PLC ASSIGNMENT-4

SIDDHANT CHAUDHARY

1. Let $\exp :=\lambda p q . p q$. Prove that for all $m \geq 0$ and $n \geq 1$,

$$
\exp [n][m] \rightarrow\left[m^{n}\right]
$$

Hint: Prove the following claims in order:
(1) For $k, l \geq 0,\left(\lambda z \cdot x^{k} z\right)^{l} y \rightarrow x^{k l} y$.
(2) For $m \geq 0, n \geq 1$, $\left(\lambda g y \cdot g^{m} y\right)^{n} x \rightarrow\left(\lambda y \cdot x^{m^{n}} y\right)$.
(3) From the above, show that for all $m \geq 0$ and $n \geq 1,[n][m] \rightarrow\left[m^{n}\right]$.
(4) Conclude that $\exp [n][m] \rightarrow\left[m^{n}\right]$.

Solution. Let us prove the claim as per the four steps given above.
(1) We will prove this step by induction on l. For the base case, suppose $l=0$. Then, observe that

$$
\left(\lambda z \cdot x^{k} z\right)^{l} y=y=x^{k \cdot 0} y
$$

and hence the base case is trivial. Next, suppose the statement is true for some l. Let $M=x^{k} y$. Then, observe that

$$
\begin{aligned}
\left(\lambda z \cdot x^{k} z\right)^{l+1} y & =\left(\lambda z \cdot x^{k} z\right)^{l}\left(\left(\lambda z \cdot x^{k} z\right) y\right) \\
& \rightarrow\left(\lambda z \cdot x^{k} z\right)^{l}\left(x^{k} y\right) \\
& =\left(\lambda z \cdot x^{k} z\right)^{l} M \\
& \rightarrow x^{k l} M \\
& =x^{k l}\left(x^{k} y\right) \quad \text { (Induction hypothesis) } \\
& =x^{k l+k} y \\
& =x^{k(l+1)} y
\end{aligned}
$$

and this completes the inductive proof.
(2) We will prove this step by induction on n. For the base case, suppose $n=1$. Then,

$$
\begin{aligned}
\left(\lambda g y \cdot g^{m} y\right)^{1} x & \rightarrow \lambda y \cdot x^{m} y \\
& =\lambda y \cdot x^{m^{1}} y
\end{aligned}
$$

and hence the base case is true. Now, suppose the statement is true for some $n \geq 1$. Let $M=\lambda y \cdot x^{m} y$. Then, observe that

$$
\begin{array}{rlr}
\left(\lambda g y \cdot g^{m} y\right)^{n+1} x & =\left(\lambda g y \cdot g^{m} y\right)^{n}\left(\left(\lambda g y \cdot g^{m} y\right) x\right) \\
& \rightarrow\left(\lambda g y \cdot g^{m} y\right)^{n}\left(\lambda y \cdot x^{m} y\right) & \\
& \rightarrow\left(\lambda g y \cdot g^{m} y\right)^{n} M & \\
& \rightarrow\left(\lambda y \cdot M^{m^{n}} y\right) & \\
& \rightarrow \lambda y \cdot\left(\lambda y \cdot x^{m} y\right)^{m^{n}} y & \\
& \rightarrow \lambda y \cdot x^{m \cdot m^{n}} y & \\
& =\lambda y \cdot m^{n+1} y & \\
& \text { (Byduction Hyport (1)) }
\end{array}
$$

and this completes the inductive proof.
(3) Let $m \geq 0$ and $n \geq 1$. We use the encodings $[n]=\lambda f x \cdot f^{n} x$ and $[m]=\lambda h y \cdot h^{m} y$. Then, we have the following.

