PLC ASSIGNMENT-3

SIDDHANT CHAUDHARY

BMC201953

1. Recall the definition of parallel reduction. It is the relation \Longrightarrow over λ-terms defined by the following rules.

$$
\begin{gathered}
\overline{M \Longrightarrow M} \\
\overline{(\lambda x . M) N \Longrightarrow M[x:=N]} \\
\frac{M \Longrightarrow M^{\prime}}{\lambda x \cdot M \Longrightarrow \lambda x \cdot M^{\prime}} \\
M \Longrightarrow M^{\prime} N \Longrightarrow N^{\prime} \\
M N \Longrightarrow M^{\prime} N^{\prime} \\
\frac{M \Longrightarrow M^{\prime}}{(\lambda x . M) N \Longrightarrow M^{\prime}\left[x:=N^{\prime}\right]}
\end{gathered}
$$

Define M^{*} as follows.

$$
\begin{aligned}
x^{*} & =x \\
(\lambda x \cdot M)^{*} & =\lambda x \cdot M^{*} \\
(M N)^{*} & =M^{*} N^{*} \quad(M \text { not of the form } \lambda x . P) \\
((\lambda x . P) N)^{*} & =P^{*}\left[x:=N^{*}\right]
\end{aligned}
$$

Prove the following.
(a) If $M \rightarrow_{\beta} N$ then $M \Longrightarrow N$.

Proof. Suppose $M \rightarrow_{\beta} N$, i.e $M \beta$-reduces to N in a single step. So, M contains a β-redux, say $(\lambda x . P) Q$, as a sub-term, and suppose the reduction $M \rightarrow_{\beta} N$ is the reduction of this redux. By the second rule above, we know that

$$
(\lambda x . P) Q \Longrightarrow P[x:=Q]
$$

and hence we conclude that $M \Longrightarrow N$. This proves the claim.
(b) If $M \Longrightarrow N$ then $M \xrightarrow{*} \beta$.

Proof. Suppose $M \Longrightarrow N$. We prove the claim by induction on the length of the λ-terms. For the base case, suppose $M \Longrightarrow N$, and the length of the term M is 1 . Clearly, $M=x$, where x is a variable, and the reduction $M \Longrightarrow N$ is $x \Longrightarrow x$. In this case, it is obvious that $x \xrightarrow{*}_{\beta} x$, i.e $M \xrightarrow{*}_{\beta} N$. So the base case is true.

Next, suppose the claim is true for all λ-terms M of length atmost $n-1$ for some $n-1 \in \mathbb{N}$. Then, suppose $M \Longrightarrow N$, and suppose the length of the λ-term M is n. We have the following cases.
(1) In the first case, the reduction $M \Longrightarrow N$ is of the form $M \Longrightarrow M$. Clearly, in that case, we have $M \xrightarrow{*}_{\beta} M$ in zero steps.
(2) In the second case, suppose the reduction $M \Longrightarrow N$ is of type two, i.e M contains a redux $(\lambda x . P) Q$, and the reduction $M \Longrightarrow N$ involves the reduction $(\lambda x . P) Q \Longrightarrow P[x:=Q]$. Clearly, in this case, we have

$$
(\lambda x \cdot P) Q \xrightarrow{*}_{\beta} P[x:=Q]
$$

in one step, and hence $M \stackrel{*}{\rightarrow}_{\beta} N$ in one step.
(3) In the third case, suppose the reduction $M \Longrightarrow N$ is of type three. So, M contains a term $\lambda x . P$ such that $P \Longrightarrow Q$, and the reduction $M \Longrightarrow N$ involves the reduction $\lambda x . P \Longrightarrow \lambda x . Q$. Clearly, the length of the term P is atmost $n-1$, and by induction hypothesis, we know that $P{ }^{*}{ }_{\beta} Q$. So, it follows that

$$
\lambda x . P \xrightarrow{*}_{\beta} \lambda x \cdot Q
$$

and hence

$$
M \stackrel{*}{3}_{\beta} N
$$

in this case as well.
(4) In the next case, the reduction $M \Longrightarrow N$ is of the fourth type. So, M contains a term of the form $P S$ such that $P \Longrightarrow P^{\prime}, S \Longrightarrow S^{\prime}$, and the reduction $M \Longrightarrow N$ involves the reduction $P S \Longrightarrow P^{\prime} S^{\prime}$. Again, note that the length of the terms P and S is atmost $n-1$, and by induction hypothesis, we see that

$$
P \xrightarrow{*}_{\beta} P^{\prime} \quad, \quad S \xrightarrow{*}_{\beta} S^{\prime}
$$

