PLC ASSIGNMENT-3

SIDDHANT CHAUDHARY BMC201953

1. Recall the definition of *parallel reduction*. It is the relation \implies over λ -terms defined by the following rules.

$$\overline{M \implies M}$$

$$\overline{(\lambda x.M)N \implies M[x := N]}$$

$$\frac{M \implies M'}{\overline{\lambda x.M \implies \lambda x.M'}}$$

$$\frac{M \implies M' \qquad N \implies N'}{MN \implies M'N'}$$

$$\frac{M \implies M' \qquad N \implies N'}{(\lambda x.M)N \implies M'[x := N']}$$

Define M^* as follows.

$$x^* = x$$

$$(\lambda x.M)^* = \lambda x.M^*$$

$$(MN)^* = M^*N^* \qquad (M \text{ not of the form } \lambda x.P)$$

$$(\lambda x.P)N)^* = P^*[x := N^*]$$

Prove the following.

(a) If $M \to_{\beta} N$ then $M \implies N$.

(

Proof. Suppose $M \to_{\beta} N$, i.e $M \beta$ -reduces to N in a single step. So, M contains a β -redux, say $(\lambda x.P)Q$, as a sub-term, and suppose the reduction $M \to_{\beta} N$ is the reduction of this redux. By the second rule above, we know that

$$(\lambda x.P)Q \implies P[x := Q]$$

and hence we conclude that $M \implies N$. This proves the claim.

(b) If $M \implies N$ then $M \xrightarrow{*}_{\beta} N$.

Proof. Suppose $M \implies N$. We prove the claim by induction on the length of the λ -terms. For the base case, suppose $M \implies N$, and the length of the term M is 1. Clearly, M = x, where x is a variable, and the reduction $M \implies N$ is $x \implies x$. In this case, it is obvious that $x \stackrel{*}{\rightarrow}_{\beta} x$, i.e $M \stackrel{*}{\rightarrow}_{\beta} N$. So the base case is true.

Date: April 30, 2021.

Next, suppose the claim is true for all λ -terms M of length atmost n-1 for some $n-1 \in \mathbb{N}$. Then, suppose $M \implies N$, and suppose the length of the λ -term M is n. We have the following cases.

- (1) In the first case, the reduction $M \implies N$ is of the form $M \implies M$. Clearly, in that case, we have $M \xrightarrow{*}_{\beta} M$ in zero steps.
- (2) In the second case, suppose the reduction $M \implies N$ is of type two, i.e M contains a redux $(\lambda x.P)Q$, and the reduction $M \implies N$ involves the reduction $(\lambda x.P)Q \implies P[x := Q]$. Clearly, in this case, we have

$$(\lambda x.P)Q \xrightarrow{*}_{\beta} P[x := Q]$$

in one step, and hence $M \xrightarrow{*}_{\beta} N$ in one step.

(3) In the third case, suppose the reduction $M \implies N$ is of type three. So, M contains a term $\lambda x.P$ such that $P \implies Q$, and the reduction $M \implies N$ involves the reduction $\lambda x.P \implies \lambda x.Q$. Clearly, the length of the term P is at most n-1, and by induction hypothesis, we know that $P \stackrel{*}{\rightarrow}_{\beta} Q$. So, it follows that

$$\lambda x.P \xrightarrow{*}_{\beta} \lambda x.Q$$

and hence

$$M \xrightarrow{*}_{\beta} N$$

in this case as well.

(4) In the next case, the reduction $M \implies N$ is of the fourth type. So, M contains a term of the form PS such that $P \implies P', S \implies S'$, and the reduction $M \implies N$ involves the reduction $PS \implies P'S'$. Again, note that the length of the terms P and S is at most n-1, and by induction hypothesis, we see that

$$P \xrightarrow{*}_{\beta} P' \quad , \quad S \xrightarrow{*}_{\beta} S'$$

This means that

$$PS \xrightarrow{*}_{\beta} P'S \xrightarrow{*}_{\beta} P'S'$$

and hence it follows that

$$M \xrightarrow{*}_{\beta} N$$

in multiple steps.