$$
\begin{aligned}
{[n][m] } & =\left(\lambda f x \cdot f^{n} x\right)\left(\lambda h y \cdot h^{m} y\right) \\
& \rightarrow \lambda x \cdot\left(\lambda h y \cdot h^{m} y\right)^{n} x \\
& \rightarrow \lambda x \cdot \lambda y \cdot x^{m^{n}} y \\
& =\lambda x y \cdot x^{m^{n}} y \\
& =\left[m^{n}\right]
\end{aligned}
$$

$$
\rightarrow \lambda x \cdot \lambda y \cdot x^{m^{n}} y \quad \text { (By part (2)) }
$$

and hence the claim is proven.
(4) Let $m \geq 0$ and $n \geq 1$. Then, observe that

$$
\begin{aligned}
\exp [n][m] & =(\lambda p q \cdot p q)[n][m] \\
& \rightarrow(\lambda q \cdot[n] q)[m] \\
& \rightarrow[n][m] \\
& \rightarrow\left[m^{n}\right]
\end{aligned}
$$

where in the last step we have used step (3). This completes the solution to the problem.
2. What is the normal form of $[5](\exp [2])[2]$? What is the size (number of applications) of the normal form?

Solution. We will be using the fact that normal forms are unique, and hence we can β-reduce in any order. First, we see the following.

$$
\begin{aligned}
{[5](\exp [2])[2] } & =[5]((\lambda p q \cdot p q)[2])[2] \\
& \rightarrow[5](\lambda q \cdot[2] q)[2]
\end{aligned}
$$

Now, using the encoding $[5]=\lambda f x . f^{5} x$, we get

$$
\begin{aligned}
{[5](\lambda q \cdot[2] q)[2] } & =\left(\lambda f x \cdot f^{5} x\right)(\lambda q \cdot[2] q)[2] \\
& \rightarrow\left(\lambda x \cdot(\lambda q \cdot[2] q)^{5} x\right)[2]
\end{aligned}
$$

Now, we will use part (1) of problem 1. We will use $k=1$ and $l=5$. Using it, we get

$$
(\lambda q \cdot[2] q)^{5} x \rightarrow[2]^{5} x
$$

So, we see that

$$
\begin{aligned}
\left(\lambda x .(\lambda q \cdot[2] q)^{5} x\right)[2] & \rightarrow\left(\lambda x \cdot[2]^{5} x\right)[2] \\
& \rightarrow[2]^{5}[2] \\
& \rightarrow[2]^{4}([2][2]) \quad \quad \text { (By part (3) of 1.) } \\
& \rightarrow[2]^{4}\left(\left[2^{2}\right]\right) \quad \text { (By part (3) of 1.) } \\
& \rightarrow[2]^{3}\left([2]\left[2^{2}\right]\right) \quad \\
& \rightarrow[2]^{3}\left(\left[\left(2^{2}\right)^{2}\right]\right) \quad \\
& \rightarrow[2]^{2}\left([2]\left[2^{2^{2}}\right]\right) \quad \\
& \rightarrow[2]^{2}\left(\left[\left(2^{2^{2}}\right)^{2}\right]\right)=[2]^{2}\left[2^{2^{3}}\right] \\
& \vdots \\
& \rightarrow\left[2^{2^{5}}\right] \\
& =\lambda f x \cdot f^{2^{2^{5}}} x
\end{aligned}
$$

So, the above is the normal form for the given expression. The size (number of applications) in the normal form are 2^{25}.
3. This question has two parts.
(a) Find a lambda-expression F such that for all $M, F M=F$.

Solution. We claim that the required expression F is given by

$$
F=(\lambda f x . f f)(\lambda f x . f f)
$$

Let M be any lambda-expression. Then, we have the following.

$$
\begin{aligned}
F M & =(\lambda f x . f f)(\lambda f x . f f) M \\
& \xrightarrow{*}(\lambda x .(\lambda f x . f f)(\lambda f x . f f)) M \\
& \xrightarrow{*}(\lambda f x . f f)(\lambda f x . f f) \\
& =F
\end{aligned}
$$

and hence it follows that $F M={ }_{\beta} F$, which is what we wanted to prove.
(b) Find a lambda-expression F such that for all $M, F M=M F$.

