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0.1 Problem 1.

Problem Statement. Consider the MDP M = ⟨S,A, P,R⟩, where S = {s1, s2, s3} and
A = {a1, a2}, with the transition probabilities given by the

s1 s2 s3
(s1, a1) 1 0 0

(s1, a2) 0 0.5 0.5

(s2, a1) 0 1 0

(s2, a2) 0.3 0 0.7

(s3, a1) 0 0 1

(s3, a2) 0.1 0.9 0

and the rewards are given by

a1 a2
s1 1 2

s2 0 3

s3 1 4

(a) Write down the state space S, action space A, state transition matrix P and the
reward vector R of M .

(b) How many policies does M have? Briefly explain your answer.
(c) Let π2 denote the policy that takes action a1 in states s1 and s2 and action a2 in

state s3. Define π2 using symbols. Draw π2 as an MDP.

Solution. First, consider part (a). The state space is S = {s1, s2, s3} and the action
space is A = {a1, a2}. We’ve already written down the state transition matrix P and the
reward vector R.

Now, we come to part (b). A policy is just a map π : S → A; so, to count the number
of policies, we need to count the number of such maps. Clearly, |S| = 3 and |A| = 2, so
there are 23 = 8 such functions, and hence there are 8 policies for the MDP M .
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Finally, we come to (c). The policy π2 is defined using symbols as follows.

π(s1) = a1

π(s2) = a1

π(s3) = a2

The corresponding MDP for this policy can be easily drawn.

0.2 Problem 2.

Problem Statement. We have seen four definitions of V π in class. Write down all four
definitions formally using the right notation.

Solution. The first definition we saw of V π for a policy π is the expected discounted
reward over an infinite time horizon; formally, we defined for a state s ∈ S

V π(s) := E

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]

We then looked at the matrix equation for V π, which is the following.

V π = Rπ + γP πV π

Here, Rπ is the vector whose coordinates are the rewards R(s, π(s)) for s ∈ S and P π is
the |S| × |S| matrix whose sth row is the probability vector associated to the state-action
pair (s, π(s)). From the above, we can see that

(I − γP π)V π = Rπ

and it turns out that the matrix I − γP π is invertible, which gives us

V π = (I − γP π)−1Rπ

We can consider this to be another definition of V π.

Next, we expanded the RHS of the equation V π = Rπ + γP πV π to obtain

V π = Rπ + γP πRπ + γ2(P π)2Rπ + · · ·

=

( ∞∑
t=0

γt(P π)t

)
Rπ

The matrix
∑∞

t=0 γ
t(P π)t is denoted Dπ, and is called the visitation frequency matrix.

So, we get

V π = DπRπ

This in turn can be treated as another definition of V π.

Finally, let Bπ be the Bellman backup operator for the policy π. We have seen in class
that V π is a fixed point of Bπ, and that Bπ enjoys the monotonicity and contraction
properties; using these, we showed for any vector v ∈ R|S|, we have

V π = lim
k→∞

Bk
π(v)

We can also treat this as another definition of V π.
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0.3 Problem 3.

Problem Statement. Compute the value vector of policy π2 in Problem 1 (c) above
using the recursive formula

V π(s) = R(s, π(s)) + γ
∑
s′

Ps,s′(π(s))V
π(s′)

for all s ∈ S with γ = 0.9.

Solution. Let V π2(s1) = x, V π2(s2) = y and V π2(s3) = z. We want to compute the
vector (x, y, z). Using the above equation for V π1 , we get the following three equations.

x = R(s1, a1) + γPs1,s1(a1)x+ γPs1,s2(a1)y + γPs1,s3(a1)z

y = R(s2, a1) + γPs2,s1(a1)x+ γPs2,s2(a1)y + γPs2,s3(a1)z

z = R(s3, a2) + γPs3,s1(a2)x+ γPs3,s2(a2)y + γPs3,s3(a2)z

Plugging in the values of the probabilities and the rewards, we get the following equations.

x = 1 + γx

y = 0 + γy

z = 4 + γ0.1x+ γ0.9y

Solving the above, we get

x =
1

1− γ
= 10

y = 0

z = 4 +
γ

10
· 1

1− γ
= 4.9

So, we get that V π2 = (10, 0, 4.9).

