
PLC ASSIGNMENT-3

SIDDHANT CHAUDHARY
BMC201953

1. Recall the definition of parallel reduction. It is the relation =⇒ over λ-terms
defined by the following rules.

M =⇒ M

(λx.M)N =⇒ M [x := N ]

M =⇒ M ′

λx.M =⇒ λx.M ′

M =⇒ M ′ N =⇒ N ′

MN =⇒ M ′N ′

M =⇒ M ′ N =⇒ N ′

(λx.M)N =⇒ M ′[x := N ′]

Define M∗ as follows.
x∗ = x

(λx.M)∗ = λx.M∗

(MN)∗ = M∗N∗ (M not of the form λx.P )

((λx.P )N)∗ = P ∗[x := N∗]

Prove the following.

(a) If M →β N then M =⇒ N .
Proof. Suppose M →β N , i.e M β-reduces to N in a single step. So, M contains
a β-redux, say (λx.P )Q, as a sub-term, and suppose the reduction M →β N is the
reduction of this redux. By the second rule above, we know that

(λx.P )Q =⇒ P [x := Q]

and hence we conclude that M =⇒ N . This proves the claim. ■

(b) If M =⇒ N then M
∗−→β N .

Proof. Suppose M =⇒ N . We prove the claim by induction on the length of the
λ-terms. For the base case, suppose M =⇒ N , and the length of the term M is 1.
Clearly, M = x, where x is a variable, and the reduction M =⇒ N is x =⇒ x. In
this case, it is obvious that x

∗−→β x, i.e M
∗−→β N . So the base case is true.

Date: April 30, 2021.
1



2 SIDDHANT CHAUDHARY BMC201953

Next, suppose the claim is true for all λ-terms M of length atmost n − 1 for some
n− 1 ∈ N. Then, suppose M =⇒ N , and suppose the length of the λ-term M is n.
We have the following cases.

(1) In the first case, the reduction M =⇒ N is of the form M =⇒ M . Clearly,
in that case, we have M

∗−→β M in zero steps.
(2) In the second case, suppose the reduction M =⇒ N is of type two, i.e M

contains a redux (λx.P )Q, and the reduction M =⇒ N involves the reduction
(λx.P )Q =⇒ P [x := Q]. Clearly, in this case, we have

(λx.P )Q
∗−→β P [x := Q]

in one step, and hence M
∗−→β N in one step.

(3) In the third case, suppose the reduction M =⇒ N is of type three. So, M
contains a term λx.P such that P =⇒ Q, and the reduction M =⇒ N
involves the reduction λx.P =⇒ λx.Q. Clearly, the length of the term P

is atmost n − 1, and by induction hypothesis, we know that P
∗−→β Q. So, it

follows that
λx.P

∗−→β λx.Q

and hence
M

∗−→β N

in this case as well.
(4) In the next case, the reduction M =⇒ N is of the fourth type. So, M contains

a term of the form PS such that P =⇒ P ′, S =⇒ S ′, and the reduction
M =⇒ N involves the reduction PS =⇒ P ′S ′. Again, note that the length
of the terms P and S is atmost n−1, and by induction hypothesis, we see that

P
∗−→β P ′ , S

∗−→β S ′

This means that
PS

∗−→β P ′S
∗−→β P ′S ′

and hence it follows that
M

∗−→β N

in multiple steps.
(5) In the next case, the reduction M =⇒ N is of the fifth type. So, M contains

a term (λx.P )Q, where P =⇒ P ′, Q =⇒ Q′, and the reduction M =⇒ N
involves the reduction (λx.P )Q =⇒ P ′[x := Q′]. Again, note that the lengths
of P and Q is atmost n − 1. So, by the induction hypothesis, we see that
P

∗−→β P ′ and Q
∗−→β Q′. So, it follows that

(λx.P )Q
∗−→β (λx.P ′)Q

∗−→β (λx.P ′)Q′ ∗−→β P ′[x := Q′]

So, it follows that
M

∗−→β N

in multiple steps.
So by induction, the claim is true for all terms M . This completes the proof. ■

(c) M
∗−→β N if and only if M ∗=⇒ N .



PLC ASSIGNMENT-3 3

Proof. First, suppose M
∗−→β N . So, there is a sequence M1, ...,Mk of λ-terms such

that
M −→β M1 −→β M2 −→β · · · −→β Mk −→β N

By part (a), we see that

M =⇒ M1 =⇒ M2 =⇒ · · · =⇒ Mk =⇒ N

and hence M
∗=⇒ N .