This means that

$$
P S \xrightarrow{*}_{\beta} P^{\prime} S \xrightarrow{*}_{\beta} P^{\prime} S^{\prime}
$$

and hence it follows that

$$
M \stackrel{*}{\rightarrow}_{\beta} N
$$

in multiple steps.
(5) In the next case, the reduction $M \Longrightarrow N$ is of the fifth type. So, M contains a term $(\lambda x . P) Q$, where $P \Longrightarrow P^{\prime}, Q \Longrightarrow Q^{\prime}$, and the reduction $M \Longrightarrow N$ involves the reduction $(\lambda x \cdot P) Q \Longrightarrow P^{\prime}\left[x:=Q^{\prime}\right]$. Again, note that the lengths of P and Q is atmost $n-1$. So, by the induction hypothesis, we see that $P \xrightarrow{*}_{\beta} P^{\prime}$ and $Q \xrightarrow{*}_{\beta} Q^{\prime}$. So, it follows that

$$
(\lambda x . P) Q \xrightarrow{*}_{\beta}\left(\lambda x . P^{\prime}\right) Q \xrightarrow{*}_{\beta}\left(\lambda x . P^{\prime}\right) Q^{\prime} \xrightarrow{*}_{\beta} P^{\prime}\left[x:=Q^{\prime}\right]
$$

So, it follows that

$$
M \stackrel{*}{\rightarrow}_{\beta} N
$$

in multiple steps.
So by induction, the claim is true for all terms M. This completes the proof.
(c) $M \xrightarrow{*}_{\beta} N$ if and only if $M \stackrel{*}{\Longrightarrow} N$.

Proof. First, suppose $M \xrightarrow{*}_{\beta} N$. So, there is a sequence M_{1}, \ldots, M_{k} of λ-terms such that

$$
M \rightarrow_{\beta} M_{1} \rightarrow_{\beta} M_{2} \rightarrow_{\beta} \cdots \rightarrow_{\beta} M_{k} \rightarrow_{\beta} N
$$

By part (a), we see that

$$
M \Longrightarrow M_{1} \Longrightarrow M_{2} \Longrightarrow \cdots \Longrightarrow M_{k} \Longrightarrow N
$$

and hence $M \stackrel{*}{\Longrightarrow} N$.
Conversely, suppose $M \stackrel{*}{\Longrightarrow} N$. So, there is a sequence M_{1}, \ldots, M_{k} of λ-terms such that

$$
M \Longrightarrow M_{1} \Longrightarrow M_{2} \Longrightarrow \cdots \Longrightarrow M_{k} \Longrightarrow N
$$

By part (b), we see that

$$
M \xrightarrow{*}_{\beta} M_{1} \xrightarrow{*}_{\beta} M_{2} \xrightarrow{*}_{\beta} \cdots \stackrel{*}{\rightarrow}_{\beta} M_{k} \stackrel{*}{\rightarrow}_{\beta} N
$$

which implies that $M \xrightarrow{*}_{\beta} N$. This completes the proof.
Lemma 0.1. $M \Longrightarrow M^{*}$ for all M.
Proof. We prove this by induction on the length of M. For the base case, suppose $M=x$ for a variable x. Clearly, we have $M^{*}=x^{*}=x=M$, and hence it follows that $M \Longrightarrow M^{*}$, i.e the base case is true.