(5) In the next case, the reduction $M \implies N$ is of the fifth type. So, M contains a term $(\lambda x.P)Q$, where $P \implies P', Q \implies Q'$, and the reduction $M \implies N$ involves the reduction $(\lambda x.P)Q \implies P'[x := Q']$. Again, note that the lengths of P and Q is at most n-1. So, by the induction hypothesis, we see that $P \xrightarrow{*}_{\beta} P'$ and $Q \xrightarrow{*}_{\beta} Q'$. So, it follows that

$$(\lambda x.P)Q \xrightarrow{*}_{\beta} (\lambda x.P')Q \xrightarrow{*}_{\beta} (\lambda x.P')Q' \xrightarrow{*}_{\beta} P'[x := Q']$$

So, it follows that

$$M \xrightarrow{*}_{\beta} N$$

in multiple steps.

So by induction, the claim is true for all terms M. This completes the proof.

(c) $M \xrightarrow{*}_{\beta} N$ if and only if $M \xrightarrow{*} N$.

Proof. First, suppose $M \xrightarrow{*}_{\beta} N$. So, there is a sequence $M_1, ..., M_k$ of λ -terms such that

$$M \to_{\beta} M_1 \to_{\beta} M_2 \to_{\beta} \cdots \to_{\beta} M_k \to_{\beta} N$$

By part (a), we see that

$$M \implies M_1 \implies M_2 \implies \cdots \implies M_k \implies N$$

and hence $M \stackrel{*}{\Longrightarrow} N$.

Conversely, suppose $M \stackrel{*}{\Longrightarrow} N$. So, there is a sequence $M_1, ..., M_k$ of λ -terms such that

$$M \implies M_1 \implies M_2 \implies \cdots \implies M_k \implies N$$

By part (b), we see that

$$M \xrightarrow{*}_{\beta} M_1 \xrightarrow{*}_{\beta} M_2 \xrightarrow{*}_{\beta} \cdots \xrightarrow{*}_{\beta} M_k \xrightarrow{*}_{\beta} N$$

which implies that $M \xrightarrow{*}_{\beta} N$. This completes the proof.

Lemma 0.1. $M \implies M^*$ for all M.

Proof. We prove this by induction on the length of M. For the base case, suppose M = x for a variable x. Clearly, we have $M^* = x^* = x = M$, and hence it follows that $M \implies M^*$, i.e the base case is true.

Now suppose the statement is true for all terms of length at most n-1, where $n-1 \in \mathbb{N}$. Let M be a term of length n. We consider a few cases.

(1) Suppose $M = \lambda x P$ for some P, where the length of P is at most n - 1. Then, we see that

$$M^* = (\lambda x.P)^* = \lambda x.P^*$$

By the inductive hypothesis, we know that $P \implies P^*$. So, it follows that

$$M = \lambda x.P \implies \lambda x.P^* = M^*$$

and hence the claim is true in this case.

(2) Suppose M = PQ where P is not of the form $\lambda x.S$. Clearly, P and Q have length at most n-1. So, by the inductive hypothesis, we know that $P \implies P^*$ and $Q \implies Q^*$. Also,

$$M^* = (PQ)^* = P^*Q^*$$

So, it follows that

$$M = PQ \implies P^*Q^* = M^*$$

and the claim is true in this case as well.

(3) Finally, suppose M is of the form $(\lambda x.P)Q$. Clearly, the lengths of P and Q are atmost n-1, and hence by the inductive hypothesis we see that $P \implies P^*$ and $Q \implies Q^*$. Also, note that $M^* = ((\lambda x.P)Q)^* = P^*[x := Q^*]$. So, we have

$$M = (\lambda x.P)Q \implies P^*[x := Q^*] = M^*$$

So, by induction, the claim is true for all terms M, and this completes the proof.