Solution. We claim that the required expression F is given by

$$
F=(\lambda f x . x f f)(\lambda f x . x f f)
$$

Let M be any expression. First, observe that

$$
\begin{aligned}
F M & =(\lambda f x \cdot x f f)(\lambda f x \cdot x f f) M \\
& \xrightarrow{*}(\lambda x \cdot x(\lambda f x \cdot x f f)(\lambda f x \cdot x f f)) M \\
& \xrightarrow{*} M(\lambda f x \cdot x f f)(\lambda f x \cdot x f f) \\
& =M F
\end{aligned}
$$

and hence we see that $F M={ }_{\beta} M F$, which is what we wanted to show. This completes the proof.
4. Prove that every expression in normal form M is of the form $\lambda x_{1} \cdots \lambda x_{n} . y M_{1} M_{2} \cdots M_{l}$, where y is a variable and M_{1}, \ldots, M_{l} are themselves in normal form.

Solution. We will prove this by induction on the length of the expression. For the base case, suppose the length of an expression M in normal form is 1 . Clearly, $M=y$ for some variable y. In this case, we have

$$
M=\lambda x_{1} \cdots \lambda x_{n} . y M_{1} M_{2} \cdots M_{l}
$$

with $n=l=0$. So the base case is true.
Next, suppose the given statement is true for all expressions in normal form of length atmost n, where $n \in \mathbb{N}$. Let M be an expression in normal form of length $n+1$. There are two possible cases.
(1) In the first case, M is not an expression of the form $\lambda p . Q$. Since the length of M is greater than $1, M$ must then be of the form

$$
M=A_{1} A_{2} \ldots A_{k}
$$

where each A_{i} for $1 \leq i \leq k$ is a lambda-expression, and such that the length of each M_{i} is strictly less than $n+1$ (which is equal to the length of M). Because of this, we see that $k \geq 2$. Since M is in normal form, each A_{i} must be in normal form as well. By induction hypothesis, we see that

$$
A_{1}=\lambda x_{1} \cdots \lambda x_{n} y X_{1} X_{2} \cdots X_{l}
$$

for some $n \geq 0$ and $l \geq 0$, and where y is a variable. Again, because M is in normal form and $k \geq 2$, we see that $n=0$ (otherwise M will be β-reducible to some expression), i.e

$$
A_{1}=y X_{1} X_{2} \cdots X_{l}
$$

So, we get

$$
M=y X_{1} X_{2} \ldots X_{l} A_{2} \ldots A_{k}
$$

which implies that M is of the form $\lambda x_{1} \cdots \lambda x_{n} . y M_{1} M_{2} \cdots M_{l}$ (here $n=0$).
(2) In the second case, M is of the form $\lambda p . Q$. So, suppose

$$
M=\lambda x_{1} \cdots \lambda x_{n} \cdot A_{1} A_{2} \ldots A_{k}
$$

where each A_{i} for $1 \leq i \leq k$ is a lambda-expression, and $n, k \geq 1$. Note that, in this case because $n \geq 1$, the length of every A_{i} is less than $n+1$ (which is the length of $M)$. Also note that, because M is in normal form, each A_{i} is in normal form as well. So, apply the inductive hypothesis to A_{1}, to obtain

$$
A_{1}=\lambda p_{1} \cdots \lambda p_{r} . y M_{1} M_{2} \ldots M_{s}
$$

where $r, s \geq 0, y$ is a variable and each M_{i} is in normal form. So, we get

$$
M=\lambda x_{1} \cdots \lambda x_{n} \lambda p_{1} \cdots \lambda p_{r} . y M_{1} M_{2} \ldots M_{s} A_{2} \ldots A_{k}
$$

and hence M is of the given form.
So, it follows that the given property is true for all expressions in normal form of length $n+1$, and hence the inductive proof is complete.
5. Find an encoding for the predecessor function in lambda calculus. The predecessor function is given by: $\operatorname{pred}(0)=0$ and $\operatorname{pred}(n+1)=n$.

