
PLC ASSIGNMENT-4

SIDDHANT CHAUDHARY

1. Let exp := λpq.pq. Prove that for all m ≥ 0 and n ≥ 1,

exp[n][m] −→ [mn]

Hint: Prove the following claims in order:
(1) For k, l ≥ 0, (λz.xkz)ly −→ xkly.
(2) For m ≥ 0, n ≥ 1, (λgy.gmy)nx→ (λy.xmn

y).
(3) From the above, show that for all m ≥ 0 and n ≥ 1, [n][m]→ [mn].
(4) Conclude that exp[n][m]→ [mn].

Solution. Let us prove the claim as per the four steps given above.
(1) We will prove this step by induction on l. For the base case, suppose l = 0.

Then, observe that

(λz.xkz)ly = y = xk·0y

and hence the base case is trivial. Next, suppose the statement is true for some
l. Let M = xky. Then, observe that

(λz.xkz)l+1y = (λz.xkz)l((λz.xkz)y)

→ (λz.xkz)l(xky)

= (λz.xkz)lM

→ xklM (Induction hypothesis)
= xkl(xky)

= xkl+ky

= xk(l+1)y

and this completes the inductive proof.
(2) We will prove this step by induction on n. For the base case, suppose n = 1.

Then,

(λgy.gmy)1x→ λy.xmy

= λy.xm1

y

Date: April 5, 2021.
1



2 SIDDHANT CHAUDHARY

and hence the base case is true. Now, suppose the statement is true for some
n ≥ 1. Let M = λy.xmy. Then, observe that

(λgy.gmy)n+1x = (λgy.gmy)n((λgy.gmy)x)

→ (λgy.gmy)n(λy.xmy)

→ (λgy.gmy)nM

→ (λy.Mmn

y) (Induction Hypothesis)
→ λy.(λy.xmy)m

n

y

→ λy.xm·mn

y (By part (1))
= λy.mn+1y

and this completes the inductive proof.
(3) Let m ≥ 0 and n ≥ 1. We use the encodings [n] = λfx.fnx and [m] = λhy.hmy.

Then, we have the following.
[n][m] = (λfx.fnx)(λhy.hmy)

→ λx.(λhy.hmy)nx

→ λx.λy.xmn

y (By part (2))
= λxy.xmn

y

= [mn]

and hence the claim is proven.
(4) Let m ≥ 0 and n ≥ 1. Then, observe that

exp[n][m] = (λpq.pq)[n][m]

→ (λq.[n]q)[m]

→ [n][m]

→ [mn]

where in the last step we have used step (3). This completes the solution to
the problem.

■

2. What is the normal form of [5](exp[2])[2]? What is the size (number of applications)
of the normal form?
Solution. We will be using the fact that normal forms are unique, and hence we can
β-reduce in any order. First, we see the following.

[5](exp[2])[2] = [5]((λpq.pq)[2])[2]

→ [5](λq.[2]q)[2]

Now, using the encoding [5] = λfx.f 5x, we get
[5](λq.[2]q)[2] = (λfx.f 5x)(λq.[2]q)[2]

→ (λx.(λq.[2]q)5x)[2]

Now, we will use part (1) of problem 1. We will use k = 1 and l = 5. Using it, we get
(λq.[2]q)5x→ [2]5x



PLC ASSIGNMENT-4 3

So, we see that

(λx.(λq.[2]q)5x)[2]→ (λx.[2]5x)[2]

→ [2]5[2]

→ [2]4([2][2])

→ [2]4([22]) (By part (3) of 1.)
→ [2]3([2][22])

→ [2]3([(22)2]) (By part (3) of 1.)
→ [2]2([2][22

2

])

→ [2]2([(22
2

)2]) = [2]2[22
3

]

...
→ [22

5

]

= λfx.f 22
5

x

So, the above is the normal form for the given expression. The size (number of appli-
cations) in the normal form are 22

5 . ■

3. This question has two parts.
(a) Find a lambda-expression F such that for all M , FM = F .

Solution. We claim that the required expression F is given by

F = (λfx.ff)(λfx.ff)

Let M be any lambda-expression. Then, we have the following.

