
PROGRAMMING LANGUAGE CONCEPTS

SIDDHANT CHAUDHARY

These are my course notes for the course PROGRAMMING LANGUAGE CON-
CEPTS that I undertook in my fourth semester.

Contents

1. Object Oriented Programming in Java . 2
1.1. Setting up Java . 2
1.2. Basics . 2
1.3. Running Programs . 2
1.4. Classes and Objects . 2
1.5. Public vs Private . 3
1.6. Static Components . 3
1.7. Making read-only variables . 4
1.8. Constructors . 4
1.9. Strings in Java . 5
1.10. Arrays . 5
1.11. Subclasses. 5
1.12. Multiple Inheritance . 6
1.13. Abstract Classes . 7
1.14. Interfaces . 7
1.15. Generic Programming . 8

2. Lambda Calculus . 9
2.1. Syntax . 9
2.2. The computation rule . 9
2.3. Free and Bound Occurrences . 9
2.4. Variable Capture . 10
2.5. Applying the computation rule in context . 10
2.6. Encoding arithmetic in λ-calculus. 11
2.7. Encoding Arithmetic Functions . 11

3. Computability in Lambda Calculus . 12
3.1. Recursive Functions . 12
3.2. Encoding Recursive Functions . 15
3.3. Encoding a test for zero . 17
3.4. Encoding µ-recursion . 17
3.5. Normal Terms . 18
3.6. Recursive definitions and the Y combinator . 18
3.7. The Θ combinator . 18
3.8. η rule . 19

4. Recursive functions and Turing Computability . 19
4.1. Exactly what functions are recursive . 19
4.2. Writing programs for recursive functions . 19

Date: January 2021.
1

2 SIDDHANT CHAUDHARY

4.3. Primitive Recursive Relations . 20

1. Object Oriented Programming in Java

1.1. Setting up Java. First, download the latext version of the Java JDK from
the Oracle website. Then, install the JDK. Finally, add the Java compiler to your
system’s PATH variable. To do this, do the following.

(1) Go to My Computer (or This PC). Right click and select properties.
(2) Then go to Advanced system settings.
(3) Then click on Environment Variables... button.
(4) Then edit the PATH variable, and add the location of the bin folder of your

JDK installation. Typically, it is something like
C:\Program Files\Java\jdk-15.0.1\bin

1.2. Basics. Java is based based on the idea of object oriented programming
(OOP), and so a Java program is a collection of classes. Each class xyz is in
a separate file xyz.java. To start the computation, there must be one class,
usually called Main which contains a static method (see the section 1.5 Static
Components for more info about static), and this method is main. This is done
by including this code in the Main.java class.

class Main{
public static void main (String[] args){

System.out.println("Hello World!"); //a Hello World program
}

}

1.3. Running Programs. Java programs are interpreted on Java Virtual Ma-
chines (JVM). javac compiles Java into bytecode for the JVM. The command
javac xyz.java on the terminal creates a class file xyz.class, and this class
file can be compiled using the command java xyz (note that there is no .class
in this command). The good thing about the javac compiler is that it follows all
dependencies, and it compiles all the classes required. For instance, if in our
xyz class there is an object of type abc, then the command javac xyz.java will
automatically compile abc.java as well.

Caution: Make sure that you are running these commands in the terminal from
the location where your xyz.java file is located.

1.4. Classes andObjects. In Java, the template or the blueprint used to define
an object is known as a class. An instance of a class is known as an object. Let’s
get right into the syntax used in Java. In Java, there is a keyword new which is
used to allocate memory for new objects. Then, properties of the objects as
defined in the class are accessed using the . symbol. For instance, suppose we
have a class stack already defined (which will be a blueprint for the stack data
structure). Then, we can create instances of stack as follows.

stack s , t; /*References to stack*/
s = new stack; /*create one stack*/
t = new stack; /*... and another*/

PROGRAMMING LANGUAGE CONCEPTS 3

s.push(7)

Note that the following piece of code does not allocate a memory for a new in-
stance of stack.

s = new stack;
t = s /*just assigns another name*/

1.5. Public vsPrivate. The keyword private is used tomake sure that the vari-
ables defined inside a class are not visible to external code. An example is the
following.

class stack{
private int values[100];
private int top_of_stack = 0;

}

So, in this case the variables values and top_of_stack will not be visible to the
external code.

Remark 1.0.1. There is an exception to this. In the above example, suppose
we have two variables s and t of the type stack. Then, s and t will be able to
access each other’s values and top_of_stack variables. In general, objects of
the same type can access each other’s private variables.