Solution. First, consider the function pred $: \mathbb{N}^{2} \rightarrow \mathbb{N}$ defined as follows.

$$
\begin{aligned}
\operatorname{pred}^{\prime}(0, m) & =Z(m)=0 \\
\operatorname{pred}^{\prime}(n+1, m) & =\pi_{1}^{3}\left(n, \operatorname{pred}^{\prime}(n, m), m\right)=n
\end{aligned}
$$

and hence it is clear that pred ${ }^{\prime}$ is obtained via primitive recursion from the zero function Z and the projection function π_{1}^{3}. Then, observe that

$$
\operatorname{pred}(n)=\operatorname{pred}^{\prime}(n, Z(n))
$$

for all $n \in \mathbb{N}$. So, pred is defined by composing pred ${ }^{\prime}$ with $h_{1}=\mathrm{id}$ (identity function) and Z. First, we find the encoding $\left[p r e d^{\prime}\right]$.
To find $\left[p r e d^{\prime}\right]$, we will use the general primitive recursion encoding scheme which was discussed in class. We have

$$
\begin{equation*}
\left[p r e d^{\prime}\right]=\lambda x x_{1} \cdot[s n d](x[\text { Step }][\text { Init }]) \tag{0.1}
\end{equation*}
$$

where the following definitions are used:

$$
\begin{align*}
{[\text { pair }] } & =\lambda a b c . c a b \tag{0.2}\\
{[f s t] } & =\lambda p \cdot p(\lambda d e . d) \tag{0.3}\\
{[\text { snd }] } & =\lambda p \cdot p(\lambda \text { fg.g }) \tag{0.4}\\
{[\text { Init }] } & =[\text { pair }][0]\left(\left[\text { Z] } x_{1}\right) \rightarrow[\text { pair }][0][0]\right. \tag{0.5}\\
{[\text { Step }] } & =\lambda y \cdot[\text { pair }]([\text { succ }]([\text { fst }] y))\left(\left[\pi_{1}^{3}\right]([\text { fst }] y)([\text { snd }] y) x_{1}\right) \tag{0.6}
\end{align*}
$$

Now, the encodings $[Z]$ and $\left[\pi_{1}^{3}\right]$ are straightforward to find:

$$
\begin{align*}
{[Z] } & =\lambda s .[0]=\lambda s \cdot(\lambda f x \cdot x) \tag{0.7}\\
{\left[\pi_{1}^{3}\right] } & =\lambda u v w \cdot u \tag{0.8}
\end{align*}
$$

Using all this information, the encoding $\left[p r e d^{\prime}\right]$ can be found by using equation (0.1).
Now, as we remarked before, pred is defined by composing pred ${ }^{\prime}$ with $h_{1}=i d$ (identity function) and Z, i.e

$$
\operatorname{pred}(n)=\operatorname{pred}^{\prime}(n, Z(n))
$$

for all $n \in \mathbb{N}$. Now, the encoding [id] is easy to find.

$$
[\mathrm{id}]=\lambda x \cdot x
$$

So, the encoding $[p r e d]$ is as follows.

$$
[\text { pred }]=\lambda x_{1} \cdot\left[\text { pred }{ }^{\prime}\right]\left([\mathrm{id}] x_{1}\right)\left([Z] x_{1}\right)
$$

Since $\left[p r e d^{\prime}\right]$, $[\mathrm{id}]$ and $[Z]$ are all known to us, we have found the encoding $[p r e d]$.
6. Find an encoding for the Pow function in lambda calculus. It is given by:

$$
\operatorname{Pow}(m, n)= \begin{cases}\text { true } & \text { if } \exists k: m^{k}=n \\ \text { false } & \text { otherwise }\end{cases}
$$

Solution. Throughout, we assume that $m \geq 1$ and $n \geq 1$. First, we list the encodings that we will use to solve this problem.

The first encoding is [subtr], i.e the subtraction function, which is defined as follows:

$$
\operatorname{subtr}(m, n)=\left\{\begin{array}{lll}
0 & , & m \leq n \\
m-n & , & \text { otherwise }
\end{array}\right.
$$

In one of the lectures, it was shown in class that subtr is a primitive recursive function, and hence there is a λ-expression for subtr. We assume that it is $[s u b t r]$.