Conversely, suppose M
∗=⇒ N . So, there is a sequence M1, ...,Mk of λ-terms such

that
M =⇒ M1 =⇒ M2 =⇒ · · · =⇒ Mk =⇒ N

By part (b), we see that

M
∗−→β M1

∗−→β M2
∗−→β · · · ∗−→β Mk

∗−→β N

which implies that M
∗−→β N . This completes the proof. ■

Lemma 0.1. M =⇒ M∗ for all M .

Proof. We prove this by induction on the length of M . For the base case, suppose
M = x for a variable x. Clearly, we have M∗ = x∗ = x = M , and hence it follows that
M =⇒ M∗, i.e the base case is true.

Now suppose the statement is true for all terms of length atmost n − 1, where
n− 1 ∈ N. Let M be a term of length n. We consider a few cases.

(1) Suppose M = λx.P for some P , where the length of P is atmost n− 1. Then,
we see that

M∗ = (λx.P )∗ = λx.P ∗

By the inductive hypothesis, we know that P =⇒ P ∗. So, it follows that

M = λx.P =⇒ λx.P ∗ = M∗

and hence the claim is true in this case.
(2) Suppose M = PQ where P is not of the form λx.S. Clearly, P and Q have

length atmost n−1. So, by the inductive hypothesis, we know that P =⇒ P ∗

and Q =⇒ Q∗. Also,

M∗ = (PQ)∗ = P ∗Q∗

So, it follows that

M = PQ =⇒ P ∗Q∗ = M∗

and the claim is true in this case as well.
(3) Finally, suppose M is of the form (λx.P )Q. Clearly, the lengths of P and Q

are atmost n−1, and hence by the inductive hypothesis we see that P =⇒ P ∗

and Q =⇒ Q∗. Also, note that M∗ = ((λx.P )Q)∗ = P ∗[x := Q∗]. So, we
have

M = (λx.P )Q =⇒ P ∗[x := Q∗] = M∗

So, by induction, the claim is true for all terms M , and this completes the proof. ■

(d) If M =⇒ N then N =⇒ M∗.



4 SIDDHANT CHAUDHARY BMC201953

Proof. We will prove this by induction on the size of M . For the base case, suppose
M has size 1, i.e M = x where x is a variable. Then, N = x, and hence x =⇒ x. In
this case, note that M∗ = x. So, it follows that N =⇒ M∗, and hence the base case
is true.

Now, suppose the claim is true for all terms of size atmost n−1 for some n−1 ∈ N.
Let M be a term of size n such that M =⇒ N . We handle a couple of cases.

(1) Suppose the reduction M =⇒ N is of the form M =⇒ M , i.e N = M . By
Lemma 0.1, we know that N = M =⇒ M∗.

(2) Suppose M = PQ where P =⇒ P ′ and Q =⇒ Q′, and the reduction
M =⇒ N is of the form PQ =⇒ P ′Q′. Since the lengths of both P and
Q are atmost n − 1, from the induction hypothesis we get that P ′ → P ∗ and
Q′ → Q∗. Now, we have two subcases here.
(a) If PQ is not a β-redux, then M∗ = P ∗Q∗. So N = P ′Q′ =⇒ P ∗Q∗ = M∗,

and hence we are done.
(b) Suppose PQ is a β-redux, say P = λx.S, and hence M∗ = S∗[x := Q∗].

Suppose the reduction P =⇒ P ′ was of the form P = λx.S =⇒ λx.S ′

where S =⇒ S ′. By induction hypothesis, we see that S ′ =⇒ S∗, and
since Q′ =⇒ Q∗, it follows that N = (λx.S ′)Q′ =⇒ S∗[x := Q∗] = M∗.

(3) Suppose M = (λx.Q)P and N = Q′[x := P ′] where Q =⇒ Q′ and P =⇒ P ′.
Then M∗ = Q∗[x := P ∗], and N =⇒ M∗, because by the induction hypothesis
we have Q′ =⇒ Q∗ and P ′ =⇒ P ∗.

So, by induction, the claim is true for all terms M of any size. This completes the
proof. ■

(e) If M =⇒ P and M =⇒ Q then there exists N such that P =⇒ N and
Q =⇒ N .