0.4 Problem 4.

Problem Statement. We have seen that QV (s, a) is the one-step backup of action a at
state s with respect to vector V , i.e

QV (s, a) = R(s, a) + γ
∑
s′

Ps,s′(a)V (s′)

(a) Compute the Q-values of all state-action pairs of the MDP M with respect to V π2

computed in Problem 3 above.
(b) Find a policy π′ that is better than policy π2 for MDP M just by using the Q-values

computed above. Note: Policy π′ is better than policy π if the value vector of π′ is
greater than the value vector of π.

Solution. For (a), we need to compute the Q-values of all state-action pairs. This is
straightforward. Recall that we computed V π2 = (10, 0, 4.9).

QV π
2 (s1, a1) = R(s1, a1) + γPs1,s1(a1)V

π2(s1) + γPs1,s2(a1)V
π2(s2) + γPs1,s3(a1)V

π2(s3)

QV π
2 (s1, a2) = R(s1, a2) + γPs1,s1(a2)V

π2(s1) + γPs1,s2(a2)V
π2(s2) + γPs1,s3(a2)V

π2(s3)

QV π
2 (s2, a1) = R(s2, a1) + γPs2,s1(a1)V

π2(s1) + γPs2,s2(a1)V
π2(s2) + γPs2,s3(a1)V

π2(s3)

QV π
2 (s2, a2) = R(s2, a2) + γPs2,s1(a2)V

π2(s1) + γPs2,s2(a2)V
π2(s2) + γPs2,s3(a2)V

π2(s3)

QV π
2 (s3, a1) = R(s3, a1) + γPs3,s1(a1)V

π2(s1) + γPs3,s2(a1)V
π2(s2) + γPs3,s3(a1)V

π2(s3)

QV π
2 (s3, a2) = R(s3, a2) + γPs3,s1(a2)V

π2(s1) + γPs3,s2(a2)V
π2(s2) + γPs3,s3(a2)V

π2(s3)
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Plugging in all the values, we get the following.

QV π2
(s1, a1) = 1 + 0.9 · 1 · 10 = 10

QV π2
(s1, a2) = 2 + 0.9 · 0.5 · 0 + 0.9 · 0.5 · 4.9 = 4.205

QV π2
(s2, a1) = 0 + 0.9 · 0 = 0

QV π2
(s2, a2) = 3 + 0.9 · 0.3 · 10 + 0.9 · 0.7 · 4.9 = 8.787

QV π2
(s3, a1) = 1 + 0.9 · 4.9 = 5.41

QV π2
(s3, a2) = 4 + 0.9 · 0.1 · 10 + 0.9 · 0.9 · 0 = 4.9

So, we’ve computed all the required Q-values.

Now we come to part (b). Using the Q-values we’ve just computed, we will try to find
a policy π′ that is better than policy π2. Note that for state s2, the Q-value QV π

2 (s2, a2)
is greater than the Q-value QV π

2 (s2, a1) (which is 0). So, consider the policy π′ which is
equal to policy π2 on states s1 and s3, but for state s2 it takes action a2; in other words,
consider the policy π′ defined by

π′(s1) = a1

π′(s2) = a2

π′(s3) = a2

As we have seen in class, this policy is better that π2, because it attains a higher Q-value
at state s2; more precisely, we have Bπ′(V π2) ≥ V π2 .

0.5 Problem 5.

Problem Statement. We have seen the Bellman backup operator Bπ and its properties
in class. Write down the definition of the operator and its two properties formally using
the right notation.

Solution. Let π be any policy for an MDP. The Bellman backup operator Bπ is defined
as a mapping R|S| → R|S| using the formula

Bπ(v) = Rπ + γP πv

for v ∈ R|S|. Here, Rπ is the vector whose sth coordinate is the reward R(s, π(s));
γ ∈ (0, 1) and P π is the |S|×|S| matrix whose sth row is the probability vector associated
to the state-action pair (s, π(s)). In class, we have shown that Bπ satisfies two important
properties: monotonicity and contraction. We now state what these mean.
(1) (Monotonicity) Let ≤ be the partial order on R|S| which compares two vectors

component-wise. Then, if u, v ∈ R|S| such that u ≤ v, then it is true that

Bπ(u) ≤ Bπ(v)

(2) (Contraction) Consider the ||·||∞ norm on R|S|. Then, for any u, v ∈ R|S|, it holds
that

||Bπ(u)−Bπ(v)||∞ ≤ γ ||u− v||∞
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0.6 Problem 6.

