b represents constraints. This inequality is equivalent to m linear inequalities in the
n variables x = (x1, .., xn). It can be very easily shown that the solution space of this
system of inequalities is a convex set.
Example 2.2 (Max Flow). Consider the maximum flow problem. With some work,
this problem can be stated as an optimisation problem, where we are trying to max-
imise some linear function subject to some linear constraints.
Definition 2.2. Let K be a convex set. A function f : K → R is said to be convex if
for all x,y ∈ K and all α ∈ [0, 1], it is true that

f(αx+ (1− α)y) ≤ αf(x) + (1− α)f(y)

Theorem 2.1. Let K be an open convex set, and let f : K → R be a differentiable
function on K. Then, f is convex iff. and only if

f(y) ≥ f(x) + 〈∇f(x),y − x〉

Proof. First, suppose f is convex, and let λ ∈ (0, 1). Then, we have the following.
f((1− λ)x+ λy) ≤ (1− λ)f(x) + λf(y)

This implies the following.
λf(y) ≥ λf(x) + f(λy + (1− λ)x)− f(x)

Dividing throughout by λ, we see that

f(y) ≥ f(x) +
f(x+ λ(y − x))− f(x)

λ
Letting λ → 0, the second term becomes the directional derivative in the direction
y − x. Hence,

f(y) ≥ f(x) + 〈∇f(x),y − x〉
The converse is easy to prove. Suppose

f(y) ≥ f(x) + 〈∇f(x),y − x〉
Let z = λx+ (1− λ)y. Then, z ∈ K. So, the following inequalities hold.

f(x) ≥ f(z) + 〈∇f(z),x− z〉
f(y) ≥ f(z) + 〈∇f(z),y − z〉

Multiply the first inequality by λ and the second by 1−λ and add. Doing this, we get
λf(x) + (1− λ)f(y) ≥ f(z)

8 SIDDHANT CHAUDHARY

which shows that f is indeed convex. ■
2.2. Subgradients. Often in optimization, we encounter convex functions which are
differentiable at many points except a few. In those cases, we ofcourse can’t use the
notion of gradients. For example, consider the graph of |x|. It is not differentiable at
0. Still, the techniques of convex optimisation can be applied to these functions by
making a few modifications.
Definition 2.3. Let K ⊆ Rn be a convex set, and let f : K → R be a convex function.
Let x ∈ K. We say that v ∈ Rn is a subgradient of f at x if for all y ∈ K, it is true
that

f(y) ≥ f(x) + 〈v,y − x〉
Note that this is the inequalitty of Theorem 2.1. The set of subgradients is denoted
by ∂f(x).
Definition 2.4. The quantity

f(y)− f(x)− 〈∇f(x),y − x〉
is called the Bregman divergence.
2.3. Alternative Characterisations of Convexity. In this section, we will prove
some alternate characterisations of convexity, which often make it much simpler to
prove that a function is convex.
Lemma 2.2. Let f : K → R be a twice differentiable function, where K is a convex
open set. Then, f is convex iff. for all x,y ∈ K, we have

〈∇f(y)−∇f(x),y − x〉 ≥ 0

Proof. First, suppose f is convex. Then, by Theorem 2.1, we know that the following
hold for all x,y ∈ K.

f(x) ≥ f(y) + 〈∇f(y),x− y〉
f(y) ≥ f(x) + 〈∇f(x),y − x〉

Adding the above two inequalities, we get
0 ≥ 〈∇f(y),x− y〉+ 〈∇f(x),y − x〉

The above inequality is the same as what we wanted to show, by rearranging.
Conversely, suppose the given inequality holds. We want to show that f is convex.

Consider the following one variable function.
g(t) = f(x+ t(y − x))

Here our interval of interest is [0, 1]. Clearly, g is differentiable on [0, 1], and the
derivative is given by the following.

g′(t) = 〈∇f(x+ t(y − x),y − x〉
Infact, g is second order differentiable (provided f is), and we have the following.

g′′(t) =
〈
∇2f(x+ t(y − x))(y − x),y − x

〉
(†)
Here, ∇2f is the Hessian. Let us now prove this. First,

g′(t) =
n∑

i=1

∂f

∂xi

(x+ t(y − x)) · (yi − xi)

ONLINE OPTIMIZATION 9

Now, since f is twice differentiable, each of the partial derivatives ∂f

∂xi

are differentiable
too. So, g′ is differentiable, and

g′′(t) =
n∑

i=1

〈
∇ ∂f

∂xi

(x+ t(y − x)),y − x

〉
· (yi − xi)

=
n∑

i=1

[
n∑

j=1

∂f

∂xj∂xi

(x+ t(y − x)) · (yj − xj)

]
· (yi − xi)

=
n∑

i=1

n∑
j=1

(yi − xi) ·
∂f

∂xi∂xj

(x+ t(y − x)) · (yj − xj)

In the last step, we have used the equality of mixed partials. It is now straightforward
to check that the last sum is equal to the sum given in equation (†).

Now, using the fundamental theorem of calculus, we get the following.

〈∇f(y)−∇f(x),y − x〉 = g′(1)− g′(0) =

∫ 1

0

g′′(t) dt

Also, by the same theorem, we have the following.

f(y) = f(x) +

∫ 1

0

g′(t) dt

Let xt = x+ t(y− x). The above equation implies the following.

f(y) = f(x) +

∫ 1

0

〈∇f(x+ t(y − x)),y − x〉 dt

= f(x) + 〈∇f(x),y − x〉+
∫ 1

0

〈∇f(xt)−∇f(x),y − x〉 dt

= f(x) + 〈∇f(x),y − x〉+
∫ 1

0

1

t
〈∇f(xt)−∇f(x),xt − x〉 dt

By our assumption, the last integral is a positive quantity. So,

f(y) ≥ f(x) + 〈∇f(x),y − x〉

and hence by Theorem 2.1, f is convex. ■

Theorem 2.3. Let K be convex, and let f : K → R be a twice differentiable function.
Then f is convex iff. the Hessian ∇2f(x) is positive semi-definite for each x ∈ K.

Proof. First, suppose f is convex, and let x ∈ K. We pick a small neighborhood of
x inside K (ofcourse, we assume that K is open, since we are talking about differen-
tiability). Let s ∈ Rn be some direction given to us. We will assume that, for small
enough t, xt = x+ ts is inside K. Since f is convex, we can apply Lemma 2.2 to get

〈∇f(xt)−∇f(x),xt − x〉 ≥ 0

10 SIDDHANT CHAUDHARY

Also, assume that t ≥ 0. So, we get

0 ≤ 1

t2
〈∇f(xt)−∇f(x),xt − x〉

=
1

t
〈∇f(xt)−∇f(x), s〉

=
1

t

∫ t

0

〈
∇2f(xt)s, s

〉
dt

Now, take the limit as t→ 0, and use the fundamental theorem of calculus. We get
0 ≤

〈
∇2f(x)s, s

〉
and hence ∇2f(x) is positive semi-definite.

Conversely, suppose ∇2f(x) is positive semi-definite. Then,
f(y) ≥ f(x) + 〈∇f(x),y − x〉

This is true by Taylor’s Theorem, where we do a second order approximation. Hence,
f is convex. ■
Definition 2.5. A function f is said to be α-strongly convex if

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ α

2
||y − x||

Moreover, f is said to be β-smooth if

f(y) ≤ f(x) + 〈∇f(x),y − x〉+ β

2
||y − x||

Proposition 2.4. Let K be a convex set.
(1) Suppose f1 is α1-strongly convex on K, and suppose f2 is α2-strongly convex

on K. Then f1 + f2 is α1 + α2-strongly convex on K.
(2) Suppose f1 is β1-smooth on K, and suppose f2 is β2-smooth on K. Then f1+f2

is β1 + β2-smooth on K.

Proof. The proofs are straightforward. Let us consider (1) first. Suppose x,y are
arbitrary points in K. Then, we have the following two inequalities by strong convexity.

f1(x) ≥ f1(y) + 〈∇f1(y),x− y〉+ α1

2
||x− y||2

f2(x) ≥ f2(y) + 〈∇f2(y),x− y〉+ α2

2
||x− y||2

Adding the above two inequalities, the claim follows.
(2) is similarly proven. This completes the proof. ■

2.4. Convex bodies and Hyperplanes. In this section, we will prove a fundamental
and important fact about convex sets, namely that convex sets can be separated from
points outside them by hyperplanes.