The next encoding we will use is the exponential function exp, defined as

$$
\exp (k, m)=m^{k}
$$

In problem 1., we have already encoded this, and we assume that the encoding is $[e x p]$.
Next, define the function subtrexp $: \mathbb{N}^{3} \rightarrow \mathbb{N}$ by

$$
\operatorname{subtrexp}(k, n, m)=n-m^{k}
$$

Clearly, we see that

$$
\operatorname{subtrexp}(k, n, m)=\operatorname{subtr}\left(\pi_{2}^{3}(k, n, m), \exp \left(\pi_{1}^{3}(k, n, m), \pi_{3}^{3}(k, n, m)\right)\right)
$$

Note that the functions subtr, π_{2}^{3} and $\exp \circ\left(\pi_{1}^{3}, \pi_{3}^{3}\right)$ are all primitive recursive. So, it follows that subtr $\circ\left(\pi_{2}^{3}, \exp \circ\left(\pi_{1}^{3}, \pi_{3}^{3}\right)\right)$ is also primitive recursive, and hence subtrexp is primitive recursive. Moreover, the λ-expression for subtrexp is given below.

$$
\begin{equation*}
[\text { subtrexp }]=\lambda k n m .[\text { subtr }]\left(\left[\pi_{2}^{3}\right] k n m\right)\left([\exp]\left(\left[\pi_{1}^{3}\right] k n m\right)\left(\left[\pi_{3}^{3}\right] k n m\right)\right) \tag{0.9}
\end{equation*}
$$

We will also use the standard encodings for [true] and [false], and the test [iszero] given by

$$
[\text { iszero }]=\lambda x \cdot x(\lambda z .[\text { false }])[\text { true }]
$$

Now, consider the function mink: $\mathbb{N}^{2} \rightarrow \mathbb{N}$ defined as follows.
$\operatorname{mink}(m, n)=$ smallest non-negative integer k such that $\operatorname{subtrexp}(k, n, m)=0$
In other words, $\operatorname{mink}(m, n)$ is the smallest non-negative integer k such that $n \leq m^{k}$. One immediately recognizes that mink is defined by μ-recursion from the function subtrexp, i.e

$$
\operatorname{mink}(m, n)=\mu i(\operatorname{subtrexp}(i, m, n)=0)
$$

As covered in class, we need to find the encoding of this μ-recursion. So, first define

$$
W=\lambda y \cdot \text { if }([\text { iszero }]([\text { subtrexp }] \text { y } m n)) \text { then }(\lambda w \cdot y) \text { else }(\lambda w \cdot w([\text { succ }] y) w)
$$

Then, the encoding for mink is the following.

$$
[m i n k]=\lambda m n . W[0] W
$$

and the working of this was proven in one of the lectures.
Having found $[\operatorname{mink}]$, we can now find the encoding of Pow. This is straightforward: to compute $\operatorname{Pow}(m, n)$, we first compute $k=\operatorname{mink}(m, n)$, and then we check whether $\operatorname{subtr}(\exp (k, m), n)=0$. We already know that $n \leq m^{k}$. So, $\operatorname{subtr}(\exp (k, m), n)=$ $m^{k}-n$ will be zero if and only if $m^{k}=n$. So, the encoding of Pow is as follows.
$[$ Pow $]=\lambda m n$. if $([$ iszero $]([$ subtr $]([\exp]([\operatorname{mink}] m n) m) n)$ then $[$ true $]$ else $[$ false $]$

So, the required encoding $[P o w]$ has been found.
7. In this problem, we will find combinators that satisfy the given behaviors.
(a) I such that $\mathbf{I} x \rightarrow x$.

Solution. Consider the combinator $\mathbf{I}=\mathbf{S K K}$. We then have

$$
\begin{aligned}
\mathbf{I} x & =\mathbf{S K K} x \\
& \rightarrow \mathbf{K} x(\mathbf{K} x) \\
& \rightarrow x
\end{aligned}
$$

(b) \mathbf{T} such that $\mathbf{T} x y \rightarrow y x$.