Proof. This easily follows from part (d). Suppose M =⇒ P and M =⇒ Q. Invoking
part (d), we see that P =⇒ M∗ and Q =⇒ M∗. Setting N = M∗, this proves the
claim. ■

2. Are the following expressions typable? If so, what are the most general types? If
not, explain why.

(a) λfgx.f(gx)

Solution. Yes, this term is typable. Let us derive the most general type for this. We
begin with the following.

τx = px, τg = pg, τf = pf

Ex = ϕ, Eg = ϕ, Ef = ϕ

From these, we get

τgx = a, τf = pf

Egx = {pg = px → a}, Ef = ϕ

Further, we get

τf(gx) = b

Ef(gx) = {pg = px → a, pf = a → b}



PLC ASSIGNMENT-3 5

Going ahead, we have the following.
τλx.f(gx) = c → τf(gx)[px := c] = c → b

Eλx.f(gx) = Ef(gx)[px := c] = {pg = c → a, pf = a → b}

Further, we have
τλgx.f(gx) = d → τλx.f(gx)[pg := d] = d → c → b

Eλgx.f(gx) = Eλx.f(gx)[pg := d] = {d = c → a, pf = a → b}

Finally, we have
τλfgx.f(gx) = e → τλgx.f(gx)[pf := e] = e → d → c → b

Eλfgx.f(gx) = Eλgx.f(gx)[pf := e] = {d = c → a, e = a → b}

So, it follows that the most general type of λfgx.f(gx) is
τλfgx.f(gx) = (a → b) → (c → a) → c → b

and so we have found the required type. ■

(b) λxy.yx

Solution. Yes, this term is also typable. Let us derive the most general type for this.
We begin with the following.

τx = px, τy = py

Ex = ϕ, Ey = ϕ

From this, we get the following.
τyx = a

Eyx = {py = px → a}

From here, we can obtain the following.
τλy.yx = b → τyx[py := b] = b → a

Eλy.yx = Eyx[py := b] = {b = px → a}

Finally, we get
τλxy.yx = c → τλy.yx[px := c] = c → b → a

Eλxy.yx = Eλy.yx[px := c] = {b = c → a}

So, it follows that the most general type of λxy.yx is
τλxy.yx = c → (c → a) → a

and so we have found the required type. ■

(c) λfgx.g(fx)

Solution. Yes, this term is typable. Let us derive the most general type for this. We
begin with the following.

τx = px, τg = pg, τf = pf

Ex = ϕ, Eg = ϕ, Ef = ϕ



6 SIDDHANT CHAUDHARY BMC201953

From these, we get
τfx = a

Efx = {pf = px → a}
Further, we get

τg(fx) = b

Eg(fx) = {pf = px → a, pg = a → b}
Going ahead, we have the following.

τλx.g(fx) = c → τg(fx)[px := c] = c → b

Eλx.g(fx) = Eg(fx)[px := c] = {pf = c → a, pg = a → b}
Further, we have

τλgx.g(fx) = d → τλx.g(fx)[pg := d] = d → c → b

Eλgx.f(gx) = Eλx.g(fx)[pg := d] = {pf = c → a, d = a → b}
Finally, we have

τλfgx.g(fx) = e → τλgx.g(fx)[pf := e] = e → d → c → b

Eλfgx.g(fx) = Eλgx.g(fx)[pf := e] = {e = c → a, d = a → b}
So, it follows that the most general type of λfgx.g(fx) is

τλfgx.g(fx) = (c → a) → (a → b) → c → b

and so we have found the required type. ■
3. Recall the following standard encodings: f 0x = x, fn+1x = f(fnx), [n] = (λfx.fnx), true =
(λxy.x), false = (λxy.y),pair = (λxyw.wxy), fst = (λp.p true), snd = (λp.p false), ite =
(λbxy.bxy) and iszero = (λx.(x(λz.false))true)

Derive the most general types of each of the above expressions. If you feel that any
of them is untypable, give a justification.
Solution. We will find the types individually below.

Type of [n]. If n = 0, then
[0] = λfx.x

We will now derive the most general type of this using the following steps.
(1) τx = px, τf = pf and Ef = ϕ,Ex = ϕ.
(2) τλx.x = a → τx[px := a] = a → a and Eλx.x = Ex[px := a] = ϕ.
(3) τλfx.x = b → τλx.x[pf := b] = b → a → a and Eλfx.x = Eλx.x[pf := b] = ϕ.