FM = (λfx.ff)(λfx.ff)M
∗−→ (λx.(λfx.ff)(λfx.ff))M
∗−→ (λfx.ff)(λfx.ff)

= F

and hence it follows that FM =β F , which is what we wanted to prove. ■

(b) Find a lambda-expression F such that for all M , FM = MF .

Solution. We claim that the required expression F is given by

F = (λfx.xff)(λfx.xff)

Let M be any expression. First, observe that

FM = (λfx.xff)(λfx.xff)M
∗−→ (λx.x(λfx.xff)(λfx.xff))M
∗−→M(λfx.xff)(λfx.xff)

= MF

and hence we see that FM =β MF , which is what we wanted to show. This completes
the proof. ■



4 SIDDHANT CHAUDHARY

4. Prove that every expression in normal form M is of the form λx1 · · ·λxn.yM1M2 · · ·Ml,
where y is a variable and M1, ...,Ml are themselves in normal form.

Solution. We will prove this by induction on the length of the expression. For the
base case, suppose the length of an expression M in normal form is 1. Clearly, M = y
for some variable y. In this case, we have

M = λx1 · · ·λxn.yM1M2 · · ·Ml

with n = l = 0. So the base case is true.
Next, suppose the given statement is true for all expressions in normal form of length

atmost n, where n ∈ N. Let M be an expression in normal form of length n+1. There
are two possible cases.

(1) In the first case, M is not an expression of the form λp.Q. Since the length of
M is greater than 1, M must then be of the form

M = A1A2...Ak

where each Ai for 1 ≤ i ≤ k is a lambda-expression, and such that the length of
each Mi is strictly less than n+1 (which is equal to the length of M). Because
of this, we see that k ≥ 2. Since M is in normal form, each Ai must be in
normal form as well. By induction hypothesis, we see that

A1 = λx1 · · ·λxnyX1X2 · · ·Xl

for some n ≥ 0 and l ≥ 0, and where y is a variable. Again, because M is in
normal form and k ≥ 2, we see that n = 0 (otherwise M will be β-reducible to
some expression), i.e

A1 = yX1X2 · · ·Xl

So, we get
M = yX1X2...XlA2...Ak

which implies that M is of the form λx1 · · ·λxn.yM1M2 · · ·Ml (here n = 0).
(2) In the second case, M is of the form λp.Q. So, suppose

M = λx1 · · ·λxn.A1A2...Ak

where each Ai for 1 ≤ i ≤ k is a lambda-expression, and n, k ≥ 1. Note that,
in this case because n ≥ 1, the length of every Ai is less than n + 1 (which is
the length of M). Also note that, because M is in normal form, each Ai is in
normal form as well. So, apply the inductive hypothesis to A1, to obtain

A1 = λp1 · · ·λpr.yM1M2...Ms

where r, s ≥ 0, y is a variable and each Mi is in normal form. So, we get

M = λx1 · · ·λxnλp1 · · ·λpr.yM1M2...MsA2...Ak

and hence M is of the given form.
So, it follows that the given property is true for all expressions in normal form of
length n+ 1, and hence the inductive proof is complete. ■



PLC ASSIGNMENT-4 5

5. Find an encoding for the predecessor function in lambda calculus. The predecessor
function is given by: pred(0) = 0 and pred(n+ 1) = n.

Solution. First, consider the function pred′ : N2 → N defined as follows.

pred′(0,m) = Z(m) = 0

pred′(n+ 1,m) = π3
1(n, pred

′(n,m),m) = n

and hence it is clear that pred′ is obtained via primitive recursion from the zero function
Z and the projection function π3

1. Then, observe that

pred(n) = pred′(n, Z(n))

for all n ∈ N. So, pred is defined by composing pred′ with h1 = id (identity function)
and Z. First, we find the encoding [pred′].