Now suppose the statement is true for all terms of length atmost $n-1$, where $n-1 \in \mathbb{N}$. Let M be a term of length n. We consider a few cases.
(1) Suppose $M=\lambda x . P$ for some P, where the length of P is atmost $n-1$. Then, we see that

$$
M^{*}=(\lambda x \cdot P)^{*}=\lambda x \cdot P^{*}
$$

By the inductive hypothesis, we know that $P \Longrightarrow P^{*}$. So, it follows that

$$
M=\lambda x \cdot P \Longrightarrow \lambda x \cdot P^{*}=M^{*}
$$

and hence the claim is true in this case.
(2) Suppose $M=P Q$ where P is not of the form λx.S. Clearly, P and Q have length atmost $n-1$. So, by the inductive hypothesis, we know that $P \Longrightarrow P^{*}$ and $Q \Longrightarrow Q^{*}$. Also,

$$
M^{*}=(P Q)^{*}=P^{*} Q^{*}
$$

So, it follows that

$$
M=P Q \Longrightarrow P^{*} Q^{*}=M^{*}
$$

and the claim is true in this case as well.
(3) Finally, suppose M is of the form $(\lambda x . P) Q$. Clearly, the lengths of P and Q are atmost $n-1$, and hence by the inductive hypothesis we see that $P \Longrightarrow P^{*}$ and $Q \Longrightarrow Q^{*}$. Also, note that $M^{*}=((\lambda x \cdot P) Q)^{*}=P^{*}\left[x:=Q^{*}\right]$. So, we have

$$
M=(\lambda x \cdot P) Q \Longrightarrow P^{*}\left[x:=Q^{*}\right]=M^{*}
$$

So, by induction, the claim is true for all terms M, and this completes the proof.
(d) If $M \Longrightarrow N$ then $N \Longrightarrow M^{*}$.

Proof. We will prove this by induction on the size of M. For the base case, suppose M has size 1, i.e $M=x$ where x is a variable. Then, $N=x$, and hence $x \Longrightarrow x$. In this case, note that $M^{*}=x$. So, it follows that $N \Longrightarrow M^{*}$, and hence the base case is true.

Now, suppose the claim is true for all terms of size atmost $n-1$ for some $n-1 \in \mathbb{N}$. Let M be a term of size n such that $M \Longrightarrow N$. We handle a couple of cases.
(1) Suppose the reduction $M \Longrightarrow N$ is of the form $M \Longrightarrow M$, i.e $N=M$. By Lemma 0.1, we know that $N=M \Longrightarrow M^{*}$.
(2) Suppose $M=P Q$ where $P \quad P^{\prime}$ and $Q \quad \Longrightarrow \quad Q^{\prime}$, and the reduction $M \Longrightarrow N$ is of the form $P Q \Longrightarrow P^{\prime} Q^{\prime}$. Since the lengths of both P and Q are atmost $n-1$, from the induction hypothesis we get that $P^{\prime} \rightarrow P^{*}$ and $Q^{\prime} \rightarrow Q^{*}$. Now, we have two subcases here.
(a) If $P Q$ is not a β-redux, then $M^{*}=P^{*} Q^{*}$. So $N=P^{\prime} Q^{\prime} \Longrightarrow P^{*} Q^{*}=M^{*}$, and hence we are done.
(b) Suppose $P Q$ is a β-redux, say $P=\lambda x$.S, and hence $M^{*}=S^{*}\left[x:=Q^{*}\right]$. Suppose the reduction $P \Longrightarrow P^{\prime}$ was of the form $P=\lambda x \cdot S \Longrightarrow \lambda x \cdot S^{\prime}$ where $S \Longrightarrow S^{\prime}$. By induction hypothesis, we see that $S^{\prime} \Longrightarrow S^{*}$, and since $Q^{\prime} \Longrightarrow Q^{*}$, it follows that $N=\left(\lambda x \cdot S^{\prime}\right) Q^{\prime} \Longrightarrow S^{*}\left[x:=Q^{*}\right]=M^{*}$.
(3) Suppose $M=(\lambda x \cdot Q) P$ and $N=Q^{\prime}\left[x:=P^{\prime}\right]$ where $Q \Longrightarrow Q^{\prime}$ and $P \Longrightarrow P^{\prime}$. Then $M^{*}=Q^{*}\left[x:=P^{*}\right]$, and $N \Longrightarrow M^{*}$, because by the induction hypothesis we have $Q^{\prime} \Longrightarrow Q^{*}$ and $P^{\prime} \Longrightarrow P^{*}$.
So, by induction, the claim is true for all terms M of any size. This completes the proof.
(e) If $M \Longrightarrow P$ and $M \Longrightarrow Q$ then there exists N such that $P \Longrightarrow N$ and $Q \Longrightarrow N$.