1.6. Static Components. Suppose we have a class stack as earlier, and sup-
pose we want to use execute a method of this class in our program. So, we
make a new object of type stack as follows.

stack s;
s = new stack;

Now, the question is: where is this code written? And the answer is simple:
this code is written in some other class which declares this object and will then
execute a method via this object. Now, to execute a method of this class, we
again have to do the same thing; define an object of this new class in another
class. But this cycle will continue, and we will never be actually able to execute
any code. This is where static components come into play. A static function is a
function which can be invoked without instantiating any class. Static functions
exist even if there is no object instance of any class. Infact, we can use the
static keyword to declare fields as well. For instance, suppose we have the
following class.

class Math{
public static double PI = 3.1415927;
public static double E = 2.7182818;

}

So, the variables PI and E can be used throughout the program freely, and be-
cause of the keyword static, they will have one fixed memory allocated for
them.

4 SIDDHANT CHAUDHARY

Example 1.1. Here is a clever use of the static keyword. Suppose we have a
class stack, and we want to keep track of the total number of push operations
across all the stacks in our program. So, we do the following.

class stack{
...
private static int num_push = 0; /*number of pushes across all

stacks*/

push (int i, ...){
...
num_push++; /*update the static variable*/
...

}
...

}

Caution: Make sure that any static method does not use any non-static vari-
able.

1.7. Making read-only variables. The keyword final is used to declare read-
only variables, i.e variables whose value cannot be changed after initialisation.

1.8. Constructors. Suppose we have a class Date. Whenever we instantiate
the class Date, a special method called the constructor will be invoked. For
instance, suppose we have the declaration Date x = new Date(); in our code.
At the time of creation of x, the constructor method for the Date class will be
invoked. The constructor method has the same name as the class; in our case,
the constructor method has the name Date. The class Date will look something
like below.

class Date{
private int day , month , year;
public Date(int d , int m , int y){

day = d; month = m; year = y;
}

}

We can then initialise an object as follows.

Date d = new Date(27 , 1 , 2009);

Let us now look at some properties of constructors.
(1) We can have more than one constructor, and this uses the concept of

function overloading in Java (you can read more about this in the Java
docs).

(2) Here is a neat way of invoking an earlier constructor.

class Date{
class Date{

private int day, month, year;

public Date(int d , int m , int y){

PROGRAMMING LANGUAGE CONCEPTS 5

day = d; month = m; year = y;
}

public Date(int d , int m){
this(d , m , 2009); //calling the earlier

constructor
}

}
}

(3) If no constructorsare specified, then there is adefault constructorwhich
Java automatically creates for you.

1.9. Strings in Java. String is a built in class in Java. These are declared using
double quotes as usual, i.e something like

String s = "Hello";
Itmust be noted that a String object is not an array. So for example in the above
definition, something like s[3] does not make sense.

1.10. Arrays. Without a surprise, arrays are also objects in Java. They are
typically declared as follows.

int [] a; //can also be written as int a[]
a = new int[100];

We can combine the above declaration into a single statement as follows.

int [] a = new int[100];

This warrants a question: in the above statement, we have already declared a
to be an array of type int. Then why do we have to write new int[100] again?
We will soon see the answer to this question.

To get the size of an array, we can simply do a.length (Caution: for strings,
length is amethod, i.e we have to say s.length() to get the length of a string).

Example 1.2. We have seen that the argument to the main method in any Java
program is of type String[] args. Here, args is an array of variables of type
String, and these arguments can be passed in the command line while running
the Java program.

1.11. Subclasses. This is best understood with an example. So, we will have a
class called Employee. Here is the description.

(1) The class Employee is used to contain employee data.

class Employee{
private String name;
private double salary;

//Some Constructors...

//"mutator" methods
public boolean setName(String s){ ... }

6 SIDDHANT CHAUDHARY

public boolean setSalary(double x){ ... }

//"accessor" methods
public String getName(){ ... }
public double getSalary(){ ... }

//other methods
double bonus(float percent){

return (percent/100.0)*salary;
}

}

(2) Managers are special type of employees with extra priveledges. We im-
plement this as a subclass in Java.

class Manager extends Employee{
private String secretary;
public boolean setSecretary(String s){ ... }
public String getSecretary(){ ... }
double bonus(float percent){

return (percent/100.0)*2*salary;
}

}

(3) Manager inherits other fields and methods from Employees. For instance,
every Manager object has a name, salary and methods to access and ma-
nipulate these.

(4) However, a Managerobjectwill not automatically get access to theprivate
data of the parent class.

(5) A subclass can override methods of its parent classes.
(6) Suppose we do the following.

Employee e = new Manager(...)

Then, the questions is: can we invoke e.setSecretary()? And the an-
swer is no, because of Java’s static typechecking. e can only refer to
the methods in Employee. However, note that both Employee and Manager
have a method called bonus. If we invoke e.bonus(p), then the bonus of
the Manager class will be invoked! This is called dynamic dispatch.