Definition 2.6. Let H be some hyperplane in Rn, and let K be some set. Then H is
said to be supporting at x ∈ K if H ∩ K = {x}.

Theorem 2.5. Let K be a convex set in Rn, and in addition suppose that K is closed.
Let y ∈ Rn −K. Then, there is a hyperplane that separates y from K; formally, there
is some h ∈ Rn and c ∈ R such that

hty ≥ c

ONLINE OPTIMIZATION 11

and
htx < c

for all x ∈ K.
Proof. The proof is motivated by geometric intuition. First, we assume that K is
compact; the non-compact case will be dealt with later. For x ∈ K, consider the
quantity

||x− y||
and let

x∗ = argmin
x∈K

||x− y||

We claim that such an x∗ exists; to see this, note that the quantity ||x− y|| is always
positive, and hence

inf
x∈K
||x− y|| ≥ 0

Moreover, since ||·|| is a continuous function and since K is a compact set, this infimum
is attained at some point. Also, since y /∈ K, this infimum is positive.

Next, we claim that for all x ∈ K, it is true that
〈x∗ − x,x∗ − y〉 ≤ 0

The proof is quite simple. Suppose x ∈ K, and put
xt = tx+ (1− t)x∗

Clearly, since K is convex, xt ∈ K for all t ∈ [0, 1]. By the definition of x∗, we know
that

||xt − y||2 ≥ ||x∗ − y||2

But, note that
||xt − y||2 = ||tx+ (1− t)x∗ − y||2

= ||x∗ − y + t(x− x∗)||2

= ||x∗ − y||2 + 2t 〈x∗ − y,x− x∗〉+ t2 ||x− x∗||2

So, it follows that
||x∗ − y||2 + 2t 〈x∗ − y,x− x∗〉+ t2 ||x− x∗||2 ≥ ||x∗ − y||2

and this means that
2t 〈x∗ − y,x− x∗〉+ t2 ||x− x∗||2 ≥ 0

Dividing throughout by t, we get
2 〈x∗ − y,x− x∗〉+ t ||x− x∗||2 ≥ 0

Since t ∈ [0, 1] is arbitrary, this is only possible if
〈x∗ − y,x− x∗〉 ≥ 0

which means
〈x∗ − x,x∗ − y〉 ≤ 0

and this proves our claim.
Now, let h = y − x∗. Clearly, h 6= 0. Moreover, the above inequality implies

〈y − x∗,x− x∗〉 ≤ 0

which means
〈y − x∗,x〉 ≤ 〈y − x∗,x∗〉 < 〈y − x∗,y〉

12 SIDDHANT CHAUDHARY

where the last inequality is strict because ||h|| > 0. This proves the theorem in the
case when K is compact.

Now, suppose K is closed, but not compact (i.e it is unbounded). Let x′ ∈ K be
some fixed point. Consider the set

S := {x ∈ K | ||x− y|| ≤ ||x′ − y||}
Clearly, S is a bounded subset of K, and it is non-empty. We will show that S is
also closed (and hence compact). Then, by applying the same process as above, the
theorem will be proved in the general case as well.

To prove that S is closed, let x0 be a limit point of S. So, there is some sequence
xn of points of S converging to x0. We need to show that

||x0 − y|| ≤ ||x′ − y||
But this is easy to see as follows: because xn → x0 and the inequality holds for all xn,
the inequality must hold for x0 too since ||·|| is a continuous function. Hence, x0 ∈ S,
and the proof is complete. ■
Remark 2.5.1. The point x∗ constructed above for a fixed y is called the projection
of y onto K. We will revisit these in a later section.

2.5. Local Minima are Global Minima. In this section, we will prove an important
fact about convex functions, namely: if a convex function has a local minima at some
point, then it is infact a global minima.

Theorem 2.6. Let f : K → R be a convex function, where K is a convex set. Suppose
f attains a local minima at some point x ∈ K. Then, f attains a global minima at the
point x.

Proof. The proof is straightforward. Suppose f attains a local minima at some x ∈ K.
This means that there is some δ > 0 such that

f(y) ≥ f(x)

for all y ∈ Bx,δ. For the sake of contradiction, suppose there is some point x′ ∈ K
such that

f(x′) < f(x)

For t ∈ [0, 1], put
xt = tx+ (1− t)x′

Since f is convex, we know that for any t ∈ [0, 1],
f(xt) ≤ tf(x) + (1− t)f(x′) < tf(x) + (1− t)f(x) = f(x)

which is clearly a contradiction for small enough t. So, x is a point of global minima.
■

Another fact of the same type is the following.

Lemma 2.7. Let f : K → R be a convex function, where K is a closed convex set.
Suppose x∗ is the minimizer of f on K. Then for all y ∈ K, we have

〈∇f(x∗),y − x∗〉 ≥ 0

Proof. For the sake of contradiction, suppose the claim is false, i.e there is some y ∈ K
such that

〈∇f(x∗),y − x∗〉 < 0

ONLINE OPTIMIZATION 13

Next, define the function g : [0, 1]→ R by the following.
g(t) = f((1− t)x∗ + ty)

Then, observe that
g(0) = f(x∗)

Also, we have the following by the chain rule, for all t ∈ [0, 1].
g′(t) = 〈∇f((1− t)x∗ + ty),y − x∗〉

Above, g′(0) should be interpreted as a one-sided limit, where t→ 0+. We immediately
see that

g′(0) = 〈∇f(x∗),y − x∗〉 < 0

Now, by the definition of the derivative,

g′(0) = lim
t→0+

g(t)− g(0)

t
< 0

This means that, for sufficiently small t ∈ (0, 1),
g(t)− g(0)

t
< 0

which implies that
g(t)− g(0) < 0

and hence
g(t) < g(0)

But, this means that
f((1− t)x∗ + ty) < f(x∗)

which contradicts the fact that x∗ is the minimizer of f . ■

2.6. Convex Projections. Let K ⊆ Rd be a convex body, and let y ∈ Rd. The
projection of y onto K is defined as follows.

ΠK(y) := argmin
x∈K

||x− y||

In Theorem 2.5, it was shown that if K is a closed convex set, then projections exist.
Projections have a crucial property that we’ll use a lot, known as the Pythagorean

Theorem.

Theorem 2.8 (Pythagoras). Let K ⊆ Rd be a closed convex set, y ∈ Rd and let
x = ΠK(y). Then for all z ∈ K it is true that

||y − z|| ≥ ||x− z||

Proof. Consider the function
q 7→ ||q − y||2

on the convex set K. Clearly, this is a differentiable function, and by hypothesis, it’s
minimizer over K is x. We then appeal to Lemma 2.7 (ofcourse using the fact that
norm squared is a convex function); using that lemma, we see that for any z ∈ K, it
is true that

〈2(x− y), z − x〉 = 2 〈x− y, z − x〉 ≥ 0

which implies that
2 〈y − x,x− z〉 ≥ 0

14 SIDDHANT CHAUDHARY

Now, for any z ∈ K, we have the following.

||y − z||2 = ||y − x+ x− z||2

= ||y − x||2 + ||x− z||2 + 2 〈y − x,x− z〉
≥ ||x− z||2

and this proves the claim by taking square roots. ■

3. First Order Convex Optimization

3.1. Gradient Descent. The first convex optimisation algorithm that we will look
at is called gradient descent. Before describing the algorithm, we will prove some
properties of α-strongly convex and β-smooth functions.

Definition 3.1. Let f : K → R be an α-strongly convex and β-smooth function.
Then f is said to be γ-well conditioned, where

γ =
α

β

Proposition 3.1. Let f be a γ-well conditioned function on a convex domain K. Let
T be any positive integer, called the time horizon. Let x0 be a point in K, and for each
0 ≤ t ≤ T − 2, let

xt+1 = xt − ηt∇t

where
∇t = ∇f(xt)

and each ηt is a scalar. Also, let

ht = f(xt)− f(x∗)

dt = ||xt − x∗||

where x∗ is the minimizer of f over K. Then the following inequalities hold, provided
xt ∈ K for all t.