Proof. This easily follows from part (d). Suppose $M \Longrightarrow P$ and $M \Longrightarrow Q$. Invoking part (d), we see that $P \Longrightarrow M^{*}$ and $Q \Longrightarrow M^{*}$. Setting $N=M^{*}$, this proves the claim.
2. Are the following expressions typable? If so, what are the most general types? If not, explain why.
(a) $\lambda f g x . f(g x)$

Solution. Yes, this term is typable. Let us derive the most general type for this. We begin with the following.

$$
\left.\begin{array}{rlrl}
\tau_{x} & =p_{x}, & \tau_{g} & =p_{g},
\end{array} \quad \tau_{f}=p_{f}\right)
$$

From these, we get

$$
\begin{aligned}
\tau_{g x} & =a, \quad \tau_{f}=p_{f} \\
E_{g x} & =\left\{p_{g}=p_{x} \rightarrow a\right\}, \quad E_{f}=\phi
\end{aligned}
$$

Further, we get

$$
\begin{aligned}
\tau_{f(g x)} & =b \\
E_{f(g x)} & =\left\{p_{g}=p_{x} \rightarrow a, p_{f}=a \rightarrow b\right\}
\end{aligned}
$$

Going ahead, we have the following.

$$
\begin{aligned}
\tau_{\lambda x . f(g x)} & =c \rightarrow \tau_{f(g x)}\left[p_{x}:=c\right]=c \rightarrow b \\
E_{\lambda x . f(g x)} & =E_{f(g x)}\left[p_{x}:=c\right]=\left\{p_{g}=c \rightarrow a, p_{f}=a \rightarrow b\right\}
\end{aligned}
$$

Further, we have

$$
\begin{aligned}
\tau_{\lambda g x . f(g x)} & =d \rightarrow \tau_{\lambda x . f(g x)}\left[p_{g}:=d\right]=d \rightarrow c \rightarrow b \\
E_{\lambda g x . f(g x)} & =E_{\lambda x . f(g x)}\left[p_{g}:=d\right]=\left\{d=c \rightarrow a, p_{f}=a \rightarrow b\right\}
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
\tau_{\lambda f g x . f(g x)} & =e \rightarrow \tau_{\lambda g x . f(g x)}\left[p_{f}:=e\right]=e \rightarrow d \rightarrow c \rightarrow b \\
E_{\lambda f g x . f(g x)} & =E_{\lambda g x . f(g x)}\left[p_{f}:=e\right]=\{d=c \rightarrow a, e=a \rightarrow b\}
\end{aligned}
$$

So, it follows that the most general type of $\lambda f g x . f(g x)$ is

$$
\tau_{\lambda f g x . f(g x)}=(a \rightarrow b) \rightarrow(c \rightarrow a) \rightarrow c \rightarrow b
$$

and so we have found the required type.
(b) $\lambda x y \cdot y x$

Solution. Yes, this term is also typable. Let us derive the most general type for this. We begin with the following.

$$
\begin{aligned}
\tau_{x} & =p_{x}, & \tau_{y} & =p_{y} \\
E_{x} & =\phi, & E_{y} & =\phi
\end{aligned}
$$

From this, we get the following.

$$
\begin{aligned}
\tau_{y x} & =a \\
E_{y x} & =\left\{p_{y}=p_{x} \rightarrow a\right\}
\end{aligned}
$$

From here, we can obtain the following.

$$
\begin{aligned}
\tau_{\lambda y \cdot y x} & =b \rightarrow \tau_{y x}\left[p_{y}:=b\right]=b \rightarrow a \\
E_{\lambda y . y x} & =E_{y x}\left[p_{y}:=b\right]=\left\{b=p_{x} \rightarrow a\right\}
\end{aligned}
$$

Finally, we get

$$
\begin{aligned}
\tau_{\lambda x y \cdot y x} & =c \rightarrow \tau_{\lambda y \cdot y x}\left[p_{x}:=c\right]=c \rightarrow b \rightarrow a \\
E_{\lambda x y \cdot y x} & =E_{\lambda y \cdot y x}\left[p_{x}:=c\right]=\{b=c \rightarrow a\}
\end{aligned}
$$