To find [pred′], we will use the general primitive recursion encoding scheme which
was discussed in class. We have

[pred′] = λxx1.[snd](x[Step][Init])(0.1)

where the following definitions are used:

[pair] = λabc.cab(0.2)
[fst] = λp.p(λde.d)(0.3)
[snd] = λp.p(λfg.g)(0.4)
[Init] = [pair][0]([Z]x1)→ [pair][0][0](0.5)
[Step] = λy.[pair] ([succ]([fst]y)) ([π3

1] ([fst]y) ([snd]y) x1)(0.6)

■

Now, the encodings [Z] and [π3
1] are straightforward to find:

[Z] = λs.[0] = λs.(λfx.x)(0.7)
[π3

1] = λuvw.u(0.8)

Using all this information, the encoding [pred′] can be found by using equation (0.1).
Now, as we remarked before, pred is defined by composing pred′ with h1 = id

(identity function) and Z, i.e

pred(n) = pred′(n, Z(n))

for all n ∈ N. Now, the encoding [id] is easy to find.

[id] = λx.x

So, the encoding [pred] is as follows.

[pred] = λx1.[pred
′] ([id]x1) ([Z]x1)

Since [pred′], [id] and [Z] are all known to us, we have found the encoding [pred].



6 SIDDHANT CHAUDHARY

6. Find an encoding for the Pow function in lambda calculus. It is given by:

Pow(m,n) =

{
true if ∃k : mk = n

false otherwise

Solution. Throughout, we assume that m ≥ 1 and n ≥ 1. First, we list the encodings
that we will use to solve this problem.

The first encoding is [subtr], i.e the subtraction function, which is defined as follows:

subtr(m,n) =

{
0 , m ≤ n

m− n , otherwise

In one of the lectures, it was shown in class that subtr is a primitive recursive function,
and hence there is a λ-expression for subtr. We assume that it is [subtr].

The next encoding we will use is the exponential function exp, defined as
exp(k,m) = mk

In problem 1., we have already encoded this, and we assume that the encoding is [exp].
Next, define the function subtrexp : N3 → N by

subtrexp(k, n,m) = n−mk

Clearly, we see that
subtrexp(k, n,m) = subtr(π3

2(k, n,m), exp(π3
1(k, n,m), π3

3(k, n,m)))

Note that the functions subtr, π3
2 and exp ◦ (π3

1, π
3
3) are all primitive recursive. So, it

follows that subtr ◦ (π3
2, exp ◦ (π3

1, π
3
3)) is also primitive recursive, and hence subtrexp

is primitive recursive. Moreover, the λ-expression for subtrexp is given below.
[subtrexp] = λknm.[subtr] ([π3

2] k n m) ([exp] ([π3
1] k n m) ([π3

3] k n m))(0.9)
We will also use the standard encodings for [true] and [false], and the test [iszero]
given by

[iszero] = λx.x(λz.[false])[true]

Now, consider the function mink : N2 → N defined as follows.
mink(m,n) = smallest non-negative integer k such that subtrexp(k, n,m) = 0

In other words, mink(m,n) is the smallest non-negative integer k such that n ≤ mk.
One immediately recognizes that mink is defined by µ−recursion from the function
subtrexp, i.e

mink(m,n) = µi(subtrexp(i,m, n) = 0)

As covered in class, we need to find the encoding of this µ-recursion. So, first define
W = λy. if ([iszero]([subtrexp] y m n)) then (λw.y) else (λw.w([succ]y)w)

Then, the encoding for mink is the following.
[mink] = λmn.W [0] W

and the working of this was proven in one of the lectures.
Having found [mink], we can now find the encoding of Pow. This is straightforward:

to compute Pow(m,n), we first compute k = mink(m,n), and then we check whether
subtr(exp(k,m), n) = 0. We already know that n ≤ mk. So, subtr(exp(k,m), n) =
mk − n will be zero if and only if mk = n. So, the encoding of Pow is as follows.
[Pow] = λmn. if ([iszero]([subtr] ([exp] ([mink] m n) m) n)) then [true] else [false]



PLC ASSIGNMENT-4 7

So, the required encoding [Pow] has been found. ■

7. In this problem, we will find combinators that satisfy the given behaviors.

(a) I such that Ix→ x.