(1) ht ≥
α

2
d2t

(2) ht ≤
β

2
d2t , provided that K contains some open ball around x∗ (which happens

if K = Rd, the case of unconstrained optimization).
(3) ht ≥

1

2β
||∇t||2 if ηt = 1

β
for all t.

(4) ht ≤
||∇t||2

2α
provided K = Rd, the case of unconstrained optimization.

Proof. First, let us prove (1). By the convexity of f and the fact that f is α-strongly
convex, we know the following.

f(xt) ≥ f(x∗) + 〈∇f(x∗),xt − x∗〉+ α

2
||xt − x∗||2

≥ f(x∗) +
α

2
||xt − x∗||2

= f(x∗) +
α

2
d2t

ONLINE OPTIMIZATION 15

where in the second step above we used Lemma 2.7 to prove the non-negativity of
the second term. This clearly implies that

ht ≥
α

2
d2t

and proves part (1). Note that this inequality still holds even if the function f is not
β-smooth.

Now consider inequality (2). By the fact that f is β-smooth, we have the following.

f(xt) ≤ f(x∗) + 〈∇f(x∗),xt − x∗〉+ β

2
||xt − x∗||2

By our assumption that some ball around x∗ is contained in K (which is the case for
unconstrained optimization), we know that ∇f(x∗) = 0 (because x∗ is the minimizer).
This means

ht ≤
β

2
d2t

which is exactly what we wanted to show.
Let us now prove (3). So suppose ηt = η for some η (we will eventually let η = 1

β
).

By β-smoothness, we have the following.

f(xt+1) ≤ f(xt) + 〈∇f(xt),xt+1 − xt〉+
β

2
||xt+1 − xt||2

which can implies the following.

f(xt)− f(xt+1) ≥ 〈∇f(xt),xt − xt+1〉 −
β

2
||xt+1 − xt||2

So, we have the following.
ht = f(xt)− f(x∗)

≥ f(xt)− f(xt+1)

≥ 〈∇f(xt),xt − xt+1〉 −
β

2
||xt+1 − xt||2

= 〈∇f(xt), η∇t〉 −
β

2
η2 ||∇t||2

= η ||∇t||2 −
β

2
η2 ||∇t||2

Note that the above inequality is true for any η. So, put η =
1

β
. Doing so, we obtain

ht ≥
1

2β
||∇t||2

which is exactly what we wanted to prove.
Let us prove (4) now. Let x ∈ K = Rd be fixed, and consider the following

expression.
f(x) + 〈∇f(x), z − x〉+ α

2
||z − x||2

Since K = Rd, this expression attains a global minimum at the point where the
gradient (w.r.t z) is zero, i.e when

z = x− ∇f(x)
α

16 SIDDHANT CHAUDHARY

So, for any y,x ∈ K = Rd, we have the following, where we substitute the above value
of z in the given expression.

f(y) ≥ f(x) + 〈∇f(x),y − x〉+ α

2
||y − x||2

≥ f(x)− ||∇f(x)||
2α

Now, let y = x∗ and let x = xt. This gives us

ht ≤
||∇t||2

2α

which is what we wanted to prove. ■

3.2. The Polyak Step Size. Let ht, dt, ∇t and ηt have the same meanings as in the
previous section. The Polyak Step Size is defined as follows.

ηt =
ht

||∇t||2

Lemma 3.2. Suppose f is γ-well conditioned and x0, ...,xT−1 are such that

d2t+1 ≤ d2t −
h2
t

||∇t||2

Put
x = argmin

xt

{f(xt)}

Then

f(x)− f(x∗) ≤ 1

T

T−1∑
t=0

ht ≤ BT

where
BT = min

{
Gd0√
T
,
2βd20
T

,
4G2

αT
, βd20

(
1− γ

4

)T}
where for all t,

||∇t|| ≤ G

The above condition is the same as Lipschitz continuity.

Proof. First, consider the differences f(xt) − f(x∗) for t = 0 to T − 1. By the fact
that the average is ≥ the minimum, we immediately see that

f(x)− f(x∗) ≤ 1

T

T∑
t=0

ht

This establishes the first half of the inequality. We now prove the second half, which
is the trickier one.

Now, first consider the case when ||∇t|| ≤ G, the Lipschitz continuity case of f . We
know the following.

d2t+1 − d2t ≤
−h2

t

||∇t||2
≤ −h

2
t

G2

The above implies that
d2t − d2t+1 ≥

1

G2
h2
t

ONLINE OPTIMIZATION 17

Summing the above inequalities from t = 0 to t = T − 1, we get the following.

d20 − d2T ≥
1

G2

T−1∑
t=0

h2
t

The above inequality implies that G2d20 is an upper bound of
∑T−1

t=0 h2
t . Combining

this fact with the Cauchy-Schwarz inequality, we get that

h0 + h1 + ...+ hT−1

T
= (h0, ..., hT−1) ·

(
1

T
, ...,

1

T

)
≤

√∑T−1
t=0 h2

t√
T

≤
√
G2d20√
T

=
Gd0√
T

Next, suppose that f is β-smooth, and that ηt =
1

β
for all t. Then, by part (3) of

Proposition 3.1, we know the following.

d2t+1 − d2t ≤
h2
t

||∇t||2
≤ −ht

2β

Again, summing the above inequalities for each t, we get

d20 − d2T ≥
1

2β

T−1∑
t=0

ht

which implies
2βd20
T
≥ 1

T

T−1∑
t=0

ht

Next, suppose f is γ-well conditioned, and again suppose that ηt =
1

β
. By part (3)

Proposition 3.1, we know that

d2t+1 − d2t ≤
−h2

t

||∇t||2
≤ −ht

2β

Also, by part (1) of the same proposition, we know that

ht ≥
α

2
d2t

Combining the above two inequalities, we see that

d2t+1 − d2t ≤
−ht

2β
≤ − α

4β
d2t

which implies that
d2t+1 ≤

(
1− γ

4

)
d2t

By induction, this implies that

d2T ≤
(
1− γ

4

)T
d20

Finally, using the inequality hT ≤ βd2T (follows from the fact that x∗ is the minimizer),
we see that

f(x)− f(x∗) ≤ hT ≤ βd2T ≤ d20β
(
1− γ

4

)T
and this proves the claim.

18 SIDDHANT CHAUDHARY

Finally, suppose f is an α-strongly convex function (and ofcourse we are assuming
that the gradients are bounded by G). Now, by our assumption, we know that

d2t+1 − d2t ≤
−h2

t

||∇t||2
≤ −h

2
t

G2

By α-strong convexity of f , we have the following.
−h2

t

G2
≤ −α

2d4t
4G2

The above two inequalities combined together give us the following.

d2t+1 ≤ d2t

(
1− α2d2t

4G2

)
Multiplying both sides by α2/4G2, we get the following.

α2d2t+1

4G2
≤ α2d2t

4G2

(
1− α2d2t

4G2

)
Now let at =

α2d2t
4G2 . The above inequality can be written as

at+1 ≤ at(1− at)

and also
a0 =

α2d20
4G2

Observe that
f(x0) ≥ f(x∗) + 〈∇f(x∗),x0 − x∗〉+ α

2
d20 ≥ f(x∗) +

α

2
d20

where in the last inequality, we have used the fact that the above inner product is
non-negative, as x∗ is the minimizer of f . So, we see that

Gd0 ≥ f(x0)− f(x∗) ≥ α

2
d20

where above we have used the Lipschitz condition. Clearly, this implies that
2G ≥ αd0

which means that
a0 ≤ 1

By induction, and using the fact that at+1 ≤ at(1− at), we can show that

at ≤
1

t+ 1

Next, we know that
h2
t

||∇t||2
≤ d2t − d2t+1

which implies that
h2
t ≤ G2(d2t − d2t+1)

Summing the above quantity from T = T/2 to T − 1, we see that

1

T/2

T−1∑
t=T/2

h2
t ≤

2G2

T
[d2T/2 − d2T] =

8G2

α2T
[aT/2 − aT] ≤

16G4

α2T 2

ONLINE OPTIMIZATION 19

by using the fact that aT/2 ≤ 1/(T/2+ 1). So, there is some t between T/2 and T − 1
such that

h2
t ≤

16G4

α2T 2

which implies that

ht ≤
4G2

αT
and hence we’ve shown all the four inequalities. ■

Proposition 3.3. The Polyak step size satisfies

d2t+1 − d2t ≤
−h2

t

||∇t||2

Infact, this holds even in a constrained optimization problem (i.e K need not be Rd)
and even if we replace the gradient by a subgradient.