Solution. Here we will use the results of problem 8. To find the combinator \mathbf{T}, we will translate the lambda-expression

$$
\lambda x y . y x
$$

to its corresponding $C L$-term. We will use the following three definitions:

$$
\begin{aligned}
{[x] x } & =I \\
{[x] y } & =\mathbf{K} y \quad(y \neq x) \\
{[x](M N) } & =\mathbf{S}([x] M)([x] N)
\end{aligned}
$$

Assuming $y \neq x$, we have the following.

$$
\begin{aligned}
C L(\lambda x y . y x) & =[x](C L(\lambda y \cdot y x)) \\
& =[x]([y](C L(y x))) \\
& =[x]([y](C L(y) C L(x))) \\
& =[x]([y](y x)) \\
& =[x](\mathbf{S}([y] y)([y] x)) \\
& =[x](\mathbf{S I}(\mathbf{K} x)) \\
& =\mathbf{S}([x](\mathbf{S I}))([x](\mathbf{K} x)) \\
& =\mathbf{S}(\mathbf{K}(\mathbf{S I}))(\mathbf{S}([x] \mathbf{K})([x] x)) \\
& =\mathbf{S}(\mathbf{K}(\mathbf{S I}))(\mathbf{S}(\mathbf{K K}) \mathbf{I})
\end{aligned}
$$

(c) \mathbf{B} such that $\mathbf{B} x y z \rightarrow x(y z)$.

Solution. In this problem, following the same procedure as above will be difficult. So, we will try to do something else. We can try to obtain the combinator by reversing the reductions, and this is what we will do here.

Observe the following.

$$
\begin{aligned}
x(y z) & =(\mathbf{K} x z)(y z) \\
& =\mathbf{S}(\mathbf{K} x) y z \\
& =((\mathbf{K S}) x)(\mathbf{K} x) y z \\
& =(\mathbf{S}(\mathbf{K S}) \mathbf{K} x) y z \\
& =\mathbf{S}(\mathbf{K S}) \mathbf{K} x y z
\end{aligned}
$$

and hence the required combinator \mathbf{B} is $\mathbf{B}=\mathbf{S}(\mathbf{K S}) \mathbf{K}$.
(d) \mathbf{M} such that $\mathbf{M} x \rightarrow x x$.

Solution. In this problem, following the same procedure as in (a) will be easy. We want to translate the lambda-expression

$$
\lambda x . x x
$$

to its $C L$-term. So, we have the following.

$$
\begin{aligned}
C L(\lambda x . x x) & =[x](C L(x x)) \\
& =[x](C L(x) C L(x)) \\
& =[x](x x) \\
& =\mathbf{S}([x] x)([x] x) \\
& =\mathbf{S I I}
\end{aligned}
$$

and hence the required combinator is $\mathbf{M}=\mathbf{S I I}$.
8. First, we show that for any $C L$-term M, x does not occur in $[x] M$, where x is a variable.

The proof is by induction on the length of M. For the base case, suppose the length of M is 1 , i.e $M=z$, where z is a variable or $z=\mathbf{S}$ or \mathbf{K}. Three cases are possible.
(1) In the first case, we have $z=x$. So,

$$
[x] M=[x] z=[x] x=\mathbf{I}
$$

and hence in $[x] M, x$ does not occur.
(2) In the second case, we have $z \neq x$ and z is a variable. So,

$$
[x] M=[x] z=\mathbf{K} z
$$

and again in $[x] M, x$ does not occur.
(3) In the last case, either $z=\mathbf{S}$ or $z=\mathbf{K}$. The proof is similar to case (2).

So, the base case is true.
Now, suppose the claim is true for all $C L$-terms of length atmost n. Let M be a $C L$-term of length $n+1$. Since M has length $>1, M$ can be written as an application of two $C L$-terms, i.e $M=X Y$, where X, Y are $C L$-terms. In that case,

$$
[x] M=[x](X Y)=\mathbf{S}([x] X)([x] Y)
$$

By the inductive hypothesis, both $[x] X$ and $[x] Y$ do not contain x, since the lengths of X and Y are atmost n. Hence, $[x] M$ does not contain x, and this completes the proof.