So, it follows that the most general type of $\lambda x y . y x$ is

$$
\tau_{\lambda x y . y x}=c \rightarrow(c \rightarrow a) \rightarrow a
$$

and so we have found the required type.
(c) $\lambda f g x \cdot g(f x)$

Solution. Yes, this term is typable. Let us derive the most general type for this. We begin with the following.

$$
\begin{aligned}
\tau_{x} & =p_{x}, & \tau_{g} & =p_{g}, & \tau_{f} & =p_{f} \\
E_{x} & =\phi, & E_{g} & =\phi, & E_{f} & =\phi
\end{aligned}
$$

From these, we get

$$
\begin{aligned}
\tau_{f x} & =a \\
E_{f x} & =\left\{p_{f}=p_{x} \rightarrow a\right\}
\end{aligned}
$$

Further, we get

$$
\begin{aligned}
\tau_{g(f x)} & =b \\
E_{g(f x)} & =\left\{p_{f}=p_{x} \rightarrow a, p_{g}=a \rightarrow b\right\}
\end{aligned}
$$

Going ahead, we have the following.

$$
\begin{aligned}
\tau_{\lambda x . g(f x)} & =c \rightarrow \tau_{g(f x)}\left[p_{x}:=c\right]=c \rightarrow b \\
E_{\lambda x . g(f x)} & =E_{g(f x)}\left[p_{x}:=c\right]=\left\{p_{f}=c \rightarrow a, p_{g}=a \rightarrow b\right\}
\end{aligned}
$$

Further, we have

$$
\begin{aligned}
\tau_{\lambda g x . g(f x)} & =d \rightarrow \tau_{\lambda x . g(f x)}\left[p_{g}:=d\right]=d \rightarrow c \rightarrow b \\
E_{\lambda g x . f(g x)} & =E_{\lambda x . g(f x)}\left[p_{g}:=d\right]=\left\{p_{f}=c \rightarrow a, d=a \rightarrow b\right\}
\end{aligned}
$$

Finally, we have

$$
\begin{aligned}
\tau_{\lambda f g x . g(f x)} & =e \rightarrow \tau_{\lambda g x . g(f x)}\left[p_{f}:=e\right]=e \rightarrow d \rightarrow c \rightarrow b \\
E_{\lambda f g x . g(f x)} & =E_{\lambda g x . g(f x)}\left[p_{f}:=e\right]=\{e=c \rightarrow a, d=a \rightarrow b\}
\end{aligned}
$$

So, it follows that the most general type of $\lambda f g x . g(f x)$ is

$$
\tau_{\lambda f g x . g(f x)}=(c \rightarrow a) \rightarrow(a \rightarrow b) \rightarrow c \rightarrow b
$$

and so we have found the required type.
3. Recall the following standard encodings: $f^{0} x=x, f^{n+1} x=f\left(f^{n} x\right),[n]=\left(\lambda f x . f^{n} x\right)$, true $=$ $(\lambda x y \cdot x)$, false $=(\lambda x y \cdot y), \mathbf{p a i r}=(\lambda x y w \cdot w x y), \mathbf{f s t}=(\lambda p \cdot p$ true $), \mathbf{s n d}=(\lambda p . p$ false $), \mathbf{i t e}=$ $(\lambda b x y . b x y)$ and iszero $=(\lambda x .(x(\lambda z . f a l s e))$ true $)$

Derive the most general types of each of the above expressions. If you feel that any of them is untypable, give a justification.

Solution. We will find the types individually below.
Type of $[n]$. If $n=0$, then

$$
[0]=\lambda f x \cdot x
$$

We will now derive the most general type of this using the following steps.
(1) $\tau_{x}=p_{x}, \tau_{f}=p_{f}$ and $E_{f}=\phi, E_{x}=\phi$.
(2) $\tau_{\lambda x . x}=a \rightarrow \tau_{x}\left[p_{x}:=a\right]=a \rightarrow a$ and $E_{\lambda x . x}=E_{x}\left[p_{x}:=a\right]=\phi$.
(3) $\tau_{\lambda f x . x}=b \rightarrow \tau_{\lambda x . x}\left[p_{f}:=b\right]=b \rightarrow a \rightarrow a$ and $E_{\lambda f x . x}=E_{\lambda x . x}\left[p_{f}:=b\right]=\phi$.