Proof. We will prove this for a general constrained optimization problem. In that case,
the update rules are as follows.

yt+1 = xt − ηt∇t , xt+1 = ΠKyt+1

where Π represents the projection. First, observe that

||xt+1 − x∗||2 ≤ ||yt+1 − x∗||2

which is true by Theorem 2.8 (Pythagoras Theorem). The above inequality gives
us the following.

||xt+1 − x∗||2 ≤ ||xt − ηt∇t − x∗||2

= ||xt − x∗||2 + η2t ||∇t||2 − 2ηt 〈∇t,xt − x∗〉

The above inequality can be written as follows.

d2t+1 ≤ d2t + η2t ||∇t||2 − 2ηt 〈∇t,xt − x∗〉

Now, by convexity of f , we know the following.

f(x∗) ≥ f(xt) + 〈∇t,x
∗ − xt〉

Combining the above inequality with the previous inequality, we get the following.

d2t+1 ≤ d2t + η2t ||∇t||2 − 2ηt(f(xt)− f(x∗))

= d2t + η2t ||∇t||2 − 2ηtht

Now, we use the fact that ηt is actually the Polyak step size, i.e

ηt =
ht

||∇t||2

Doing so, we get the following.

d2t+1 ≤ d2t −
h2
t

||∇t||2

and this proves the claim. ■

20 SIDDHANT CHAUDHARY

3.3. Exponential Convergence for Projected GD in Unconstrained Opti-
mization. In this section, we will prove an exponential convergence bound for the
general case of unconstrained optimization, i.e K need not be Rd. We have the fol-
lowing theorem.

Theorem 3.4. Let f be a γ = α/β-well conditioned convex function on K. Let x∗ be
the minimizer of f on K. Then, projected gradient descent with ηt = 1/β satisfies the
following.

ht+1 ≤ h1e
− γt

4

Proof. This is just Theorem 2.4 of Hazan’s book. We will just complete the missing
details here.

The only missing detail in the proof is showing the following equality (which is also
problem 6. of the same chapter).

argmin
x∈K

{
〈∇t,x− xt〉+

1

2ηt
||x− xt||2

}
= argmin

x∈K

{
||x− (xt − ηt∇t)||2

}
This is easy to see, because we have the following.

||x− (xt − ηt∇t)||2 = ||x− xt + ηt∇t||2

= ||x− xt||2 + η2t ||∇t||2 + 2ηt 〈∇t,x− xt〉

Observe that the quantity η2t ||∇t||2 is independent of the choice of x. So, minimizing
||x− (xt − ηt∇t)||2

Is the same as minimizing
||x− xt||2 + 2ηt 〈∇t,x− xt〉

which in turn is the same as minimizing

〈∇t,x− xt〉+
1

2ηt
||x− xt||2

and this proves the equality. ■

3.4. Online Gradient Descent. In this section, we will explore the online version
of the usual gradient descent algorithm. As usual, our input will be a convex body K,
an initial point x1 ∈ K, a time horizon T and step sizes ηt. At each time t, the loss
function ft is revealed, and we want to minimize the regret (as we defined before).

regretT =
T∑
t=1

ft(xt)− min
x∗∈K

T∑
t=1

ft(x
∗)

Algorithm 1 Online Gradient Descent
1: Input: K, x1 ∈ K, T , ηt
2: for t = 1 to T do
3: Play xt and get the cost ft(xt).
4: yt+1 = xt − ηt∇ft(xt)
5: xt+1 = ΠK(yt+1)
6: end for
7: return xT+1

ONLINE OPTIMIZATION 21

Now we will show that this online version of the gradient descent algorithm achieves
sublinear regret.

Theorem 3.5. Let the setup be as above. Then, online gradient descent with step
sizes ηt =

D
G
√
t

for t ∈ [T] achieves the following for all T ≥ 1.

regretT ≤
3

2
GD
√
T

where G is an upper bound on the gradients, and D is the diameter of the convex body
K.

Proof. First, let

x∗ = argmin
x∈K

T∑
t=1

ft(x)

Now, by Theorem 2.8 (Pythagoras Theorem), we know the following.

||xt+1 − x∗||2 ≤ ||yt+1 − x∗||2 = ||xt − ηt∇t − x∗||2

So, we get the following.

||xt+1 − x∗||2 ≤ ||xt − ηt∇t − x∗||2

= ||xt − x∗||2 + η2t ||∇t||2 − 2ηt 〈∇t,xt − x∗〉

Rearranging the above inequality, we get the following.

2 〈∇t,xt − x∗〉 ≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηt ||∇t||2

≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηtG

2

Moreover, by convexity of ft, we know the following.
ft(xt)− ft(x

∗) ≤ 〈∇t,xt − x∗〉

Combining the last two inequalities, we get the following.

2(ft(xt)− ft(x
∗)) ≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηtG

2

Note that the above inequality is true for all t ∈ [T]. So, summing the above inequality
for t ∈ [T], we get the following, where we are using the fact that ||xT+1 − x∗|| ≥ 0.

2
T∑
t=1

ft(xt)− ft(x
∗) ≤

T∑
t=1

||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+G2

T∑
t=1

ηt

=
T∑
t=1

||xt − x∗||2
(
1

ηt
− 1

ηt−1

)
+G2

T∑
t=1

ηt

≤
T∑
t=1

D2

(
1

ηt
− 1

ηt−1

)
+G

T∑
t=1

ηt

= D2 1

ηT
+G2

T∑
t=1

ηt

22 SIDDHANT CHAUDHARY

where above we are using the convention that 1
η0

= 0. Finally, by our choice of ηt, we
have the following.

D2 1

ηT
+G2

T∑
t=1

ηt = D2G
√
T

D
+G2

T∑
t=1

D

G
√
t

= DG
√
T +DG

T∑
t=1

1√
t

≤ 3DG
√
T

and this proves the claim. ■
3.5. OGD for Strongly Convex Functions. Next, we will show that for strongly
convex functions, a better step size selection can lead to a better regret bound.

Theorem 3.6. Let K be a convex domain, x1 ∈ K be an initial point, and T be a time
horizon. Let ft be the revealed cost functions. Suppose each ft is α-strongly convex.
Then, doing OGD with step sizes ηt =

1
αt

gives the following regret bound.

regretT ≤
G2

2α
(1 + log T)

where G is an upper bound on the gradients.
Proof. The proof is very similar to that of Theorem 3.5. As usual, let

x∗ = argmin
x∈K

T∑
t=1

ft(x)

Now, by α-strong convexity, we know that

ft(x
∗) ≥ ft(xt) + 〈∇t,x

∗ − xt〉+
α

2
||x∗ − xt||2

The above inequality implies the following inequality.
2(ft(xt)− ft(x

∗)) ≤ 2 〈∇t,xt − x∗〉)− α ||xt − x∗||2(3.1)
Also, just like in the proof of Theorem 3.5, we have the following inequality.

2 〈∇t,xt − x∗〉 ≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηtG

2

So, from the above inequality and inequality (3.1), we get the following.

2(ft(xt)− ft(x
∗)) ≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηtG

2 − α ||xt − x∗||2

Finally, summing the above inequalities over all t, we get the following, where our
convention is 1/η0 = 0, and we are using the fact that ||xT+1 − x∗|| ≥ 0.