Solution. Consider the combinator I = SKK. We then have

Ix = SKKx

→ Kx(Kx)

→ x

■

(b) T such that Txy → yx.

Solution. Here we will use the results of problem 8. To find the combinator T, we
will translate the lambda-expression

λxy.yx

to its corresponding CL-term. We will use the following three definitions:

[x]x = I

[x]y = Ky (y ̸= x)

[x](MN) = S([x]M)([x]N)

Assuming y ̸= x, we have the following.

CL(λxy.yx) = [x](CL(λy.yx))

= [x]([y](CL(yx)))

= [x]([y](CL(y)CL(x)))

= [x]([y](yx))

= [x](S([y]y)([y]x))
= [x](SI(Kx))

= S([x](SI))([x](Kx))

= S(K(SI))(S([x]K)([x]x))

= S(K(SI))(S(KK)I)

■

(c) B such that Bxyz → x(yz).

Solution. In this problem, following the same procedure as above will be difficult. So,
we will try to do something else. We can try to obtain the combinator by reversing
the reductions, and this is what we will do here.



8 SIDDHANT CHAUDHARY

Observe the following.
x(yz) = (Kxz)(yz)

= S(Kx)yz

= ((KS)x)(Kx)yz

= (S(KS)Kx)yz

= S(KS)Kxyz

and hence the required combinator B is B = S(KS)K. ■

(d) M such that Mx→ xx.
Solution. In this problem, following the same procedure as in (a) will be easy. We
want to translate the lambda-expression

λx.xx

to its CL-term. So, we have the following.
CL(λx.xx) = [x](CL(xx))

= [x](CL(x)CL(x))

= [x](xx)

= S([x]x)([x]x)
= SII

and hence the required combinator is M = SII. ■
8. First, we show that for any CL-term M , x does not occur in [x]M , where x is a
variable.

The proof is by induction on the length of M . For the base case, suppose the length
of M is 1, i.e M = z, where z is a variable or z = S or K. Three cases are possible.

(1) In the first case, we have z = x. So,
[x]M = [x]z = [x]x = I

and hence in [x]M , x does not occur.
(2) In the second case, we have z ̸= x and z is a variable. So,

[x]M = [x]z = Kz

and again in [x]M , x does not occur.
(3) In the last case, either z = S or z = K. The proof is similar to case (2).

So, the base case is true.
Now, suppose the claim is true for all CL-terms of length atmost n. Let M be a

CL-term of length n+1. Since M has length > 1, M can be written as an application
of two CL-terms, i.e M = XY , where X,Y are CL-terms. In that case,

[x]M = [x](XY ) = S([x]X)([x]Y )

By the inductive hypothesis, both [x]X and [x]Y do not contain x, since the lengths
of X and Y are atmost n. Hence, [x]M does not contain x, and this completes the
proof.

Next, we show that ([x]M)N →M [x←− N ]. We will show this by induction on the
length of M . For the base case, suppose the length of M is 1. So, either M = z for
some variable z, or M = S or M = K.



PLC ASSIGNMENT-4 9

(1) Suppose M = z for some variable z. First, suppose z ̸= x. Then
([x]M)N = ([x]z)N = (Kz)N → z = M [x←− N ]

where the last equality is true because there is no occurence of x in M . Next,
suppose z = x. So,

([x]M)N = ([x]x)N = IN → N = M [x←− N ]

(2) Next, suppose M = S. Then,
([x]M)N = ([x]S)N = (KS)N → S = M [x←− N ]

where again the last equality is true because x does not occur in M .
(3) Finally, suppose M = K. Then,

([x]M)N = ([x]K)N = (KK)N → K = M [x←− N ]

So, it follows that the base case is true. Now, suppose the statement is true for all
CL-terms M of length atmost n. Let M be a CL-term of length n+ 1. Since M has
length greater than 1, it can be written as an application of two terms, say M = XY ,
where X,Y are CL-terms of length atmost n. Then, we have the following.