So, we see that the type of 0 is $b \rightarrow a \rightarrow a$.
Next, suppose $n \geq 1$. So,

$$
[n]=\lambda f x \cdot f^{n} x
$$

Consider the following steps.
(1) $\tau_{x}=p_{x}, \tau_{f}=p_{f}$ and $E_{f}=\phi, E_{x}=\phi$.
(2) $\tau_{f x}=a_{1}$ and $E_{\lambda f x}=\left\{p_{f}=p_{x} \rightarrow a_{1}\right\}$.
(3) $\tau_{f^{2} x}=a_{2}$ and $E_{f^{2} x}=\left\{p_{f}=p_{x} \rightarrow a_{1}, p_{f}=a_{1} \rightarrow a_{2}\right\}$.
(4) Continuing this way n times, we will obtain: $\tau_{f^{n} x}=a_{n}$ and $E_{f^{n} x}=\left\{p_{f}=\right.$ $\left.p_{x} \rightarrow a_{1}, p_{f}=a_{1} \rightarrow a_{2}, p_{f}=a_{2} \rightarrow a_{3}, \ldots, p_{f}=a_{n-1} \rightarrow a_{n}\right\}$
(5) $\tau_{\lambda x . f^{n} x}=a \rightarrow \tau_{f^{n} x}\left[p_{x}:=a\right]=a \rightarrow a_{n}$ and $E_{\lambda x . f^{n} x}=E_{f^{n} x}\left[p_{x}:=a\right]=\left\{p_{f}=\right.$ $\left.a \rightarrow a_{1}, p_{f}=a_{1} \rightarrow a_{2}, \ldots, p_{f}=a_{n-1} \rightarrow a_{n}\right\}$.
(6) $\tau_{\lambda f x . f^{n} x}=b \rightarrow \tau_{\lambda x . f^{n} x}\left[p_{f}:=b\right]=b \rightarrow a \rightarrow a_{n}$ and $E_{\lambda f x . f^{n} x}=E_{\lambda x . f^{n} x}\left[p_{f}:=\right.$ $b]=\left\{b=a \rightarrow a_{1}, b=a_{1} \rightarrow a_{2}, \ldots, b=a_{n-1} \rightarrow a_{n}\right\}$.
The only solution to this system is $a=a_{1}=a_{2}=\cdots a_{n}$. So, it follows that the type of $[n]$ in this case is $(a \rightarrow a) \rightarrow a \rightarrow a$.

Type of true. Consider the following steps.
(1) $\tau_{x}=p_{x}, \tau_{y}=p_{y}$ and $E_{x}=\phi, E_{y}=\phi$.
(2) $\tau_{\lambda y . x}=a \rightarrow p_{x}$ and $E_{\lambda y . x}=\phi$.
(3) $\tau_{\lambda x y . x}=b \rightarrow a \rightarrow b$ and $E_{\lambda x y . x}=\phi$.

So, the type of true is $b \rightarrow a \rightarrow b$.
Type of false. This derivation is very similar to the type derivation of true, and I won't repeat it. The type of false turns out to be $b \rightarrow a \rightarrow a$.

Type of pair. Consider the following steps.
(1) $\tau_{w}=p_{w}, \tau_{y}=p_{y}, \tau_{x}=p_{x}$ and $E_{w}=E_{y}=E_{x}=\phi$.
(2) $\tau_{w x}=a$ and $E_{w x}=\left\{p_{w}=p_{x} \rightarrow a\right\}$.
(3) $\tau_{w x y}=b$ and $E_{w x y}=\left\{p_{w}=p_{x} \rightarrow a, a=p_{y} \rightarrow b\right\}$.
(4) $\tau_{\lambda w . w x y}=c \rightarrow b$ and $E_{\lambda w . w x y}=\left\{c=p_{x} \rightarrow a, a=p_{y} \rightarrow b\right\}$.
(5) $\tau_{\lambda y w . w x y}=d \rightarrow c \rightarrow b$ and $E_{\lambda y w . w x y}=\left\{c=p_{x} \rightarrow a, a=d \rightarrow b\right\}$.
(6) $\tau_{\lambda x y w . w x y}=e \rightarrow d \rightarrow c \rightarrow b$ and $E_{\lambda e y w . w x y}=\{c=e \rightarrow a, a=d \rightarrow b\}$.