2 regretT ≤
T∑
t=1

||xt − x∗||2
(
1

ηt
− 1

ηt−1

− α

)
+G2

T∑
t=1

ηt

= 0 +
G2

α

T∑
t=1

1

t

≤ G2

α
(1 + log T)

ONLINE OPTIMIZATION 23

and this proves the claim. ■

3.6. OGD without knowing D and G. In this section, we will devise an online GD
algorithm which gives the same regret bounds as the one we studied in the previous
sections (i.e O(

√
T) regret), but the catch here will be: we don’t actually know what

D and G are. We only know that they exist. Using only this information, we can
prove the following theorem.

Theorem 3.7. Let the notation be as before. Suppose f is a convex function on K,
such that ||∇f(x)|| ≤ G for all x ∈ K and the diameter of K is D. Further, assume
that the actual values of G,D are not known. For each t ∈ [T], define Dt as follows.

D1 = 1

Dt =

{
Dt−1 , if ||xt − x1|| ≤ Dt−1

2Dt−1 , otherwise

Similarly, for each t ∈ [T], define Gt as follows.

G1 = ||∇1||
Gt = max(Gt−1, ||∇t||)

Then, for step sizes ηt =
Dt

Gt

√
t
, OGD gives the following guarantee on regret.

regretT ≤ O(
√
T)

Proof. As usual, let

x∗ = argmin
x∈K

T∑
t=1

ft(x)

First, observe that D1 ≤ D2 ≤ · · · ≤ DT and similarly G1 ≤ G2 ≤ · · · ≤ GT . This is
easy to see from the definitions of these sequences.

Now, just as in the proof of Theorem 3.5, we will get the following inequality.

2(ft(xt)− ft(x
∗)) ≤ ||xt − x∗||2 − ||xt+1 − x∗||2

ηt
+ ηt ||∇t||2

Note that the above inequality is true for all t ∈ [T]. So, summing over all t, we get
the following, where again the convention is 1/η0 = 0 and we are using the fact that

24 SIDDHANT CHAUDHARY

||xT+1 − x∗|| ≥ 0.

2 · regretT ≤
T∑
t=1

||xt − x∗||2
(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt ||∇t||2

≤
T∑
t=1

D2

(
1

ηt
− 1

ηt−1

)
+

T∑
t=1

ηt ||∇t||2

≤ D2

ηT
+

T∑
t=1

Dt

Gt

√
t
G2

t

=
D2GT

√
T

DT

+
T∑
t=1

DtGt√
t

≤ D2GT

√
T

DT

+DTGT

T∑
t=1

1√
t

≤ D2GT

√
T

DT

+ 2DTGT

√
T

Above, we have used the facts that Dt, Gt are non-decreasing sequences. Now, observe
that GT ≤ G (because G is an upper bound on the gradients, and GT is the maximum
norm of a gradient seen till time T). So, we get that

2 · regretT ≤
D2G

√
T

DT

+ 2DTG
√
T

Now, we consider two cases.
(1) In the first case, we have DT ≤ D. Also, we know that 1 ≤ DT . So, in this

case we see that
D2G

√
T

DT

+ 2DTG
√
T ≤ D2G

√
T + 2DG

√
T = O(

√
T)

and hence we have an O(
√
T) regret bound.

(2) In the second case, we have D < DT . Suppose t0 + 1 ≤ T is the last time step
when the sequence Dt was updated, i.e

Dt0+1 = 2Dt0

Clearly, we see that DT = Dt0+1 = 2Dt0 . Also, by our definition, this update
happened only because

Dt0 < ||xt0+1 − x1|| ≤ D

So, we have that
Dt0 < D < DT

which is the same as the inequality
DT

2
< D < DT

In this case, we have that
D2G

√
T

DT

+ 2DTG
√
T ≤ DG

√
T + 4DG

√
T = O(

√
T)

and hence in this case as well, we have an O(
√
T) regret bound.

ONLINE OPTIMIZATION 25

So, in all cases the given regret bound follows, and this completes the proof of the
claim. ■
Lemma 3.8. If the sequence {Dt} is defined as in the previous theorem, then for any
τ ≤ T , it is true that for all t ≤ τ ,

||xt − x1|| ≤ Dτ

Proof. We will prove this by induction. For the base case, suppose τ = 1, and we
know that D1 = 1. Now, note that

||x1 − x1|| = 0 < D1

and this proves the base case.
For the inductive case, suppose the statement is true for some τ . We will prove it

for τ + 1. Now, if t ≤ τ , then by the inductive hypothesis, combined with the fact
that the sequence {Dt} is monotonic, we have that

||xt − x1|| ≤ Dτ ≤ Dτ+1

Now, consider the time step τ + 1. If
||xτ+1 − x1|| ≤ Dτ

then by definition we know that Dτ+1 = Dτ , and hence there is nothing to prove. So,
suppose ||xτ+1 − x1|| > Dτ . In that case, we know that Dτ+1 = 2Dτ . Now, observe
the following.

||xτ+1 − x1|| ≤ ||xτ+1 − xτ ||+ ||xτ − x1||
≤ ||xτ+1 − xτ ||+Dτ

Now, because xτ+1 = πK(yτ+1), by Theorem 2.8 (Pythagoras Theorem) we have
that

||xτ+1 − xτ || ≤ ||yt+1 − xτ ||
= ||xτ − ητ∇τ − xτ ||
= ητ ||∇τ ||

≤ Dτ

Gτ

√
τ
·Gτ

≤ Dτ

So, combining this with the previous inequality, we see that
||xτ+1 − x1|| ≤ Dτ +Dτ = 2Dτ = Dτ+1

and this completes the proof by induction. ■
3.7. Stochastic Gradient Descent. In this section, we will introduce stochastic
gradient descent and analyse it for two cases: the first case for normal convex functions,
and the second for strongly convex functions.

As usual, we are given a convex set K, and we want to minimize some function f
on K. However, unlike offline GD, we are given access to a gradient oracle, defined as
follows.

O(x) := ∇̃x

Moreover, the oracle has the property that

E
[
∇̃x

]
= ∇f(x) , E

[∣∣∣∣∣∣∇̃x

∣∣∣∣∣∣2] ≤ G2

26 SIDDHANT CHAUDHARY

In simple words, the expected value of the gradient returned by the oracle for a point
x is the true gradient ∇f(x).

Example 3.1. A version of SGD works as follows: we are given a data set S of
n points, and we want to optimize some parameter θ. The loss function in many
scenarios is of the following form.

L(θ) =
n∑

i=1

Lxi,yi(θ)

where (xi, yi) is the ith data point. So, to compute the gradient ∇L(θ), we need
to iterate over all the data points. which might be costly. Instead, we use SGD, by
randomly sampling an index j (uniformly at random), and computing the gradient
∇Lxj ,yj(θ). This almost fits in with our oracle description, because the expected value
of the gradient is ∇L(θ)

n
.

Algorithm 2 Stochastic Gradient Descent
1: Input: f , K, x1 ∈ K, step sizes ηt.
2: for t = 1 to T do
3: Let ∇̃t = O(xt) and define ft(x) :=

〈
∇̃t,x

〉
.

4: Update yt+1 ← xt − ηt∇̃t

5: Project xt+1 = πK(yt+1)
6: end for
7: return xT :=

1

T

∑T
t=1 xt

Theorem 3.9. Let the notation be as above. Then SGD with step sizes ηt = D
G
√
t

guarantees the following.

E [f(xT)] ≤ min
x∗∈K

f(x∗) +
3GD

2
√
T

Proof. We will use the regret guarantee of the OGD algorithm as we proved in Theo-
rem 3.5. We have the following. (In the second step below, we use Jensen’s Inequality;

ONLINE OPTIMIZATION 27

in the third step, we use the convexity of f .

E [f(xT)]− f(x∗)

≤ 1

T
E
[∑

t

f(xt)

]
− f(x∗)

=
1

T
E
[∑

t

[f(xt)− f(x∗)]

]

≤ 1

T
E
[∑

t

〈∇f(xt),xt − x∗〉

]

=
1

T
E
[∑

t

〈
∇̃t,xt − x∗

〉]

=
1

T
E
[∑

t

ft(xt)− ft(x
∗)

]
≤ regretT

T

≤ 3GD

2
√
T

Ofcourse, here we are heavily using the fact that Theorem 3.5 works for any choice
of ft, i.e the theorem holds against even an adaptive adversary. ■

As before, we can make the convergence guarantee of SGD stronger for strongly-
convex functions as we did for OGD. We will now prove this.

