Reinforcement Learning: HW 2

Siddhant Chaudhary

Contents

0.1	Problem 1.				•				•	•	•			•				•		•	1
0.2	Problem 2.				•				•	•	•			•				•		•	2
0.3	Problem 3.																				3
0.4	Problem 4.																				4
0.5	Problem 5.				•				•	•											5

0.1 Problem 1.

Problem Statement. Let $M = \langle S, A, P, R \rangle$ be the same MDP as in **Problem 1** of the first homework. Let π be the stochastic policy that takes action a_1 with probability 0.5 and action a_2 with probability 0.5 in all the three states. In our notation, we have

$$\pi(a_1|s_1) = 0.5, \quad \pi(a_2|s_1) = 0.5$$

$$\pi(a_1|s_2) = 0.5, \quad \pi(a_2|s_2) = 0.5$$

$$\pi(a_1|s_3) = 0.5, \quad \pi(a_2|s_3) = 0.5$$

Give the state-transition matrix and the reward vector for policy π .

Solution. Just for clarity, we recall that the transition-probability matrix is given by

	s_1	s_2	s_3
(s_1, a_1)	1	0	0
(s_1, a_2)	0	0.5	0.5
(s_2, a_1)	0	1	0
(s_2, a_2)	0.3	0	0.7
(s_3, a_1)	0	0	1
(s_3, a_2)	0.1	0.9	0

and the rewards are

	a_1	a_2
s_1	1	2
s_2	0	3
s_3	1	4

First, we compute the state-transition matrix P^{π} for the stochastic policy π . Let s be any state. As we have seen in class, the sth row of the matrix P^{π} will be the weighted sum of the rows of the transition matrix indexed by the state-action pairs $(s, a)_{a \in A}$, where the corresponding weights will be $\pi(a|s)_{a \in A}$; in other words, if M_a denotes the ath row of some matrix M, then we have

$$P_s^{\pi} = \sum_{a \in A} \pi(a|s) P_{(s,a)}$$

Using this, we can immediately compute the matrix P^{π} to get the following.

$$\begin{aligned} P_{s_1}^{\pi} &= 0.5 \begin{bmatrix} 1 & 0 & 0 \end{bmatrix} + 0.5 \begin{bmatrix} 0 & 0.5 & 0.5 \end{bmatrix} \\ P_{s_2}^{\pi} &= 0.5 \begin{bmatrix} 0 & 1 & 0 \end{bmatrix} + 0.5 \begin{bmatrix} 0.3 & 0 & 0.7 \end{bmatrix} \\ P_{s_3}^{\pi} &= 0.5 \begin{bmatrix} 0 & 0 & 1 \end{bmatrix} + 0.5 \begin{bmatrix} 0.1 & 0.9 & 0 \end{bmatrix} \end{aligned}$$

and hence we get

$$P^{\pi} = \begin{bmatrix} 0.5 & 0.25 & 0.25 \\ 0.15 & 0.5 & 0.35 \\ 0.05 & 0.45 & 0.5 \end{bmatrix}$$

Next, we compute the reward vector R^{π} for the policy. Again, let $s \in S$ be some state. The formula for sth coordinate of R^{π} is

$$R^{\pi}(s) = \sum_{a \in A} \pi(a|s) R(s, a)$$

and so we get the following.

$$R^{\pi}(s_1) = 0.5 \cdot 1 + 0.5 \cdot 2 = 1.5$$

$$R^{\pi}(s_2) = 0.5 \cdot 0 + 0.5 \cdot 3 = 1.5$$

$$R^{\pi}(s_3) = 0.5 \cdot 1 + 0.5 \cdot 4 = 2.5$$

So, the reward vector is $R^{\pi} = (1.5, 1.5, 2.5).$

0.2 Problem 2.

Problem Statement. Write down the primal and dual LPs for the MDP given in **Problem 1**. Let your LPs be in standard form with variables lined up on the left and constants on the right of the constraints. Please use v_1, v_2 and v_3 as primal variables and d_{ij} as the dual variable for the constraint corresponding to state s_i and action a_j .