Problem Statement. We know that the visitation frequency matrix Dπ of policy π is

Dπ = I + γP π + γ2(P π)2 + γ3(P π)3 + · · ·(1)

(a) Write down the state-transition matrix P π2 of policy π2 as in Problem 1 (c) above.
Label the rows and columns of P π2 . Compute Dπ2 using equation (1) with γ = 0.9.

(b) What is the sum of the entries along the three rows of Dπ2? What is the sum of
the entries along any row of Dπ in general?

(c) Compute V π2 using Dπ2 with γ = 0.9.

Solution. First consider part (a). The state-transition matrix P π2 of policy π2 is given
by the following.

P π2 =

s1 s2 s3
(s1, π2(s1) = a1) 1 0 0

(s2, π2(s2) = a1) 0 1 0

(s3, π2(s3) = a2) 0.1 0.9 0

Next, we will compute Dπ2 using equation (1). To use this equation, we will have to
compute the entries of the matrix (P π2)k for any k ≥ 1. But, it is easy to see that in our
case

(P π2)2 = P π2

by just computing the square of the matrix. This implies that (P π2)k = P π2 for all k ≥ 1.
So, we get that

Dπ2 = I +

∞∑
t=1

γtP π2

= I +
γ

1− γ
P π2

=

10 0 0
0 10 0
0.9 8.1 1


Let us now focus on part (b), i.e we will compute the sum of the entries along any row
of Dπ. Let s ∈ S, and we will compute the sum of all entries in the sth row of Dπ. We
want to compute the sum of all entries in the sth row of the matrix

∞∑
t=0

γt(P π)t

Let t ≥ 0 be any integer, and consider the matrix γt(P π)t. Note that the sth row of the
matrix (P π)t is a probability vector; the s′th entry in this row is just the probability of
reaching state s′ under the policy π in t steps starting from the state s. So, we see that
the sum of all entries in the sth row of (P π)t is 1, and hence, the sum of all entries in the
sth row of γt(P π)t is γt. So, we see that the sum of all entries in the sth row of Dπ is
just the sum

∞∑
t=0

γt =
1

1− γ
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Clearly, this agrees with the sum of the rows of the matrix Dπ2 we’ve computed above.

We finally come to part (c). We know that

V π2 = Dπ2R
π2

=

10 0 0
0 10 0
0.9 8.1 1

10
4


=

100
4.9


This matches with the value of V π2 we computed before.

0.7 Problem 7.

Problem Statement. Suppose we added a constant vector C =
[
c c · · · c

]T
with

mn components to the reward vector R of an MDP with n states and m actions. How
does this affect the value vectors of policies? Does it change the optimal policy?

Solution. For any policy π, let V π
new denote the new value vector (i.e the value vector

for policy π under the modified MDP). Also, let 1|S| be the |S| × 1 column vector, all of
whose entries are 1. We will show the following two claims.
(1) For all policies π

V π
new = V π +

c

1− γ
1|S|

(2) If π, π′ are policies such that V π ≤ V π′
, then

V π
new ≤ V π′

new

First let us show (1). Let π be any policy. Let Rπ
new be the new reward vector, i.e

Rπ
new = Rπ + c1|S|. We know that V π

new satisfies the equation

V π
new = DπRπ

new

where Dπ is the visitation frequency matrix. Now, observe that

DπRπ
new = Dπ(Rπ + c1|S|)

= DπRπ + cDπ1|S|

= V π + cDπ1|S|

From Problem 6 (b), we know that the sum of all entries along any row of Dπ is 1
1−γ ;

this implies that cDπ1|S| =
c

1−γ1|S|, and hence we obtain that

V π
new = V π +

c

1− γ
1|S|

In other words, each coordinate of V π will be increased by c
1−γ in the modified MDP.

Next, let’s focus on (2). So, let π, π′ be policies such that V π ≤ V π′
. Combining this with

(1), we clearly see that

V π
new = V π +

c

1− γ
1|S|

≤ V π′
+

c

1− γ
1|S|

= V π′
new
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and this proves (2). Clearly, (2) implies that the set of optimal policies doesn’t change in
the new MDP.
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