Theorem 3.10 (SGD for Strongly Convex Functions). Let the notation be as
above, and in addition suppose f is α-strongly convex. Then, with step sizes ηt =

1
αt

,
SGD has the following convergence guarantee.

E [f(xT)] ≤ min
x∗∈K

f(x∗) +
G2

2α

(1 + log T)

T

Proof. The proof is very similar to that of Theorem 3.9. For each t, we define the
following function.

gt(x) =
〈
∇̃t,x

〉
+

α

2
||x− x1||2

28 SIDDHANT CHAUDHARY

It is clear that gt is an α-strongly convex function for each t. Next, we have the
following.

E [f(xT)]− f(x∗)

≤ 1

T
E
[∑

t

f(xt)

]
− f(x∗)

=
1

T
E
[∑

t

[f(xt)− f(x∗)]

]

≤ 1

T
E
[∑

t

〈∇f(xt),xt − x∗〉 − α

2
||xt − x∗||2

]

=
1

T
E
[∑

t

〈
∇̃t,xt − x∗

〉
− α

2
||xt − x∗||2

]
Now, using the trivial inequality

−α

2
||xt − x∗||2 ≤ α

2
||xt − x1||2 −

α

2
||x∗ − x1||2

we get the following.

1

T
E
[∑

t

〈
∇̃t,xt − x∗

〉
− α

2
||xt − x∗||2

]

≤ 1

T
E
[∑

t

〈
∇̃t,xt − x∗

〉
+

α

2
||xt − x1||2 −

α

2
||x∗ − x1||2

]

=
1

T
E
[∑

t

gt(xt)− gt(x
∗)

]
≤ regretT

T

≤ G2

2α

(1 + log T)

T

where in the second last step we have used Theorem 3.6, the convergence bound of
OGD on strongly convex functions. This completes the proof. ■

Remark 3.10.1. Another way of saying the above theorem is that for strongly convex
functions, the convergence bound is Õ

(
1
T

)
; this notation hides logarithmic factors.

4. Regularization

4.1. Follow The Leader (FTL). First, let us introduced the so called Follow The
Leader Strategy. Recall that in the OCO framework, our goal is to optimize the regret
of the algorithm. This motivates the following naive strategy: at time step t + 1,
choose the best decision at the time, i.e choose

xt+1 = argmin
x∈K

t∑
τ=1

fτ (x)

We will now show an example where this strategy fails miserably.

ONLINE OPTIMIZATION 29

Example 4.1. Let K = [−1, 1] and let f1(x) =
x
2
. Then, we have

ft(x) =

{
−x , t is even
x , otherwise

With these loss functions, it is clear that
∑t

τ=1 fτ (x) =
x
2

if t is odd, and
∑t

τ=1 fτ (x) =
−x
2

otherwise. So, the Follow The Leader strategy will fluctuate between the choice of
−1 and 1. Thus at each time step, we incur a loss of 1

2
, which is linear regret. So, this

strategy is obviously not the best strategy.

To prevent the algorithm from fluctuating as it did in the above example, we use
the technique of regularization, i.e instead of juts minimizing

∑t
τ=1 ft(x), we add a

regularizer R to this sum and minimize the resulting expression. We will now make
this formal.

Definition 4.1. Let R : K → R be a strongly convex function. Most of the time we
will assume that R is a twice differentiable function, and strong convexity implies that
∇2R(x) � 0 for all x ∈ K, i.e the Hessian of R at each point is positive definite. The
diameter of K with respect to R is defined as

DR :=
√

max
x,y∈K

{R(x)−R(y)}

Definition 4.2. For any norm ||·||, define the dual norm ||·||∗ as follows.

||y||∗ := max
||x||≤1

〈x,y〉

Proposition 4.1 (Generalised Cauchy-Schwarz Inequality). For all x,y ∈ V ,
where V is some vector space with positive definit inner product 〈·, ·〉,

〈x,y〉 ≤ ||x|| · ||y||∗

Proof. This is really trivial and follows from the definition of the dual norm: if x = 0,
then there is nothing to prove. So, suppose x 6= 0, and hence x

||x|| is a unit vector.
Now, from the definition of the dual norm, we see that

||y||∗ ≥
〈

x

||x||
,y

〉
The claim follows from here. ■

Definition 4.3. Given a positive definite matrix A, the matrix norm ||·||A is defined
as follows.

||x||A :=
√
xTAx

Proposition 4.2 (Dual of Matrix Norm). Let A be a positive definite matrix, and
let 〈·, ·〉 be defined as above. Then, for all x ∈ Rn,

||x||∗A = ||x||A−1

In simple words, the dual norm of the matrix norm induced by A is the matrix norm
induced by A−1.

Proof. To be completed. Do this proof! ■

30 SIDDHANT CHAUDHARY

4.2. Bregman Divergence. We have seen this quantity before. In this section, we
will define it more generally.
Definition 4.4. The Bregman Divergence BR (x||y) with respect to a function R is
defined as follows.

BR (x||y) = R(x)−R(y)− 〈∇R(y),x− y〉

For twice differentiable functions R, Taylor’s Theorem gives us the following
expression for the Bregman Divergence between two points.

BR (x||y) = 1

2
(x− y)T∇2R(z)(x− y) =:

1

2
||x− y||2z

Above, z is some point on the line segment between x and y. Note that ∇2R(z) is
an n×n matrix, and hence the quantity is nothing but the square of the matrix norm
we defined before. Sometimes we will use the notation

1

2
||x− y||2x,y

for the above quantity.
In the OCO framework, as usual we choose points x1,x2, ...,xT . Consider consecu-

tive points xt and xt+1. We will simply use the notation ||·||2t to denote the Bregman
Divergence ||xt − xt+1||2xt,xt+1

, i.e we will use the notation

BR (xt||xt+1) =
1

2
||xt − xt+1||2xt,xt+1

=:
1

2
||xt − xt+1||2t

4.3. Regularized Follow The Leader (RFTL). In this section, we will see a mod-
ification to the FTL algorithm that actually works very nicely. Let R be strongly
convex, smooth and twice differentiable. Consider the following algorithm.

Algorithm 3 Regularized Follow The Leader
1: Input: η, R, K.
2: Let x1 ← argmin

x∈K
R(x)

3: for t = 1 to T do
4: Reveal xt.
5: Observe ft and let ∇t = ∇ft(xt).
6: Update: xt+1 ← argmin

x∈K

{
η
∑t

s=1 〈∇s,x〉+R(x)
}

7: end for

Note that RFTL is very similar to the usual FTL; the only difference is the addition
of the regularizer, and the introduction of the hyperparameter η. We will now prove
some regret bounds for this algorithm.
Lemma 4.3. Consider the RFTL algorithm. For any T , the following is true.

regretT ≤
T∑
t=1

〈∇t,xt − xt+1〉+
1

η
D2

R

Proof. By convexity of the fts, we have the following inequality.
t∑

t=1

ft(xt)− ft(x
∗) ≤

T∑
t=1

〈∇t,xt − x∗〉(4.1)

ONLINE OPTIMIZATION 31

Define g0(x) =
R(x)
η

, and for all t ≥ 1, define gt(x) = 〈∇t,x〉.
We claim that for all u ∈ K,

T∑
t=0

gt(u) ≥
T∑
t=0

gt(xt+1)(4.2)

We will prove this by induction. For the base case, note that

g0(u) ≥ g0(x1)

by the definition of g0 and the choice of x1. Now suppose the claim is true for some
τ , i.e suppose it is true that

τ∑
t=0

gt(u
′) ≥

τ∑
t=0

gt(xt+1)

for all u′ ∈ K and we will prove it for τ + 1. We want to show that

τ+1∑
t=0

gt(u) ≥
τ+1∑
t=0

gt(xt+1)

Now by our choice of xτ+2, we know that

τ+1∑
t=0

gt(u) ≥
τ+1∑
t=0

gt(xτ+2)