Next, we show that $([x] M) N \rightarrow M[x \leftarrow N]$. We will show this by induction on the length of M. For the base case, suppose the length of M is 1 . So, either $M=z$ for some variable z, or $M=\mathbf{S}$ or $M=\mathbf{K}$.
(1) Suppose $M=z$ for some variable z. First, suppose $z \neq x$. Then

$$
([x] M) N=([x] z) N=(\mathbf{K} z) N \rightarrow z=M[x \leftarrow N]
$$

where the last equality is true because there is no occurence of x in M. Next, suppose $z=x$. So,

$$
([x] M) N=([x] x) N=\mathbf{I} N \rightarrow N=M[x \leftarrow N]
$$

(2) Next, suppose $M=\mathbf{S}$. Then,

$$
([x] M) N=([x] \mathbf{S}) N=(\mathbf{K S}) N \rightarrow \mathbf{S}=M[x \leftarrow N]
$$

where again the last equality is true because x does not occur in M.
(3) Finally, suppose $M=\mathbf{K}$. Then,

$$
([x] M) N=([x] \mathbf{K}) N=(\mathbf{K K}) N \rightarrow \mathbf{K}=M[x \leftarrow N]
$$

So, it follows that the base case is true. Now, suppose the statement is true for all $C L$-terms M of length atmost n. Let M be a $C L$-term of length $n+1$. Since M has length greater than 1 , it can be written as an application of two terms, say $M=X Y$, where X, Y are $C L$-terms of length atmost n. Then, we have the following.

$$
([x] M) N=([x](X Y)) N=(\mathbf{S}([x] X)([x] Y)) N \rightarrow([x] X) N(([x] Y) N)
$$

Now by induction hypothesis, $([x] X) N \rightarrow X[x \leftarrow N]$ and $([x] Y) N \rightarrow Y[x \leftarrow N]$. So, we see that

$$
([x] X) N(([x] Y) N) \rightarrow X[x \leftarrow N] Y[x \leftarrow N]=M[x \leftarrow N]
$$

and hence it follows that

$$
([x] M) N \rightarrow M[x \leftarrow N]
$$

which completes the inductive proof.
We now find the combinatory logic terms to the given lambda terms.
(i) $\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))$

Solution. We have the following.

$$
\begin{align*}
C L(\lambda f \cdot(\lambda x . f(x x))(\lambda x \cdot f(x x))) & =[f](C L((\lambda x \cdot f(x x))(\lambda x \cdot f(x x)))) \tag{0.10}\\
& =[f](C L(\lambda x \cdot f(x x)) C L(\lambda x . f(x x))) \tag{0.11}
\end{align*}
$$

First let us compute $C L(\lambda x . f(x x))$.

$$
\begin{align*}
C L(\lambda x . f(x x)) & =[x](C L(f(x x))) \tag{0.12}\\
& =[x](C L(f) C L(x x)) \tag{0.13}\\
& =[x](f(C L(x) C L(x))) \tag{0.14}\\
& =[x](f(x x)) \tag{0.15}\\
& =\mathbf{S}([x] f)([x](x x)) \tag{0.16}\\
& =\mathbf{S}(\mathbf{K} f)(\mathbf{S}([x] x)([x] x)) \tag{0.17}\\
& =\mathbf{S}(\mathbf{K} f)(\mathbf{S I I}) \tag{0.18}
\end{align*}
$$

Using the above result in equation (0.11), we get the following.

$$
\begin{align*}
C L(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x))) & =[f]((\mathbf{S}(\mathbf{K} f)(\mathbf{S I I}))(\mathbf{S}(\mathbf{K} f)(\mathbf{S I I}))) \tag{0.19}\\
& =\mathbf{S}([f](\mathbf{S}(\mathbf{K} f)(\mathbf{S I I})))([f](\mathbf{S}(\mathbf{K} f)(\mathbf{S I I}))) \tag{0.20}
\end{align*}
$$