1.12. MultipleInheritance. Theshort story is: Javasimplydoesnotallowmul-
tiple inheritance. Now we see the long story. Suppose we have something like
this.

class C1 {
public int f(...){...}

}
class C2 {

public int f(...){...}
}
class C3 extends C1,C2 {

...
}

PROGRAMMING LANGUAGE CONCEPTS 7

The question is: what happens if we invoke f from an object of type C3? Clearly,
there is some ambiguity here. To deal with this, Java simply does not allow this
to happen, i.e any class can have atmost one parent.
So if we create a class inheritance graph, where there is an edge from a par-

ent class to a child class, then the graph will be a tree: each class will have
atmost one parent. Infact, in Java there is a universal superclass Object.

1.13. Abstract Classes. Suppose we have three classes Circle, Square and
Rectangle, and we want to combine these under a common class named Shape.
Now, we want to enforce every shape to define a function

public double perimeter()
whichwill return the perimeter of the shape. One solution to this problem is the
following: define a function in Shape that returns an absurd value

class Shape{
...
public double perimeter (){return -1.0;}
...

}

and then we can rely on any subclass of Shape to redefine this function. How-
ever this is not quite what we want, because we want every subclass to have a
function called perimeter.
To solve this problem, we use the abstract keyword, and we provide an ab-

stract declaration in Shape:

class Shape{
...
public abstract double perimeter(); //no function definition here,

just a declaration
}

This will force every subclass of Shape to prove a concrete implementation of
this function.
Now note that once we have an abstract function defined inside the class

Shape, the class Shape itself must be defined to be abstract, because we cannot
make objects of type Shape because of the obvious fact that there is no definition
for perimeter inside the class Shape. So, we have to do:

abstract class Shape{
...
public abstract double perimeter(); //no function definition here,

just a declaration
}

1.14. Interfaces. An interface is an abstract class with no concrete compo-
nents, and any class that extends an interface is said to implement it. The good
thing about interfaces is that a class can implement multiple interfaces. On the
other hand, recall that a class can have atmost one parent class.

8 SIDDHANT CHAUDHARY

An example would be the following.

abstract class Shape{
public abstract double perimeter();

}
interface Comparable {

public abstract int cmp(Comparable s);
}
class Circle extends Shape implements Comparable{

public double perimeter(){...}
public int cmp(Comparable s){...}

}

1.15. Generic Programming. Suppose we want to implement a linked list in
Java such that the list can contain objects of any data type, but the list must be
homogeneous, i.e the list must contain objects of the same type. To do this, we
can create a template as follows.

public class Node<T>{
public T data; //T can be any data type
public node next;
...

}
public class LinkedList<T>{

private int size;
private Node first;

public T head(){
T returnval = null;
if (first != null){

returnval = first.data;
first = first.next();

}
return returnval;

}
public void insert (T newdata){

...
}

}

So we have just declared a template for a linked list class that can hold any
object of any type, but the type across a list must be the same. The variable T
above is a placeholder for the data type. For example, we can do the following
with the above definition.

LinkedList<Ticket> ticketList = new LinkedList<Ticket>();
LinkedList<Date> dateList = new LinkedList<Date>();
Ticket t = new Ticket();
Date d = new Date();
ticketlist.insert(t);
datelist.insert(d);

PROGRAMMING LANGUAGE CONCEPTS 9

This way of programming is called generic programming.
We can even write generic functions in Java. For example, suppose we want

tomake a functionwhich takes two arrays of the same type, and copies the first
array into the other. This can be done as follows.

public <T> void arraycopy (T[] src , T[] tgt){ //the generic type comes
before the return type of the function
int i , limit;
limit = min(src.length , tgt.length);
for (i = 0; i < limit; i++){

tgt[i] = src[i];
}

}

2. Lambda Calculus

2.1. Syntax. Suppose we have a countably infinite set of variables called Var.
The set Λ of lambda expressions is given by

Λ = x | λx.M | MN

where x ∈ Var andM,N ∈ Λ. The notation λx.M is called function abstraction;
this just means we have a function of x with computation ruleM . The notation
MN is called function application; apply the functionM to the argument N . So
we can really think of the set Λ as the language generated by a context free
grammar. Here is some more syntax.

(1) Function application associates to the left, i.e
MNP = (MN)P

(2) Function abstraction associates to the right, i.e
λx.λy.M = λx.(λy.M)

2.2. The computation rule. The basic rule for computing is called β-reduction
(or contraction).

• (λx.M)N −→
β

M [x := N]. Informally, we say the compute the expression
M where x = N .

• A term of the form (λx.M)N is called redex, which stands for reducible
expression.