= gτ+1(xτ+2) +
τ∑

t=0

gt(xτ+2)

≥ gτ+1(xτ+2) +
τ∑

t=0

gt(xt+1)

=
τ+1∑
t=0

gt(xt+1)

and hence this proves our claim (4.2) by induction.
Now, (4.2) implies that for all u ∈ K,

g0(u) +
T∑
t=1

gt(u) ≥ g0(x1) +
T∑
t=1

gt(xt+1)

which implies that

−
T∑
t=1

gt(u) ≤ −g0(x1)−
T∑
t=1

gt(xt+1) + g0(u)

32 SIDDHANT CHAUDHARY

So, it follows that
T∑
t=1

gt(xt)− gt(u) ≤
T∑
t=1

gt(xt)− gt(xt+1) + g0(u)− g0(x1)

=
T∑
t=1

gt(xt)− gt(xt+1) +
R(u)−R(x1)

η

≤
T∑
t=1

gt(xt)− gt(xt+1) +
D2

R

η

and combining the above inequality with inequality (4.1), the lemma is proven. ■
Theorem 4.4. For all u ∈ K, the following is true.

regretT ≤ 2η
T∑
t=1

||∇t||∗2t +
R(u)−R(x1)

η

Proof. We will use Lemma 4.3 (the previous lemma) to prove this; infact, this in-
equality is just a consequence of the previous lemma. For ease of notation, define Φt

as follows.

Φt(x) = η
t∑

s=1

〈∇s,x〉+R(x)

Then observe that in the RFTL algorithm, xt+1 is picked to minimize Φt. Now, by
the definition of Bregman Divergence, we can write

Φt(xt) = Φt(xt+1) + 〈∇Φt(xt+1),xt − xt+1〉+BΦt (xt||xt+1)

≥ Φt(xt+1) + BΦt (xt||xt+1)

Above, we have used the fact that 〈∇Φt(xt+1),xt − xt+1〉 ≥ 0 (recall Lemma 2.7).
Now, also note that the function Φt is a sum of linear functions and the regularizer R.
Clearly, at any point in it’s domain, the Hessian of Φt will be equal to the Hessian of
R, since the Hessians of the linear terms will vanish. So, we see that

Φt(xt+1) + BΦt (xt||xt+1) = Φt(xt+1) + BR (xt||xt+1)

Combining the last two inequalities, we get the following.
BR (xt||xt+1) ≤ Φt(xt)− Φt(xt+1)

= Φt−1(xt)− Φt−1(xt+1) + η 〈∇t,xt − xt+1〉
≤ η 〈∇t,xt − xt+1〉

where in the last step we have used the fact that Φt−1(xt)−Φt−1(xt+1) ≤ 0. Now, by
the generalised Cauchy Schwarz Inequality along with the above inequality, we have

η 〈∇t,xt − xt+1〉 ≤ η ||xt − xt+1||xt,xt+1
· ||∇t||∗t

= η
√
2BR (xt||xt+1) · ||∇t||∗t

≤ η
√
2η 〈∇t,xt − xt+1〉 · ||∇t||∗t

Squaring and rearranging the above inequality, we get the following.
〈∇t,xt − xt+1〉 ≤ 2η ||∇t||∗t

The above inequality combined with Lemma 4.3 proves the theorem. ■

ONLINE OPTIMIZATION 33

Remark 4.4.1. So, if there is an upper bound on ||∇t||∗t , say G, then we can take
step size ηt =

DR

G
√
t

to get O(
√
T) regret bounds.

4.4. Online Mirrored Descent. Didn’t get time to typeset notes for this; but this
is a very important idea. check out the book for this.

5. Appendix

5.1. Singular Value Decomposition. In this section, we will explore the singular
value decomposition of a matrix.

Let A be an n×d matrix. Consider the rows of A as n data points living in Rd. The
singular value decomposition of A finds the best linear subspace of Rd that contains
these points. There are various notions of best, but in our case, best will mean the
following: we want to minimize the sum of the squares of the (perpendicular) distances
of the points from the subspace. By the Pythagorean Theorem, this is equivalent to
maximising the sum of the squares of the lengths of the (orthogonal) projections of
the points onto the subspace. We will now make all of this formal.

5.1.1. Singular Vectors. As above, let A be an n× d matrix, where the rows of A are
interpreted as n data points. Suppose these rows are a1, ...,an ∈ Rd. Consider the
best fit line through the origin, and let v be a unit vector along this line. The length
of the projection of ai onto v is clearly |ai ·v|, and hence the squared projection length
is |ai · v|2. So, it follows that the sum of the squares of the projection of the points
onto this line is

n∑
i=1

|ai · v|2 = ||Av||2

With this observation, the first singular vector v1 of A is defined to be
v1 = argmax

||v||=1

||Av||

(Clearly the maximum exists because the given function is continuous on a compact
domain). Also, note that this argmax need not be unique. The first singular value is
defined as

σ1(A) = ||Av1||

So it is clear that σ2
1 is the sum of the squared lengths of the projections of the points

onto the best fit line.
Now, inductively, successive singular values can be defined as follows: suppose sin-

gular vectors v1, ..., vi−1 are defined, and let the corresponding singular values be
σ1, ..., σi−1. We define the ith singular vector as follows.

vi = argmax
v⊥⟨v1,...,vi−1⟩,||v||=1

||Av||

So, the vector vi is defined to be the minimizer of the same quantity as before, with
the condition that vi must lie in the space orthogonal to the first i−1 singular vectors.
The corresponding singular value is defined as follows.

σi(A) = ||Avi||
The process stops at some r ≤ n, where

argmax
v∈⟨v1,...,vr⟩,||v||=1

= 0

34 SIDDHANT CHAUDHARY

Theorem 5.1. Let A be an n×d matrix with singular vectors v1, ..., vr. For 1 ≤ k ≤ r,
let Vk be the subspace spanned by v1, ..., vk. For each k, Vk is the best fit k-dimensional
subspace for points in A.

Proof. For a proof, look at Theorem 3.1 of Kannan’s book on Foundations of Data
Science. This just shows that the greedy algorithm to find the best k-dimensional
subspace works. ■

Proposition 5.2. Let r be the integer where the process stops. Then,
n∑

i=1

||ai||2 =
r∑

i=1

σ2
i (A) = ||A||F

where ||·||F is the Frobenius norm of a matrix.

Proof. This is actually very easy to see; just look at the discussion in the book. ■

Definition 5.1. The vectors vr, ..., vr constructed above are called the right singular
vectors of A. By definition, these vectors are orthonormal. For each 1 ≤ i ≤ r, the
unit vector

ui =
Avi

σi(A)

is called the ith left singular vector of A.

5.1.2. Singular Value Decomposition. As above, let A be an n × d matrix with right
singular vectors v1, ..., vr and singular values σ1, ..., σr. Let the left singular vectors be
u1, ...,ur. Observe that the matrix σiuiv

T
i is a rank one matrix. The next theorem

shows that the matrix A can be written as a sum of rank one matrices of the above
form.

Theorem 5.3. Let the notation be as above. Then,

A =
r∑

i=1

σiuiv
T
i

Proof. The proof of this is rather straightforward. Note that two real matrices A and
B of the same dimensions are equal if and only if Av = Bv for all vectors v. We will
use this fact. Let

M =
r∑

i=1

σiuiv
T
i

We will show that for all i, Avi = Mvi. We claim that this is enough to show that
A = M . To see this, observe that the vis are orthonormal; hence, any vector v can
be written as a linear combination of vis and some vector orthogonal to all the vis, i.e
some vector in the kernel of A. So, if Avi = Mvi for each i, it follows that Av = Mv
for all vectors v, and that will prove that A = M .

Showing that Avi = Mvi is straightforward.

Mvi =
r∑

j=1

σjujv
T
j vi = σiui = Avi

and this proves the claim. ■

ONLINE OPTIMIZATION 35

5.1.3. SVD as a matrix product. The SVD of a matrix A can also be written in a more
convenient form, which we will now see.