Solution. We will have three primal variables v_1 , v_2 and v_3 ; the optimal values for these variables will correspond to the coordinates $V^*(s_1)$, $V^*(s_2)$ and $V^*(s_3)$ of the optimal value vector. Since we have $3 \times 2 = 6$ state-action pairs, we will have a total of six constraints. From class, we know that the constraints are of the form

$$V^*(s) \ge R(s,a) + \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(a) V^*(s') \qquad \forall s, a$$

and the objective is to minimize the sum $\sum_{s \in S} V^*(s)$. So, in our case, the primal LP is the following.

Rearranging the above equations to standard form, we get the following.

Minimize: $v_1 + v_2 + v_3$ $(1-\gamma)v_1$ Subject to: 1 - $0.5\gamma v_3$ 2 $0.5\gamma v_2$ v_1 0 $(1-\gamma)v_2$ $-0.3\gamma v_1$ $0.7\gamma v_3$ 3 v_2 + $(1-\gamma)v_3$ 1 $-0.1\gamma v_1$ $0.9\gamma v_2$

Now, let us write down the dual of this LP. Our variables will be d_{ij} for $1 \le i \le 3$, $1 \le j \le 2$. The dual LP is the following.

0.3 Problem 3.

Problem Statement. We have seen the Bellman optimality operator B and its properties in class. Write down the definition of the operator and its two properties formally using the right notation. Prove the contraction property of B.

Solution. Let S be the set of states of the MDP in consideration. The Bellman optimality operator B is defined as a map $B : \mathbf{R}^{|S|} \to \mathbf{R}^{|S|}$ given by the following.

$$B[V](s) := \max_{a \in A} \left[R(s,a) + \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(a) V(s') \right] = \max_{a \in A} Q^V(s,a)$$

This operator satisfies the following two properties.

- (1) (Monotonicity) If $u, v \in \mathbf{R}^{|S|}$ are such that $u \leq v$, then $B[u] \leq B[v]$.
- (2) (Contraction) If $u, v \in \mathbf{R}^{|S|}$ are any vectors, then

$$||B[u] - B[v]||_{\infty} \le \gamma ||u - v||_{\infty}$$

where $\gamma \in (0, 1)$ is the discount factor.

Let's prove the contraction property of B. Let $s \in S$ be any state. We will show that

$$|B[u](s) - B[v](s)| \le \gamma ||u - v||_{\infty}$$

Clearly, the contraction property will follow from this (since we are dealing with the $||\cdot||_{\infty}$ norm). Now, let a_u and a_v be actions such that $B[u](s) = Q^u(s, a_u)$ and $B[v](s) = Q^v(s, a_v)$. We have the following two cases.

(1) In the first case, suppose $Q^u(s, a_u) \ge Q^v(s, a_v)$. Since $Q^v(s, a_u) \le Q^v(s, a_v)$, in this

case we see that

$$\begin{split} |B[u](s) - B[v](s)| &= |Q^{u}(s, a_{u}) - Q^{v}(s, a_{v})| \\ &\leq |Q^{u}(s, a_{u}) - Q^{v}(s, a_{u})| \\ &= \left| R(s, a_{u}) + \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(a_{u})u(s') - R(s, a_{u}) - \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(a_{u})v(s') \right| \\ &= \left| \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(a_{u})[u(s') - v(s')] \right| \\ &\leq \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(a_{u}) ||u - v||_{\infty} \\ &= \gamma ||u - v||_{\infty} \end{split}$$

(2) In the second case, we have $Q^u(s, a_u) < Q^v(s, a_v)$. But this case is similar to the first case, with the roles of u and v reversed.

This completes the proof.

0.4 Problem 4.

Problem Statement. We have seen the definitions of $V^{\pi}(s)$, $Q^{V}(s, a)$, $B_{\pi}[V](s)$ and B[V](s) several times in class. Review the definitions and answer the following questions.