(d) If $M \implies N$ then $N \implies M^*$.

Proof. We will prove this by induction on the size of M. For the base case, suppose M has size 1, i.e M = x where x is a variable. Then, N = x, and hence $x \implies x$. In this case, note that $M^* = x$. So, it follows that $N \implies M^*$, and hence the base case is true.

Now, suppose the claim is true for all terms of size at most n-1 for some $n-1 \in \mathbb{N}$. Let M be a term of size n such that $M \implies N$. We handle a couple of cases.

- (1) Suppose the reduction $M \implies N$ is of the form $M \implies M$, i.e N = M. By Lemma 0.1, we know that $N = M \implies M^*$.
- (2) Suppose M = PQ where $P \implies P'$ and $Q \implies Q'$, and the reduction $M \implies N$ is of the form $PQ \implies P'Q'$. Since the lengths of both P and Q are at most n-1, from the induction hypothesis we get that $P' \rightarrow P^*$ and $Q' \rightarrow Q^*$. Now, we have two subcases here.
 - (a) If PQ is not a β -redux, then $M^* = P^*Q^*$. So $N = P'Q' \implies P^*Q^* = M^*$, and hence we are done.
 - (b) Suppose PQ is a β -redux, say $P = \lambda x.S$, and hence $M^* = S^*[x := Q^*]$. Suppose the reduction $P \implies P'$ was of the form $P = \lambda x.S \implies \lambda x.S'$ where $S \implies S'$. By induction hypothesis, we see that $S' \implies S^*$, and since $Q' \implies Q^*$, it follows that $N = (\lambda x.S')Q' \implies S^*[x := Q^*] = M^*$.
- (3) Suppose $M = (\lambda x.Q)P$ and N = Q'[x := P'] where $Q \implies Q'$ and $P \implies P'$. Then $M^* = Q^*[x := P^*]$, and $N \implies M^*$, because by the induction hypothesis we have $Q' \implies Q^*$ and $P' \implies P^*$.

So, by induction, the claim is true for all terms M of any size. This completes the proof.

(e) If $M \implies P$ and $M \implies Q$ then there exists N such that $P \implies N$ and $Q \implies N$.

Proof. This easily follows from part (d). Suppose $M \implies P$ and $M \implies Q$. Invoking part (d), we see that $P \implies M^*$ and $Q \implies M^*$. Setting $N = M^*$, this proves the claim.

2. Are the following expressions typable? If so, what are the most general types? If not, explain why.

(a) $\lambda fgx.f(gx)$

Solution. Yes, this term is typable. Let us derive the most general type for this. We begin with the following.

$$\tau_x = p_x, \quad \tau_g = p_g, \quad \tau_f = p_f$$

 $E_x = \phi, \quad E_g = \phi, \quad E_f = \phi$

From these, we get

$$\begin{aligned} \tau_{gx} &= a, \quad \tau_f = p_f \\ E_{gx} &= \{ p_g = p_x \to a \}, \quad E_f = \phi \end{aligned}$$

Further, we get

$$\tau_{f(gx)} = b$$

$$E_{f(gx)} = \{ p_g = p_x \to a, p_f = a \to b \}$$

Going ahead, we have the following.

$$\tau_{\lambda x.f(gx)} = c \to \tau_{f(gx)}[p_x := c] = c \to b$$
$$E_{\lambda x.f(gx)} = E_{f(gx)}[p_x := c] = \{p_g = c \to a, p_f = a \to b\}$$

Further, we have

$$\tau_{\lambda gx.f(gx)} = d \to \tau_{\lambda x.f(gx)}[p_g := d] = d \to c \to b$$
$$E_{\lambda gx.f(gx)} = E_{\lambda x.f(gx)}[p_g := d] = \{d = c \to a, p_f = a \to b\}$$

Finally, we have

$$\tau_{\lambda fgx.f(gx)} = e \to \tau_{\lambda gx.f(gx)}[p_f := e] = e \to d \to c \to b$$
$$E_{\lambda fgx.f(gx)} = E_{\lambda gx.f(gx)}[p_f := e] = \{d = c \to a, e = a \to b\}$$

So, it follows that the most general type of $\lambda fgx.f(gx)$ is

$$\tau_{\lambda f q x. f (q x)} = (a \to b) \to (c \to a) \to c \to b$$

and so we have found the required type.