Proposition 5.4. Let r be any positive integer. Let x1, ...,xr and y1, ...,yr be d-
dimensional vectors. Let c1, ..., cr be real numbers. Let X be the d × r matrix whose
columns are xis, Y be the d× r matrix whose columns are yis, and let C be the r × r
diagonal matrix which has c1, ..., cr as it’s diagonal entries. Then

r∑
i=1

cixiy
T
i = XCY T

Proof. The proof of this follows from the distributive law of matrix multiplication.
Write X as a bunch of matrices with all but one non-zero columns. Write C as a
sum of matrices with all but one diagonal non-zero. Similarly, write Y T as a sum of
matrices with all but one row non-zero. Then apply the distributive law. ■
Corollary 5.4.1. If A is an n× d matrix, then the SVD of A is

A = UσV T

where U is the matrix whose columns are the left singular vectors of A, σ is the
diagonal matrix whose diagonals are the singular values of A, and V is the matrix
whose columns are the right singular vectors of A.

Proof. This is immediate from the previous proposition and the SVD of a matrix. ■

5.2. The Moore Penrose Pseudo Inverse. Suppose A is an n× n square matrix.
Suppose the SVD of A is

A = UσV T =
r∑

i=1

σi(A)uiv
T
i

where as usual ui, vi are the left and right singular vectors, and U , V have the
same meaning as before. Note that the left and right singular vectors have the same
dimensions, because A is a square matrix. Also, by definition, note that σi(A) > 0 for
all 1 ≤ i ≤ r (after all, we ignore zero singular values).

Consider the matrix B defined by the following.

B =
r∑

i=1

1

σi(A)
viu

T
i = V σ+UT

where σ+ is the r × r diagonal matrix whose diagonal entries are the inverses of the
diagonal entries of σ. We will show that

BAx = x

for all x in the span of the right singular vectors of A. For this reason, the matrix B
is called the Moore-Penrose Pseudo Inverse of A, as it acts as an inverse.

To see this, first observe the following.

BA =

(
r∑

i=1

σi(A)viu
T
i

)(
r∑

j=1

1

σj(A)
uiv

T
i

)

=
r∑

i=1

viv
T
i

36 SIDDHANT CHAUDHARY

The above equation is true simply because the left singular vectors are orthonormal,
and so are the right singular vectors. Now, suppose x is in the span of {v1, ..., vr}, i.e
suppose

x = a1v1 + · · ·+ arvr

Again, using the fact that the vi’s form an orthonormal system, we have the following.(
r∑

i=1

viv
T
i

)
(a1v1 + · · ·+ arvr) =

∑
1≤i,j≤r

ajviv
T
i vj

=
r∑

i=1

ajvj

= x

and we’ve just shown that
BAx = x

and this proves the claim.

5.3. Matrix Differentials. Let F : Mn(R)→Mn(R) be a differentiable map. To be
completed.

5.4. Fenchel Conjugates and Fenchel Duality. In this section, we will see how
strong convexity is really smoothness looked at from a different perspective. This
phenomenon is called Fenchel’s Duality.
Definition 5.2. Let f be a function defined on a suitable domain. Then the Fenchel
conjugate f ∗ is defined as follows.

f ∗(θ) = max
w
〈w,θ〉 − f(w)

The Fenchel-Young inequality immediately follows from this: for all u,
f ∗(θ) ≥ 〈u,θ〉 − f(u)

Definition 5.3. A convex function f is said to be closed if for all α ∈ R, the sublevel
set {x ∈ domf | f(x) ≤ α} is a closed set. Section to be completed.
5.5. A simple fact about projection onto simplex. Throughout this section, let
∆n denote the n-simplex. First, observe that ∆n is contained in a hyperplane; to see
this, it is enough to observe that if θ ∈ ∆n, then we know that

n∑
i=1

θi = 1

So, θ lies in the hyperplane described by the equation
wTx− 1 = 0

where w = (1, 1, ..., 1). Also, this shows us that w is normal to the hyperplane
containing ∆n.

Now, consider the following definition.
S := {θ + tw | θ ∈ ∆n, t ∈ R}

Geometrically, S is the set obtained by swiping the set ∆n along the axis parallel to w;
for example, in R3, the set S will be an infinite length prism, because ∆3 is a triangle.
It is also clear that S is a convex set.

ONLINE OPTIMIZATION 37

We claim that projecting a point in S to ∆n is easy; for any point y of the form
y = θ + tw where θ ∈ ∆n and t ∈ R, we have

Π∆n(y) = θ(5.1)
Geometrically, all we are doing is dropping a perpendicular from y onto the set ∆n.
To prove this, first note that if θ′ ∈ ∆n, then the vector θ′ − θ is orthogonal to the
vector tw (because w is a normal to the plane). So, this gives us the following for any
θ′ ∈ ∆n.

||θ′ − y||2 = ||θ′ − θ − tw||2

= ||θ′ − θ||2 + t2 ||w||2

Above, we simply used the Pythagoras Theorem. So, it follows that ||θ′ − y||2 is
minimised at the point θ′ = θ, and this proves equation (5.1).

Now, let y ∈ Rn be any point. We will now prove the following equation.
Π∆n(y) = Π∆n(ΠS(y))(5.2)

In simple words, to find the projection of y onto ∆n, it is enough to find the projection
of y onto S, and then project the result onto ∆n. Let us now prove this. Now, suppose
ΠS(y) = θ + tw for some t ∈ R and some θ ∈ ∆n. We claim that the vectors w and
θ + tw − y are orthogonal. To see this, define the following function on R.

h(x) = ||θ + xw − y||2

Clearly, h is a differentiable function on R, and h attains a minimum at the point
x = t. So, it follows that h′(t) = 0. But, note that

h′(t) = 2 〈w,θ + tw − y〉 = 0

and so it follows that the vectors w and θ + tw − y are orthogonal.
Next, suppose θ′ ∈ ∆n is an arbitrary point. We claim that the vectors tw and

θ′ + tw − y are orthogonal. To see this, note that
〈tw,θ′ + tw − y〉 = 〈tw,θ′ − θ + θ + tw − y〉

= 〈tw,θ′ − θ〉+ 〈tw,θ + tw − y〉
= 0 + 0

where the first quantity is 0 because w is a normal vector to the plane containing ∆n,
and the second quantity is zero which was just shown above.

So, we have the following, where we are just using the Pythagorean Theorem.
||θ′ − y||2 = ||θ′ + tw − tw − y||2

= t2 ||w||2 + ||θ′ + tw − y||2

So, minimizing ||θ′ − y||2 is the same as minimizing ||θ′ + tw − y||2. But, we know
that this minimum is achieved for θ′ = θ, because ΠS(y) = θ+ tw. So, it follows that

Π∆n(y) = θ = Π∆n(ΠS(y))

and this proves equation (5.2).

	1. The Online Learning Model
	1.1. Model Description and Restrictions
	1.2. Regret of an algorithm
	1.3. Expert Advice: An example
	1.4. Learning from Expert Advice
	1.5. The Weighted Majority Algorithm
	1.6. Randomized Weighted Majority Algorithm

	2. Introduction to Convexity
	2.1. Basic Definitions
	2.2. Subgradients
	2.3. Alternative Characterisations of Convexity
	2.4. Convex bodies and Hyperplanes
	2.5. Local Minima are Global Minima
	2.6. Convex Projections

	3. First Order Convex Optimization
	3.1. Gradient Descent
	3.2. The Polyak Step Size
	3.3. Exponential Convergence for Projected GD in Unconstrained Optimization
	3.4. Online Gradient Descent
	3.5. OGD for Strongly Convex Functions
	3.6. OGD without knowing D and G
	3.7. Stochastic Gradient Descent

	4. Regularization
	4.1. Follow The Leader (FTL)
	4.2. Bregman Divergence
	4.3. Regularized Follow The Leader (RFTL)
	4.4. Online Mirrored Descent

	5. Appendix
	5.1. Singular Value Decomposition
	5.2. The Moore Penrose Pseudo Inverse
	5.3. Matrix Differentials
	5.4. Fenchel Conjugates and Fenchel Duality
	5.5. A simple fact about projection onto simplex