• M [x := N] is called the contractum. The expressionM [x := N]means to
substitute free occurrences of x inM by N .

2.3. FreeandBoundOccurrences. An occurence of a variable x inM is free if
it does not occur in the scope of a λx insideM . This definition is a bit ambiguous,
sowewill use an alternative inductive definition. LetM be a lambda expression.
The set of all variables occurring free inM will be denoted by FV (M) and the
set of all variables occurring bound inM will be denoted by BV (M).

Definition 2.1. The set FV (M) is defined inductively as follows:
(1) FV (x) = {x} for any x ∈ Var.
(2) FV (MN) = FV (M) ∪ FV (N).
(3) FV (λx.M) = FV (M) \ {x}.

10 SIDDHANT CHAUDHARY

Definition 2.2. The set BV (M) is defined inductively as follows.
(1) BV (x) = ϕ for any x ∈ Var.
(2) BV (MN) = BV (M) ∪BV (N).
(3) BV (λx.M) = BV (M) ∪ ({x} ∩ FV (M)).

Example 2.1. Consider the exampleM = xy(λx.z)(λy.y). Then one checks that
FV (M) = {x, y, z} and BV (M) = {y}. This example shows that FV (M) and
BV (M) need not be disjoint sets.

Remark2.0.1. Agoodway to think about free and bound variables is as follows:
consider a program written in some language. A variable that is local to some
function (i.e variables denoting parameters of functions) is a bound variable,
while global variables are free variables.

Remark 2.0.2. One can ensure by suitable renaming of variables (called α-
renaming) that FV (M) ∩BV (M) = ϕ.

2.4. Variable Capture. Sometimes while β-reducing, a variable may become
bound in a lambda expression, and this should be avoided. For example, con-
sider N = λx.(λy.xy) andM = Ny.

(1) N takes two arguments and applies the first argument to the second.
(2) M fixes the first argument of N . M simply means to take an argument

and apply y to it.
If we β-reduceM we get N [x := y], which is equivalent to the expression λy.yy.
But this is notwhatwewant: this expressionmeans takeanargument andapply
it to itself.
The problem above is that the y substituted for the inner x has been confused

with the y bound by λy. So, we rename the bound variables to avoid variable
capture

(λx.(λy.xy))y = (λx.(λz.xz))y −→
β

λz.yz

It is clear that renaming the bound variables does not change the function. For
instance, sin z and sin y mean the same thing.

2.5. Applying the computation rule in context. We can contract a redex ap-
pearing anywhere inside an expression. We have the following rules for β-
reductions.

(1) (λx.M)N −→
β

M [x := N].
(2) IfM −→

β
M ′ thenMN −→

β
M ′N .

(3) If N −→
β

N ′ thenMN −→
β

MN ′.
(4) IfM −→

β
M ′ then λx.M −→

β
λx.M ′.

So if we have a lambda expressionM that has redexes appearing inside it, then
we can β-reduce all redexes to get an expressionN , i.eM

∗−→
β

N via a sequence
of β reductions

M = M0 −→
β

M1 −→
β

· · · −→
β

Mk = N

PROGRAMMING LANGUAGE CONCEPTS 11

2.6. Encodingarithmetic inλ-calculus. First, somenotation. Multiple function
abstractions can be written in a more compact form. For instance, we write

λx.λy.λz.M = λxyz.M

Let f be any expression, and let x ∈ Var. Define

f 0x := x

fn+1x := f(fnx)

We encode the natural numbers as follows. We define

[n] := λf.λx.fnx = λfx.fnx

For instance,

[0] = λfx.x

[1] = λfx.fx

[2] = λfx.f(fx)

[3] = λfx.f(f(fx))

...

From this definition, it can be checked by simple β-reduction that

[n]gy = gny

2.7. EncodingArithmetic Functions. In this section, wewill see how to encode
various arithmetic functions in λ-calculus.

2.7.1. Successor Function. Consider the successor function on natural num-
bers, i.e the function x 7→ x+1 for x ∈ N. We want to encode this function in the
form of a lambda expression. Suppose we call it [succ]. We want

[succ][n] = [n+ 1](2.1)

for all n ∈ N. Now observe that

[n]fx
∗−→ fnx

as we saw above. This means that

f([n]fx)
∗−→ f(fnx) = fn+1x

and hence
λfx.f([n]fx)

∗−→ λfxfn+1x = [n+ 1]

So, we see that
[succ] = λpfx.f(pfx)

From this definition, we can easily show that equation (2.1) holds.