(b) $\lambda xy.yx$

Solution. Yes, this term is also typable. Let us derive the most general type for this. We begin with the following.

$$\tau_x = p_x, \quad \tau_y = p_y$$
$$E_x = \phi, \quad E_y = \phi$$

From this, we get the following.

$$\tau_{yx} = a$$
$$E_{yx} = \{p_y = p_x \to a\}$$

From here, we can obtain the following.

$$\tau_{\lambda y.yx} = b \to \tau_{yx}[p_y := b] = b \to a$$
$$E_{\lambda y.yx} = E_{yx}[p_y := b] = \{b = p_x \to a\}$$

Finally, we get

$$\tau_{\lambda xy.yx} = c \to \tau_{\lambda y.yx}[p_x := c] = c \to b \to a$$
$$E_{\lambda xy.yx} = E_{\lambda y.yx}[p_x := c] = \{b = c \to a\}$$

So, it follows that the most general type of $\lambda xy.yx$ is

$$\tau_{\lambda xy.yx} = c \to (c \to a) \to a$$

and so we have found the required type.

(c) $\lambda fgx.g(fx)$

Solution. Yes, this term is typable. Let us derive the most general type for this. We begin with the following.

$$\tau_x = p_x, \quad \tau_g = p_g, \quad \tau_f = p_f$$

 $E_x = \phi, \quad E_g = \phi, \quad E_f = \phi$

From these, we get

$$\tau_{fx} = a$$
$$E_{fx} = \{p_f = p_x \to a\}$$

Further, we get

$$\tau_{g(fx)} = b$$

$$E_{g(fx)} = \{ p_f = p_x \to a, p_g = a \to b \}$$

Going ahead, we have the following.

$$\tau_{\lambda x.g(fx)} = c \to \tau_{g(fx)}[p_x := c] = c \to b$$
$$E_{\lambda x.g(fx)} = E_{g(fx)}[p_x := c] = \{p_f = c \to a, p_g = a \to b\}$$

Further, we have

$$\tau_{\lambda gx.g(fx)} = d \to \tau_{\lambda x.g(fx)}[p_g := d] = d \to c \to b$$
$$E_{\lambda gx.f(gx)} = E_{\lambda x.g(fx)}[p_g := d] = \{p_f = c \to a, d = a \to b\}$$

Finally, we have

$$\tau_{\lambda fgx.g(fx)} = e \to \tau_{\lambda gx.g(fx)}[p_f := e] = e \to d \to c \to b$$
$$E_{\lambda fgx.g(fx)} = E_{\lambda gx.g(fx)}[p_f := e] = \{e = c \to a, d = a \to b\}$$

So, it follows that the most general type of $\lambda f q x. q(f x)$ is

$$\tau_{\lambda fgx.g(fx)} = (c \to a) \to (a \to b) \to c \to b$$

and so we have found the required type.

3. Recall the following standard encodings: $f^0x = x$, $f^{n+1}x = f(f^nx)$, $[n] = (\lambda fx.f^nx)$, true = $(\lambda xy.x)$, false = $(\lambda xy.y)$, pair = $(\lambda xyw.wxy)$, fst = $(\lambda p.p \text{ true})$, snd = $(\lambda p.p \text{ false})$, ite = $(\lambda bxy.bxy)$ and iszero = $(\lambda x.(x(\lambda z.false))true)$

Derive the most general types of each of the above expressions. If you feel that any of them is untypable, give a justification.