So, the type of pair is $e \rightarrow d \rightarrow(e \rightarrow(d \rightarrow b)) \rightarrow b$.
Type of fst. Consider the following steps. We will assume that the type of true (which we derived above) is $b \rightarrow a \rightarrow b$.
(1) $\tau_{p}=p_{p}$ and $E_{p}=\phi$.
(2) $\tau_{p \text { true }}=c$ and $E_{p \text { true }}=\left\{p_{p}=\tau_{\text {true }} \rightarrow c=(b \rightarrow a \rightarrow b) \rightarrow c\right\}$.
(3) $\tau_{\lambda p . p \text { true }}=d \rightarrow c$ and $E_{\lambda p . p \text { true }}=\{d=(b \rightarrow a \rightarrow b) \rightarrow c\}$

With these steps, the type of fst is $(b \rightarrow a \rightarrow b) \rightarrow c \rightarrow c$.
Type of snd. This is very similar to the case of fst. If we follow the steps of type derivation, we will get that the type of snd is $(b \rightarrow a \rightarrow a) \rightarrow c \rightarrow c$.

Type of ite. Consider the following steps.
(1) $\tau_{b}=p_{b}, \tau_{y}=p_{y}, \tau_{x}=p_{x}$ and $E_{b}=E_{y}=E_{x}=\phi$.
(2) $\tau_{b x}=a$ and $E_{b x}=\left\{p_{b}=p_{x} \rightarrow a\right\}$.
(3) $\tau_{b x y}=b$ and $E_{b x y}=\left\{p_{b}=p_{x} \rightarrow a, a=p_{y} \rightarrow b\right\}$.
(4) $\tau_{\lambda y . b x y}=c \rightarrow b$ and $E_{\lambda y . b x y}=\left\{p_{b}=p_{x} \rightarrow a, a=c \rightarrow b\right\}$.
(5) $\tau_{\lambda x y . b x y}=d \rightarrow c \rightarrow b$ and $E_{\lambda x y . b x y}=\left\{p_{b}=d \rightarrow a, a=c \rightarrow b\right\}$.
(6) $\tau_{\lambda b x y . b x y}=e \rightarrow d \rightarrow c \rightarrow b$ and $E_{\lambda b x y . b x y}=\{e=d \rightarrow a, a=c \rightarrow b\}$.

It follows that the type of ite is $(d \rightarrow(c \rightarrow b)) \rightarrow d \rightarrow c \rightarrow b$.
Type of iszero. We assume that the types of true and false are $a \rightarrow b \rightarrow a$ and $c \rightarrow d \rightarrow d$ respectively. Consider the following steps.
(1) $\tau_{\text {false }}=c \rightarrow d \rightarrow d$.
(2) $\tau_{\lambda z . \mathrm{false}}=e \rightarrow(c \rightarrow d \rightarrow d)$ and $E_{\lambda z . \mathrm{false}}=\phi$.
(3) $\tau_{x}=p_{x}$ and $E_{x}=\phi$.
(4) $\tau_{x(\lambda z . \text { false })}=f$ and $E_{x(\lambda z . \text { false })}=\left\{p_{x}=(e \rightarrow(c \rightarrow d \rightarrow d)) \rightarrow f\right\}$.
(5) $\tau_{(x(\lambda z . \text { false }) \text { true }}=g$ and $E_{(x(\lambda z . \text { false }) \text { true }}=\left\{p_{x}=(e \rightarrow(c \rightarrow d \rightarrow d)) \rightarrow f, f=\right.$ $(a \rightarrow b \rightarrow a) \rightarrow g\}$.
(6) $\tau_{\lambda x .(x(\lambda z . \text { false }) \text { true }}=h \rightarrow g$ and $E_{\lambda x .(x(\lambda z . \text { false }) \text { true }}=\{h=(e \rightarrow(c \rightarrow d \rightarrow$ $d)) \rightarrow f, f=(a \rightarrow b \rightarrow a) \rightarrow g\}$.
So, it follows that the type of iszero is

$$
(e \rightarrow(c \rightarrow d \rightarrow d)) \rightarrow((a \rightarrow b \rightarrow a) \rightarrow g)) \rightarrow g
$$