12 SIDDHANT CHAUDHARY

2.7.2. Addition. We want to encode the function [plus] that does the following:
it takes two natural numbers m and n, and it returns m + n. Note that doing
[plus][m][n] is the same as doing [m]succ[n] (which β-reduces to succm[n]). So,
one way of encoding this function is

[plus] = λpq.p[succ]q

Another way of encoding this function is the following:

[plus] = λpqfx.pf(qfx)

This works because

[plus][m][n]
∗−→ λfx.[m]f([n]fx)
∗−→ λfx.[m]f(fnx)
∗−→ λfx.fm(fnx)

= λfx.fm+nx

= [m+ n]

2.7.3. Multiplication. One way to encode this is as follows:

[mult] = λpqf.p(qf)

To see this, observe that

[mult][m][n]
∗−→ [m]([n]f)
∗−→ [m](λy.fny)

= (λhz.hmz)(λy.fny)
∗−→ λz.(λy.fny)mz

Now, it can be shown by induction that λz.(λy.fny)mz
∗−→ λz.fmnz (try to prove

this yourself) and hence we see that

[mult][m][n]
∗−→ λz.fmnz = [mn]

2.7.4. Exponentiation. Wewant to find a lambda expression for the function exp
which gives exp(m,n) = nm. A simple way to do this is

[exp] = λpq.pq

Complete the proof of why this works!

3. Computability in Lambda Calculus

3.1. RecursiveFunctions. Let usbeginwithadefinition. Fora vector (n1, · · · , nk) ∈
Nk, we will use the notation n⃗.

Definition 3.1. f : Nk → N is obtained by composition from g : Nl → N and
h1, ..., hl : Nk → N if

f(n⃗) = g(h1(n⃗), · · · , hl(n⃗))

In this case, we use the notation f = g ◦ (h1, · · · , hl).

PROGRAMMING LANGUAGE CONCEPTS 13

Definition 3.2. f : Nk+1 → N is obtained by primitive recursion from g : Nk → N
and h : Nk+2 → N if

f(0, n⃗) = g(n⃗)

f(i+ 1, n⃗) = h(i, f(i, n⃗), n⃗)

This definition is equivalent to the following for loop.

result = g(n1,...,nk); //f(0,n1,...,nk)
for (i = 0; i < n; i++){

//computing f(i + 1,n1,...,nk)
result = h(i , result , n1,...,nk);

}
return result;

Note that if both g, h are total functions, then f is also a total function.
Definition 3.3. f : Nk → N is obtained by µ-recursion or minimization from
g : Nk+1 → N if

f(n⃗) =

{
i if g(i, n⃗) = 0 and ∀ j < i : g(j, n⃗) > 0

undefined otherwise

The notation we use is f(n⃗) = µi(g(i, n⃗) = 0). Here µ stands for minimal. Here
note that even if g is a total function, f need not be total. This definition is equiv-
alent to a while loop.

i = 0;
while (g(i,n1,...,nk) > 0){

i = i + 1;
}
return i;

Definition 3.4. The class of primitive recursive function is the smallest class of
functions for which the following hold.

(1) This class contains all the initial functions:
(a) Zero Z(n) = 0
(b) Successor S(n) = n+ 1
(c) Projection πk

i (n1, ..., nk) = ni

(2) This class is closed under composition and primitive recursion.
Definition 3.5. The class of partial recursive functions is the smallest class of
functions for which the following hold.

(1) This class contains all the initial functions.
(2) This class is closed under composition, primitive recursion and mini-

mization.
Definition 3.6. The class of total recursive functions is the class of all partial
recursive functions that are total.
Remark 3.0.1. We can think of the class of primitive recursive functions as the
class of functions described by only for loops, and we can think of partial re-
cursive functions as those functions which are described by both for loops and
while loops.

14 SIDDHANT CHAUDHARY

Example 3.1. Let S be the successor function. Observe that the function
f(n) = n+ 2

can be written as f = S ◦ S, and hence f is a primitive recursive function.

Example 3.2. Consider the function plus : N2 → N given by
plus(n,m) = n+m

We claim that plus is a primitive recursive function. Observe that
plus(0,m) = g(m) = π1

1(m)

plus(n+ 1,m) = h(n, plus(n,m),m) = S ◦ π3
2(n, plus(n,m),m) = (n+ 1) +m

Example 3.3. Consider the functionmult : N2 → N given by
mult(n,m) = mn

We claim thatmult is a primitive recursive function. Observe that
mult(0,m) = Z(m) = 0

mult(n+ 1,m) = (plus ◦ (π3
2, π

3
3))(n,mult(n,m),m) = nm+m+ (n+ 1)m

Example 3.4. Consider the function exponential function
exp(n,m) = mn

We have
exp(0,m) = (S ◦ Z)(m) = 1

exp(n+ 1,m) = (mult ◦ (π3
2, π

3
3))(n,mult(n,m),m) = mn ·m = mn+1

Example 3.5. Let us try to define the predecessor function, i.e
pred(0) = 0

pred(n+ 1) = n

First, consider the auxilliary function pred′ defined by
pred′(0,m) = 0

pred(n+ 1,m) = n

i.e pred′ ignores the second argument, and on the first argument it is the pre-
decessor function. Observe that

pred′(0,m) = Z(m) = 0

pred′(n+ 1,m) = π3
1(n, pred

′(n,m),m) = n

which implies that pred′ is a primitive recursive function. Now, we can write
pred as a composition

pred(n) = pred′(n, Z(n))

and hence pred is a primitive recursive function.