Solution. We will find the types individually below.

Type of [n]. If n = 0, then

$$[0] = \lambda f x. x$$

We will now derive the most general type of this using the following steps.

- (1) $\tau_x = p_x, \tau_f = p_f$ and $E_f = \phi, E_x = \phi$. (2) $\tau_{\lambda x.x} = a \to \tau_x [p_x := a] = a \to a$ and $E_{\lambda x.x} = E_x [p_x := a] = \phi$.

(3)
$$\tau_{\lambda fx.x} = b \to \tau_{\lambda x.x}[p_f := b] = b \to a \to a \text{ and } E_{\lambda fx.x} = E_{\lambda x.x}[p_f := b] = \phi.$$

So, we see that the type of 0 is $b \to a \to a$. Next, suppose $n \geq 1$. So,

$$[n] = \lambda f x. f^n x$$

Consider the following steps.

- (1) $\tau_x = p_x, \tau_f = p_f$ and $E_f = \phi, E_x = \phi$.
- (2) $\tau_{fx} = a_1 \text{ and } E_{\lambda fx} = \{ p_f = p_x \to a_1 \}.$
- (3) $\tau_{f^2x} = a_2$ and $E_{f^2x} = \{p_f = p_x \to a_1, p_f = a_1 \to a_2\}.$
- (4) Continuing this way n times, we will obtain: $\tau_{f^n x} = a_n$ and $E_{f^n x} = \{p_f =$ $p_x \to a_1, p_f = a_1 \to a_2, p_f = a_2 \to a_3, \dots, p_f = a_{n-1} \to a_n$
- (5) $\tau_{\lambda x.f^n x} = a \to \tau_{f^n x}[p_x := a] = a \to a_n \text{ and } E_{\lambda x.f^n x} = E_{f^n x}[p_x := a] = \{p_f = a\}$ $a \to a_1, p_f = a_1 \to a_2, \dots, p_f = a_{n-1} \to a_n \}.$

(6) $\tau_{\lambda fx.f^nx} = b \rightarrow \tau_{\lambda x.f^nx}[p_f := b] = b \rightarrow a \rightarrow a_n \text{ and } E_{\lambda fx.f^nx} = E_{\lambda x.f^nx}[p_f := b] = \{b = a \rightarrow a_1, b = a_1 \rightarrow a_2, \dots, b = a_{n-1} \rightarrow a_n\}.$

The only solution to this system is $a = a_1 = a_2 = \cdots a_n$. So, it follows that the type of [n] in this case is $(a \to a) \to a \to a$.

Type of true. Consider the following steps.

- (1) $\tau_x = p_x, \tau_y = p_y$ and $E_x = \phi, E_y = \phi$.
- (2) $\tau_{\lambda y.x} = a \to p_x$ and $E_{\lambda y.x} = \phi$.
- (3) $\tau_{\lambda xy.x} = b \to a \to b$ and $E_{\lambda xy.x} = \phi$.
- So, the type of **true** is $b \to a \to b$.

Type of false. This derivation is very similar to the type derivation of **true**, and I won't repeat it. The type of **false** turns out to be $b \rightarrow a \rightarrow a$.

Type of pair. Consider the following steps.

(1) $\tau_w = p_w, \tau_y = p_y, \tau_x = p_x$ and $E_w = E_y = E_x = \phi$. (2) $\tau_{wx} = a$ and $E_{wx} = \{p_w = p_x \rightarrow a\}$. (3) $\tau_{wxy} = b$ and $E_{wxy} = \{p_w = p_x \rightarrow a, a = p_y \rightarrow b\}$. (4) $\tau_{\lambda w.wxy} = c \rightarrow b$ and $E_{\lambda w.wxy} = \{c = p_x \rightarrow a, a = p_y \rightarrow b\}$. (5) $\tau_{\lambda yw.wxy} = d \rightarrow c \rightarrow b$ and $E_{\lambda yw.wxy} = \{c = p_x \rightarrow a, a = d \rightarrow b\}$. (6) $\tau_{\lambda xyw.wxy} = e \rightarrow d \rightarrow c \rightarrow b$ and $E_{\lambda eyw.wxy} = \{c = e \rightarrow a, a = d \rightarrow b\}$.