(a) Give the equivalent Q-value and Bellman backup value for $V^{\pi}(s)$, i.e

$$V^{\pi}(s) = Q^{?}(s,?) = B_{?}[?](s)$$

(b) Give the equivalent Q-value and Bellman backup value for $V^*(s)$, i.e

$$V^*(s) = Q^?(s,?) = B_?[?](s)$$

(c) Let π and π' be two policies of an MDP. We know that if π' is such that $Q^{\pi}(s, \pi'(s)) \ge V^{\pi}(s)$ for all s, then $V^{\pi'} \ge V^{\pi}$. What can we say about $V^{\pi'}$ and V^{π} if $Q^{\pi}(s, \pi'(s)) \le V^{\pi}(s)$ for all s?

Solution. For part (a), we have

$$V^{\pi}(s) = R(s, \pi(s)) + \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(\pi(s)) V^{\pi}(s')$$

= $Q^{V^{\pi}}(s, \pi(s))$
= $B_{\pi}[V^{\pi}](s)$

For part (b), let π^* be an optimal policy. Then we have

$$V^{*}(s) = R(s, \pi^{*}(s)) + \gamma \sum_{s' \in S} \mathbf{P}_{s,s'}(\pi^{*}(s))V^{*}(s')$$

= $Q^{V^{*}}(s, \pi^{*}(s))$
= $B_{\pi^{*}}[V^{*}](s)$

Finally, we come to part (c). Note that the condition $Q^{\pi}(s, \pi'(s)) \leq V^{\pi}(s)$ for all s implies that

$$B_{\pi'}[V^{\pi}](s) \le V^{\pi}(s) \qquad \forall s \in S$$

which is just saying that

$$B_{\pi'}(V^{\pi}) \le V^{\pi}$$

Now, by the monotonicity of the operator $B^{\pi'}$, this implies that for all $k \geq 1$ we have

 $B^k_{\pi'}(V^\pi) \le V^\pi$

But, we also know that $V^{\pi'} = \lim_{k \to \infty} B^k_{\pi'}(V^{\pi})$, and hence this clearly implies that $V^{\pi'} \leq V^{\pi}$.

0.5 Problem 5.

Problem Statement. Let π be a greedy policy with respect to vector $V \in \mathbf{R}^n$. Show that if $||B[V] - V||_{\infty} \leq \epsilon$ then $||V - V^{\pi}||_{\infty} \leq \frac{\epsilon}{1-\gamma}$, where $\gamma \in (0, 1)$.

Solution. Suppose $||B[V] - V||_{\infty} \leq \epsilon$. Since π is a greedy policy with respect to V, we know that

$$\pi(s) = \operatorname{argmax}_{a \in A} Q^V(s, a)$$

for each $s \in S$. Now, let $s \in S$ be any state. Then, note that

$$B_{\pi}[V](s) = Q^{V}(s, \pi(s))$$
(By definition of B_{π})
$$= \max_{a \in A} Q^{V}(s, a)$$
(Since π is greedy w.r.t V)
$$= B[V](s)$$

where B_{π} is the Bellman backup operator of the policy π . Clearly, this means that

$$B_{\pi}[V] = B[V]$$

and hence we see that

(1)
$$||B_{\pi}[V] - V||_{\infty} \le \epsilon$$

Now, we know that V^{π} is a fixed point of B_{π} , i.e $B_{\pi}[V^{\pi}] = V^{\pi}$. So, by the contraction property of B_{π} , we see that

(2)
$$||B_{\pi}[V] - V^{\pi}||_{\infty} = ||B_{\pi}[V] - B_{\pi}[V^{\pi}]||_{\infty} \le \gamma ||V - V^{\pi}||_{\infty}$$

Also, by the triangle inequality, we know that

(3)
$$\gamma ||V - V^{\pi}||_{\infty} \leq \gamma ||B_{\pi}[V] - V^{\pi}||_{\infty} + \gamma ||B^{\pi}[V] - V||_{\infty}$$

(4) $\leq \gamma ||B_{\pi}[V] - V^{\pi}||_{\infty} + \epsilon \gamma$ (By (1))

Combining the above equation with (3), we obtain

$$\gamma \left\| V - V^{\pi} \right\|_{\infty} \le \gamma^{2} \left\| V - V^{\pi} \right\|_{\infty} + \epsilon \gamma$$

Cancelling γ out from both sides, the claim follows.