Example 3.6. Let us define the function subtr(m,n) = m− n. More specifically,

subtr(m,n) =

{
0 , m ≤ n

m− n , otherwise

PROGRAMMING LANGUAGE CONCEPTS 15

Consider theauxilliary function subtr′ givenby subtr′(n,m) = m−n. Nowobserve
that

subtr′(0,m) = m

subtr′(n+ 1,m) = pred(subtr′(n,m)) = (pred ◦ π2
3)(n, subtr

′(n,m),m)

which means that subtr′ is a primitive recursive function. Now, observe that
subtr = subtr′ ◦ (π2

2, π
2
1)

and hence subtr is also a primitive recursive function.

Example3.7. The function f(m) = log2(m) is definedbyminimization from g(n,m) =
m − 2n (note that we have already shown that the exponential and subtraction
functions are primitive recursive).

3.2. Encoding Recursive Functions. In this section, we will try and encode re-
cursive functions.

3.2.1. The Zero Function. Observe that
[Z] = λx.[0]

and it can be easily seen that [Z][n] ∗−→ [0] for any n ∈ N.

3.2.2. The Successor Function. We already have an encoding for this:
[succ] = λpfx.f(pfx)

3.2.3. The Projection Function. The projection function is encoded as
[πk

i] = λx1x2 · · ·xk.xi

3.2.4. Function Composition. If f : Nk → N is defined by f = g ◦ (h1, ..., hl) then
[f] = λx1x2 · · ·xk.[g]([h1]x1x2 · · ·xk) · · · ([hl]x1x2 · · ·xk)

3.2.5. Primitive Recursion. Suppose f is defined via primitive recursion from
g and h. To encode primitive recursion into a λ-expression, we need to first get
rid of recursion, and convert it into iteration. Observe that by definition,

f(0, x⃗) = g(x⃗)

f(i+ 1, x⃗) = h(i, f(i, x⃗), x⃗)

Given l and n⃗, the idea will be to generate a sequence of pairs
(0, a0), (1, a1), ..., (l, al)

where a0 = g(n⃗) and ai+1 = h(i, ai, n). So let t(i) = (i, ai). So we have
t(0) = (0, a0) = (0, g(n⃗))

and that
t(i+ 1) = (i+ 1, ai+1) = (i+ 1, h(i, ai, n⃗))

= (succ(fst(t(i))), h(fst(t(i)), snd(t(i)), n⃗))

(where fst returns the first coordinate of a pair, and similarly snd returns the
second coordinate of a pair) and clearly f(l, n⃗) can be retrieved as snd(t(l)).
The key point is that we can generate the t(i)′s by iteration. To do this, define
Init = (0, g(n⃗)) and

Step(t(i)) = t(i+ 1)

16 SIDDHANT CHAUDHARY

which implies that t(l) = Stepl(Init) and hence
f(l, n⃗) = snd(t(l)) = snd(Stepl(Init))

To do this, first let us encode a pair. This is simply done as follows:
[pair] = λxyz.zxy

With this encoding, we see that

[pair] a b
∗−→ λz.zab

We now encode [fst] and [snd] as follows.
[fst] = λp.p(λxy.x)

[snd] = λp.p(λxy.y)

Then observe that
[fst] ([pair] a b)

∗−→ [fst] (λz.zab)
∗−→ (λp.p(λxy.x))(λz.zab)
∗−→ (λz.zab)(λxy.x)
∗−→ (λxy.x) a b
∗−→ (λy.a)b
∗−→ a

Similarly, one can show that

[snd] ([pair] a b)
∗−→ b

Now, we can encode Init as
[Init] = [pair][0]([g]x1 · · ·xk)

(here x1 · · ·xk serves as the vector n⃗). The Step function can be encoded as
[Step] = λy.[pair]([succ]([fst] y))([h] ([fst] y) ([snd] y)x1 · · ·xk)

Finally, put
[f] = λxx1 · · ·xk.[snd](x[Step][Init])

Above, x denotes the number of times to iterate, and x1 · · ·xk is the input vector
n⃗. So, we have that

[f][l][n1] · · · [nk]
∗−→ [f(l, n⃗)]

Now, we can encode the scheme of primitive recursion using λ-calculus as fol-
lows.
[PR] =λhgxx1 · · ·xk.[snd](x(λy.[pair]([succ]([fst] y))([h] ([fst] y) ([snd] y)x1 · · ·xk))

([pair][0]([g]x1 · · ·xk)))

So, [PR] [h] [g] will return the encoding of f , where f is defined via primitive
recursion from h and g.