([x]M)N = ([x](XY ))N = (S([x]X)([x]Y ))N → ([x]X)N(([x]Y )N)

Now by induction hypothesis, ([x]X)N → X[x←− N ] and ([x]Y )N → Y [x←− N ]. So,
we see that

([x]X)N(([x]Y )N)→ X[x←− N ]Y [x←− N ] = M [x←− N ]

and hence it follows that
([x]M)N →M [x←− N ]

which completes the inductive proof.
We now find the combinatory logic terms to the given lambda terms.

(i) λf.(λx.f(xx))(λx.f(xx))

Solution. We have the following.
CL(λf.(λx.f(xx))(λx.f(xx))) = [f ](CL((λx.f(xx))(λx.f(xx))))(0.10)

= [f ](CL(λx.f(xx))CL(λx.f(xx)))(0.11)

First let us compute CL(λx.f(xx)).
CL(λx.f(xx)) = [x](CL(f(xx)))(0.12)

= [x](CL(f)CL(xx))(0.13)
= [x](f(CL(x)CL(x)))(0.14)
= [x](f(xx))(0.15)
= S([x]f)([x](xx))(0.16)
= S(Kf)(S([x]x)([x]x))(0.17)
= S(Kf)(SII)(0.18)

Using the above result in equation (0.11), we get the following.
CL(λf.(λx.f(xx))(λx.f(xx))) = [f ]((S(Kf)(SII))(S(Kf)(SII)))(0.19)

= S([f ](S(Kf)(SII)))([f ](S(Kf)(SII)))(0.20)



10 SIDDHANT CHAUDHARY

Now, we compute [f ](S(Kf)(SII)). We have the following.
[f ](S(Kf)(SII)) = S([f ](S(Kf)))([f ](SII))(0.21)

= S(S([f ]S)([f ](Kf)))(S([f ]S)([f ](II)))(0.22)
= S(S(KS)(S([f ]K)([f ]f)))(S(KS)(S([f ]I)([f ]I)))(0.23)
= S(S(KS)(S(KK)I))(S(KS)(S(KI)(KI)))(0.24)

Using this result in equation (0.20), we get that
CL(λf.(λx.f(xx))(λx.f(xx)))

= S(S(S(KS)(S(KK)I))(S(KS)(S(KI)(KI))))(S(S(KS)(S(KK)I))(S(KS)(S(KI)(KI))))
■

(ii) λf.(λx.f(fx))

Solution. First, we have the following.
CL(λf.(λx.f(fx))) = [f ](CL(λx.f(fx)))(0.25)

= [f ]([x](CL(f(fx))))(0.26)
= [f ]([x](CL(f)CL(fx)))(0.27)
= [f ]([x](f(fx)))(0.28)
= [f ](S([x]f)([x](fx)))(0.29)
= [f ](S(Kf)(S([x]f)([x]x)))(0.30)
= [f ](S(Kf)(S(Kf)I))(0.31)
= S([f ](S(Kf)))([f ](S(Kf)I))(0.32)
= S([f ](S(Kf)))(S([f ](S(Kf)))([f ]I))(0.33)
= S([f ](S(Kf)))(S([f ](S(Kf)))(KI))(0.34)

We now compute [f ](S(Kf)) as follows.
[f ](S(Kf)) = S([f ]S)([f ](Kf))(0.35)

= S(KS)(S([f ]K)([f ]f))(0.36)
= S(KS)(S(KK)I)(0.37)

Using this result in equation (0.34) we obtain
CL(λf.(λx.f(fx)))

= S(S(KS)(S(KK)I))(S(S(KS)(S(KK)I))(KI))
■


	1
	2
	3
	4
	5
	6
	7
	8