Now, we compute $[f](\mathbf{S}(\mathbf{K} f)(\mathbf{S I I}))$. We have the following.

$$
\begin{align*}
(0.21) & {[f](\mathbf{S}(\mathbf{K} f)(\mathbf{S I I})) } & =\mathbf{S}([f](\mathbf{S}(\mathbf{K} f)))([f](\mathbf{S I I})) \tag{0.21}\\
(0.22) & & =\mathbf{S}(\mathbf{S}([f] \mathbf{S})([f](\mathbf{K} f)))(\mathbf{S}([f] \mathbf{S})([f](\mathbf{I I}))) \tag{0.22}\\
(0.23) & & =\mathbf{S}(\mathbf{S}(\mathbf{K S})(\mathbf{S}([f] \mathbf{K})([f] f)))(\mathbf{S}(\mathbf{K S})(\mathbf{S}([f] \mathbf{I})([f] \mathbf{I}))) \\
(0.24) & & =\mathbf{S}(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K K}) \mathbf{I}))(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K I})(\mathbf{K I})))
\end{align*}
$$

Using this result in equation (0.20), we get that
$C L(\lambda f .(\lambda x . f(x x))(\lambda x . f(x x)))$
$=\mathbf{S}(\mathbf{S}(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K K}) \mathbf{I}))(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K I})(\mathbf{K I})))(\mathbf{S}(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K K}) \mathbf{I}))(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K I})(\mathbf{K I}))))$
(ii) $\lambda f .(\lambda x . f(f x))$

Solution. First, we have the following.

$$
\begin{equation*}
C L(\lambda f .(\lambda x . f(f x)))=[f](C L(\lambda x . f(f x))) \tag{0.25}
\end{equation*}
$$

$$
\begin{equation*}
=[f]([x](C L(f(f x)))) \tag{0.26}
\end{equation*}
$$

$$
\begin{equation*}
=[f]([x](C L(f) C L(f x))) \tag{0.27}
\end{equation*}
$$

$$
\begin{equation*}
=[f]([x](f(f x))) \tag{0.28}
\end{equation*}
$$

$$
\begin{equation*}
=[f](\mathbf{S}([x] f)([x](f x))) \tag{0.29}
\end{equation*}
$$

$$
\begin{equation*}
=[f](\mathbf{S}(\mathbf{K} f)(\mathbf{S}([x] f)([x] x))) \tag{0.30}
\end{equation*}
$$

$$
\begin{equation*}
=[f](\mathbf{S}(\mathbf{K} f)(\mathbf{S}(\mathbf{K} f) \mathbf{I})) \tag{0.31}
\end{equation*}
$$

$$
\begin{equation*}
=\mathbf{S}([f](\mathbf{S}(\mathbf{K} f)))([f](\mathbf{S}(\mathbf{K} f) \mathbf{I})) \tag{0.32}
\end{equation*}
$$

$$
\begin{equation*}
=\mathbf{S}([f](\mathbf{S}(\mathbf{K} f)))(\mathbf{S}([f](\mathbf{S}(\mathbf{K} f)))([f] \mathbf{I})) \tag{0.33}
\end{equation*}
$$

We now compute $[f](\mathbf{S}(\mathbf{K} f))$ as follows.

$$
\begin{align*}
{[f](\mathbf{S}(\mathbf{K} f)) } & =\mathbf{S}([f] \mathbf{S})([f](\mathbf{K} f)) \tag{0.35}\\
& =\mathbf{S}(\mathbf{K S})(\mathbf{S}([f] \mathbf{K})([f] f)) \tag{0.36}\\
& =\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K K}) \mathbf{I}) \tag{0.37}
\end{align*}
$$

Using this result in equation (0.34) we obtain

$$
\begin{aligned}
& C L(\lambda f .(\lambda x . f(f x))) \\
& \quad=\mathbf{S}(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K K}) \mathbf{I}))(\mathbf{S}(\mathbf{S}(\mathbf{K S})(\mathbf{S}(\mathbf{K K}) \mathbf{I}))(\mathbf{K I}))
\end{aligned}
$$