3.2.6. Booleans. The encodings for booleans in λ-calculus are as follows.
[true] = λxy.x

[false] = λxy.y

PROGRAMMING LANGUAGE CONCEPTS 17

3.2.7. If-Then-Else. Consider the following encoding.
[if − then− else] = λbxy.bxy

Then observe that
[if − then− else] [true] M N

∗−→ (λxy.(λpq.p)xy) M N
∗−→ (λxy.(λq.x)y) M N
∗−→ (λxy.x) M N
∗−→ M

Similarly, one can show that

[if − then− else] [false] M N
∗−→ N

As a matter of syntactic sugaring, we write if b then f else g in place of [if −
then− else] b f g.

3.3. Encoding a test for zero. Using our encoding of booleans, we can encode
a test for checking whether the input is zero or not. Consider the following:

[iszero] = λx.x(λz.[false])[true]

Then, we see that
[iszero] [n]

∗−→ [n](λz.[false])[true]
∗−→ (λz.[false])n[true]

So, if n is zero, [iszero] [n] reduces to [true], and otherwise it reduces to [false].

3.4. Encoding µ-recursion. Let g : N× Nk → N be some function. Recall that f
is defined from g via µ-recursion if

f(n⃗) = µn.(g(n, n⃗) = 0)

First, define
W = λy. if ([iszero]([g]yx1 · · ·xk)) then (λw.y) else (λw.w([succ] y)w)

UsingW , we claim that the encoding for f is
[f] = λx1 · · · xn.W [0]W

Observe that
[f][n1] · · · [nk]

∗−→β W ′ [0]W ′

whereW ′ = W [x1 := [n1],, xk := [nk]]. Now suppose g(i, n⃗) = 0. Then we see
that

[g][i][n1] · · · [nk]
∗−→ [0]

and hence
[iszero]([g][i][n1] · · · [nk])

∗−→ [iszero][0]
∗−→ [true]

So,
W ′[i]W ′ ∗−→ (if ([iszero]([g][i][n1] · · · [nk])) then (λw.[i]) else (λw.w([succ] [i])w))W ′

∗−→ (if [true] then (λw.[i]) else (λw.w([succ] [i])w))W ′

∗−→ (λw.[i])W ′

∗−→ [i]

18 SIDDHANT CHAUDHARY

On the other hand, if g(i, n⃗) = m > 0, then one can similarly show that

W ′ [i]W ′ ∗−→ (λw.w([succ][i])w)W ′ ∗−→ W ′ [i+ 1]W ′

So, if g(b, n⃗) = 0 and g(a, n⃗) > 0 for all a < b then

W ′ [0]W ′ ∗−→ W ′ [1]
∗−→ · · · ∗−→ W ′ [b]W ′ ∗−→ [b]

and hence
[f][n1] · · · [nk]

∗−→ [b]

which shows that the given encoding indeed is the correct encoding for f .
In general, the expression

[Mu] = λgx1 · · ·xk.U [0]U

encodes the schema of µ-recursion, where

U = W = λy. if ([iszero]([g]yx1 · · ·xk)) then (λw.y) else (λw.w([succ] y)w)

3.5. Normal Terms. A term Q is said to be normal if there is no R such that
Q

∗−→ R. Another way of saying this is

∀R : Q
∗−→ R =⇒ Q = R

Q is said to be a normal form ofM ifM ∗−→ Q and Q is a normal term.

Proposition 3.1 (Church-Rosser Property). IfM ∗−→ N andM
∗−→ P then there

exists Q such that N ∗−→ Q and P
∗−→ Q.

Proof. To be completed. ■

Corollary 3.1.1. Normal forms are unique.

3.6. Recursive definitions and the Y combinator. Define
Y = λf.(λx.f(xx))(λx.f(xx))

Then we see that

Y F
∗−→ (λx.F (xx))(λx.F (xx))

∗−→ F ((λx.F (xx))(λx.F (xx)))

Also, using only the first half of the reductions above, we see that

F (Y F)
∗−→ F ((λx.F (xx))(λx.F (xx)))

In other words, there is some G such that Y F
∗−→ G and F (Y F)

∗−→ G. In this
case, we say that Y F =β F (Y F). So, we have shown that for any F , Y F is a C
such that C =β F C .