So, the type of **pair** is $e \to d \to (e \to (d \to b)) \to b$.

Type of fst. Consider the following steps. We will assume that the type of **true** (which we derived above) is $b \to a \to b$.

- (1) $\tau_p = p_p$ and $E_p = \phi$.
- (2) $\tau_{p \text{ true}} = c \text{ and } E_{p \text{ true}} = \{ p_p = \tau_{\text{true}} \to c = (b \to a \to b) \to c \}.$
- (3) $\tau_{\lambda p.p \text{ true}} = d \to c \text{ and } E_{\lambda p.p \text{ true}} = \{ d = (b \to a \to b) \to c \}$

With these steps, the type of **fst** is $(b \to a \to b) \to c \to c$.

Type of snd. This is very similar to the case of **fst**. If we follow the steps of type derivation, we will get that the type of **snd** is $(b \rightarrow a \rightarrow a) \rightarrow c \rightarrow c$.

Type of ite. Consider the following steps.

- (1) $\tau_b = p_b, \tau_y = p_y, \tau_x = p_x$ and $E_b = E_y = E_x = \phi$.
- (2) $\tau_{bx} = a \text{ and } E_{bx} = \{ p_b = p_x \to a \}.$
- (3) $\tau_{bxy} = b$ and $E_{bxy} = \{p_b = p_x \rightarrow a, a = p_y \rightarrow b\}.$
- (4) $\tau_{\lambda y.bxy} = c \rightarrow b$ and $E_{\lambda y.bxy} = \{p_b = p_x \rightarrow a, a = c \rightarrow b\}.$
- (5) $\tau_{\lambda xy,bxy} = d \to c \to b$ and $E_{\lambda xy,bxy} = \{p_b = d \to a, a = c \to b\}.$
- (6) $\tau_{\lambda bxy.bxy} = e \to d \to c \to b \text{ and } E_{\lambda bxy.bxy} = \{e = d \to a, a = c \to b\}.$

It follows that the type of **ite** is $(d \to (c \to b)) \to d \to c \to b$.

Type of iszero. We assume that the types of **true** and **false** are $a \to b \to a$ and $c \to d \to d$ respectively. Consider the following steps.

- (1) $\tau_{\text{false}} = c \rightarrow d \rightarrow d.$
- (2) $\tau_{\lambda z. \mathbf{false}} = e \to (c \to d \to d)$ and $E_{\lambda z. \mathbf{false}} = \phi$.
- (3) $\tau_x = p_x$ and $E_x = \phi$.
- (4) $\tau_{x(\lambda z. \mathbf{false})} = f$ and $E_{x(\lambda z. \mathbf{false})} = \{ p_x = (e \to (c \to d \to d)) \to f \}.$
- (5) $\tau_{(x(\lambda z. \mathbf{false}))\mathbf{true}} = g$ and $E_{(x(\lambda z. \mathbf{false}))\mathbf{true}} = \{p_x = (e \to (c \to d \to d)) \to f, f = (a \to b \to a) \to g\}.$

(6) $\tau_{\lambda x.(x(\lambda z.\mathbf{false}))\mathbf{true}} = h \to g \text{ and } E_{\lambda x.(x(\lambda z.\mathbf{false}))\mathbf{true}} = \{h = (e \to (c \to d \to d)) \to f, f = (a \to b \to a) \to g\}.$

So, it follows that the type of **iszero** is

$$(e \to (c \to d \to d)) \to ((a \to b \to a) \to g)) \to g$$