So, we see that the type of 0 is b → a → a.
Next, suppose n ≥ 1. So,

[n] = λfx.fnx

Consider the following steps.
(1) τx = px, τf = pf and Ef = ϕ,Ex = ϕ.
(2) τfx = a1 and Eλfx = {pf = px → a1}.
(3) τf2x = a2 and Ef2x = {pf = px → a1, pf = a1 → a2}.
(4) Continuing this way n times, we will obtain: τfnx = an and Efnx = {pf =

px → a1, pf = a1 → a2, pf = a2 → a3, ..., pf = an−1 → an}
(5) τλx.fnx = a → τfnx[px := a] = a → an and Eλx.fnx = Efnx[px := a] = {pf =

a → a1, pf = a1 → a2, ..., pf = an−1 → an}.



PLC ASSIGNMENT-3 7

(6) τλfx.fnx = b → τλx.fnx[pf := b] = b → a → an and Eλfx.fnx = Eλx.fnx[pf :=
b] = {b = a → a1, b = a1 → a2, ..., b = an−1 → an}.

The only solution to this system is a = a1 = a2 = · · · an. So, it follows that the type
of [n] in this case is (a → a) → a → a.

Type of true. Consider the following steps.
(1) τx = px, τy = py and Ex = ϕ,Ey = ϕ.
(2) τλy.x = a → px and Eλy.x = ϕ.
(3) τλxy.x = b → a → b and Eλxy.x = ϕ.

So, the type of true is b → a → b.

Type of false. This derivation is very similar to the type derivation of true, and I
won’t repeat it. The type of false turns out to be b → a → a.

Type of pair. Consider the following steps.
(1) τw = pw, τy = py, τx = px and Ew = Ey = Ex = ϕ.
(2) τwx = a and Ewx = {pw = px → a}.
(3) τwxy = b and Ewxy = {pw = px → a, a = py → b}.
(4) τλw.wxy = c → b and Eλw.wxy = {c = px → a, a = py → b}.
(5) τλyw.wxy = d → c → b and Eλyw.wxy = {c = px → a, a = d → b}.
(6) τλxyw.wxy = e → d → c → b and Eλeyw.wxy = {c = e → a, a = d → b}.

So, the type of pair is e → d → (e → (d → b)) → b.

Type of fst. Consider the following steps. We will assume that the type of true
(which we derived above) is b → a → b.

(1) τp = pp and Ep = ϕ.
(2) τp true = c and Ep true = {pp = τtrue → c = (b → a → b) → c}.
(3) τλp.p true = d → c and Eλp.p true = {d = (b → a → b) → c}

With these steps, the type of fst is (b → a → b) → c → c.

Type of snd. This is very similar to the case of fst. If we follow the steps of type
derivation, we will get that the type of snd is (b → a → a) → c → c.

Type of ite. Consider the following steps.
(1) τb = pb, τy = py, τx = px and Eb = Ey = Ex = ϕ.
(2) τbx = a and Ebx = {pb = px → a}.
(3) τbxy = b and Ebxy = {pb = px → a, a = py → b}.
(4) τλy.bxy = c → b and Eλy.bxy = {pb = px → a, a = c → b}.
(5) τλxy.bxy = d → c → b and Eλxy.bxy = {pb = d → a, a = c → b}.
(6) τλbxy.bxy = e → d → c → b and Eλbxy.bxy = {e = d → a, a = c → b}.

It follows that the type of ite is (d → (c → b)) → d → c → b.

Type of iszero. We assume that the types of true and false are a → b → a and
c → d → d respectively. Consider the following steps.

(1) τfalse = c → d → d.
(2) τλz.false = e → (c → d → d) and Eλz.false = ϕ.
(3) τx = px and Ex = ϕ.
(4) τx(λz.false) = f and Ex(λz.false) = {px = (e → (c → d → d)) → f}.
(5) τ(x(λz.false))true = g and E(x(λz.false))true = {px = (e → (c → d → d)) → f, f =

(a → b → a) → g}.



8 SIDDHANT CHAUDHARY BMC201953

(6) τλx.(x(λz.false))true = h → g and Eλx.(x(λz.false))true = {h = (e → (c → d →
d)) → f, f = (a → b → a) → g}.

So, it follows that the type of iszero is
(e → (c → d → d)) → ((a → b → a) → g)) → g

■


	1
	2
	3