3.7. The Θ combinator. We now consider the following problem: given a λ-
expression F , we need to find an expression C such that

C
∗−→ F C

Define
Θ = (λxy.y(xxy))(λxy.y(xxy))

PROGRAMMING LANGUAGE CONCEPTS 19

We then observe that
ΘF = (λxy.y(xxy))(λxy.y(xxy))F

∗−→ (λy.y((λxy.y(xxy))(λxy.y(xxy))y))F
∗−→ F ((λxy.y(xxy))(λxy.y(xxy))F)

= F (ΘF)

and in short, we can write
ΘF

∗−→ F (ΘF)

Remark 3.1.1. The Y and Θ combinators are also called fixed-point combina-
tors.

3.8. η rule. Observe that if x does not occur free inM , then for all N ,
(λx.(Mx))N → MN

So, λx.(Mx) behaves just like M . So, we have a new reduction rule, called η-
reduction: if x /∈ FV (M), then

λx.(Mx) −→
η

M

4. Recursive functions and Turing Computability

4.1. Exactly what functions are recursive. In the previous sections, we have
shown that for every recursive function f : Nk → N there is a λ-calculus ex-
pression [f] such that

[f][n1] · · · [nk]
∗−→ [f(n1, ..., nk)]

for all n1, ..., nk ∈ N. Further, if [f][n1] · · · [nk]
∗−→ [m] for anym ∈ N, then

m = f(n1, ..., nk)

and this is an easy consequence of the Church-Rosser 3.1 property and the
fact that [n] is in normal form, for any n ∈ N (which is not hard to show). Now,
we will explore exactly what functions are recursive.

4.2. Writing programs for recursive functions. In this section, we will infor-
mally show thatRecursive functionsTuring-computable (i.e, computable byTur-
ing Machines) by showing that we can write programs for recursive functions.

(1) It is trivial to write programs for initial functions: the zero function, the
successor function and the projection function.

(2) Composition: if f : Nk → N is defined by f = g ◦ (h1, ..., hl), then the
following program works for f .

function f(x1, x2, ..., xk){
y1 = h1(x1, x2, ..., xk);
y2 = h2(x1, x2, ..., xk);
...
yl = hl(x1, x2, ..., xk);
return g(y1, y2, ..., yl);

}

20 SIDDHANT CHAUDHARY

(3) Primitive recursion: If f : Nk+1 → N is defined from g : Nk → N and
h : Nk+2 → N by primitive recursion, then the following program works
for f .

result = g(n1, ..., nk) //f(0, n1, ..., nk)
for (i = 0; i < n; i++){ //computing f(i + 1, n1, ..., nk)

result = h(i, result, n1, ..., nk);
}
return result;

(4) µ-recursion: if f : Nk → N is defined from g : Nk+1 → N by µ-recursion,
then we have the following.

i = 0;
while (g(i, n1, ..., nk) > 0) {i = i + 1;}
return i;

So, it follows that a program can be written for any recursive function.

4.3. Primitive Recursive Relations. A relation R ⊆ Nk is said to be primitive
recursive if its characteristic function cR : Nk → {0, 1} is primitive recursive.

Example 4.1. The relation iszero ⊆ N is primitive recursive, since its charac-
teristic function ciszero is primitive recursive:

ciszero(0) = succ(π1
1(0))

ciszero(n+ 1) = Z(n)

Example 4.2. The relation x ≤ y on natural numbers is also primitive.

	1. Object Oriented Programming in Java
	1.1. Setting up Java
	1.2. Basics
	1.3. Running Programs
	1.4. Classes and Objects
	1.5. Public vs Private
	1.6. Static Components
	1.7. Making read-only variables
	1.8. Constructors
	1.9. Strings in Java
	1.10. Arrays
	1.11. Subclasses
	1.12. Multiple Inheritance
	1.13. Abstract Classes
	1.14. Interfaces
	1.15. Generic Programming

	2. Lambda Calculus
	2.1. Syntax
	2.2. The computation rule
	2.3. Free and Bound Occurrences
	2.4. Variable Capture
	2.5. Applying the computation rule in context
	2.6. Encoding arithmetic in -calculus
	2.7. Encoding Arithmetic Functions

	3. Computability in Lambda Calculus
	3.1. Recursive Functions
	3.2. Encoding Recursive Functions
	3.3. Encoding a test for zero
	3.4. Encoding -recursion
	3.5. Normal Terms
	3.6. Recursive definitions and the Y combinator
	3.7. The combinator
	3.8. rule

	4. Recursive functions and Turing Computability
	4.1. Exactly what functions are recursive
	4.2. Writing programs for recursive functions
	4.3. Primitive Recursive Relations

