Reinforcement Learning: HW 2

Siddhant Chaudhary

Contents

0.1 Problem 1. 1
0.2 Problem 2. 2
0.3 Problem 3. 3
0.4 Problem 4. 4
0.5 Problem 5. 5

0.1 Problem 1.

Problem Statement. Let $M=\langle S, A, P, R\rangle$ be the same MDP as in Problem 1 of the first homework. Let π be the stochastic policy that takes action a_{1} with probabiltiy 0.5 and action a_{2} with probability 0.5 in all the three states. In our notation, we have

$$
\begin{array}{ll}
\pi\left(a_{1} \mid s_{1}\right)=0.5, & \pi\left(a_{2} \mid s_{1}\right)=0.5 \\
\pi\left(a_{1} \mid s_{2}\right)=0.5, & \pi\left(a_{2} \mid s_{2}\right)=0.5 \\
\pi\left(a_{1} \mid s_{3}\right)=0.5, & \pi\left(a_{2} \mid s_{3}\right)=0.5
\end{array}
$$

Give the state-transition matrix and the reward vector for policy π.

Solution. Just for clarity, we recall that the transition-probability matrix is given by

	s_{1}	s_{2}	s_{3}
$\left(s_{1}, a_{1}\right)$	1	0	0
$\left(s_{1}, a_{2}\right)$	0	0.5	0.5
$\left(s_{2}, a_{1}\right)$	0	1	0
$\left(s_{2}, a_{2}\right)$	0.3	0	0.7
$\left(s_{3}, a_{1}\right)$	0	0	1
$\left(s_{3}, a_{2}\right)$	0.1	0.9	0

and the rewards are

	a_{1}	a_{2}
s_{1}	1	2
s_{2}	0	3
s_{3}	1	4

First, we compute the state-transition matrix P^{π} for the stochastic policy π. Let s be any state. As we have seen in class, the s th row of the matrix P^{π} will be the weighted sum of the rows of the transition matrix indexed by the state-action pairs $(s, a)_{a \in A}$, where the corresponding weights will be $\pi(a \mid s)_{a \in A}$; in other words, if M_{a} denotes the a th row of some matrix M, then we have

$$
P_{s}^{\pi}=\sum_{a \in A} \pi(a \mid s) P_{(s, a)}
$$

Using this, we can immediately compute the matrix P^{π} to get the following.

$$
\begin{aligned}
& P_{s_{1}}^{\pi}=0.5\left[\begin{array}{lll}
1 & 0 & 0
\end{array}\right]+0.5\left[\begin{array}{lll}
0 & 0.5 & 0.5
\end{array}\right] \\
& P_{s_{2}}^{\pi}=0.5\left[\begin{array}{lll}
0 & 1 & 0
\end{array}\right]+0.5\left[\begin{array}{lll}
0.3 & 0 & 0.7
\end{array}\right] \\
& P_{s_{3}}^{\pi}=0.5\left[\begin{array}{lll}
0 & 0 & 1
\end{array}\right]+0.5\left[\begin{array}{lll}
0.1 & 0.9 & 0
\end{array}\right]
\end{aligned}
$$

and hence we get

$$
P^{\pi}=\left[\begin{array}{ccc}
0.5 & 0.25 & 0.25 \\
0.15 & 0.5 & 0.35 \\
0.05 & 0.45 & 0.5
\end{array}\right]
$$

Next, we compute the reward vector R^{π} for the policy. Again, let $s \in S$ be some state. The formula for s th coordinate of R^{π} is

$$
R^{\pi}(s)=\sum_{a \in A} \pi(a \mid s) R(s, a)
$$

and so we get the following.

$$
\begin{aligned}
& R^{\pi}\left(s_{1}\right)=0.5 \cdot 1+0.5 \cdot 2=1.5 \\
& R^{\pi}\left(s_{2}\right)=0.5 \cdot 0+0.5 \cdot 3=1.5 \\
& R^{\pi}\left(s_{3}\right)=0.5 \cdot 1+0.5 \cdot 4=2.5
\end{aligned}
$$

So, the reward vector is $R^{\pi}=(1.5,1.5,2.5)$.

0.2 Problem 2.

Problem Statement. Write down the primal and dual LPs for the MDP given in Problem 1. Let your LPs be in standard form with variables lined up on the left and constants on the right of the constraints. Please use v_{1}, v_{2} and v_{3} as primal variables and $d_{i j}$ as the dual variable for the constraint corresponding to state s_{i} and action a_{j}.

Solution. We will have three primal variables v_{1}, v_{2} and v_{3}; the optimal values for these variables will correspond to the coordinates $V^{*}\left(s_{1}\right), V^{*}\left(s_{2}\right)$ and $V^{*}\left(s_{3}\right)$ of the optimal value vector. Since we have $3 \times 2=6$ state-action pairs, we will have a total of six constraints. From class, we know that the constraints are of the form

$$
V^{*}(s) \geq R(s, a)+\gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}(a) V^{*}\left(s^{\prime}\right) \quad \forall s, a
$$

and the objective is to minimize the sum $\sum_{s \in S} V^{*}(s)$. So, in our case, the primal LP is the following.

Minimize:	$v_{1}+v_{2}+v_{3}$								
Subject to:	v_{1}	\geq	1	$+$	$\gamma \cdot 1 \cdot v_{1}$	$+$	$\gamma \cdot 0 \cdot v_{2}$	$+$	$\gamma \cdot 0 \cdot v_{3}$
	v_{1}	\geq	2	+	$\gamma \cdot 0 \cdot v_{1}$	+	$\gamma \cdot 0.5 \cdot v_{2}$	$+$	$\gamma \cdot 0.5 \cdot v_{3}$
	v_{2}	\geq	0	+	$\gamma \cdot 0 \cdot v_{1}$	$+$	$\gamma \cdot 1 \cdot v_{2}$	$+$	$\gamma \cdot 0 \cdot v_{3}$
	v_{2}	\geq	3	+	$\gamma \cdot 0.3 \cdot v_{1}$	+	$\gamma \cdot 0 \cdot v_{2}$	$+$	$\gamma \cdot 0.7 \cdot v_{3}$
	v_{3}	\geq	1	+	$\gamma \cdot 0 \cdot v_{1}$	$+$	$\gamma \cdot 0 \cdot v_{2}$	$+$	$\gamma \cdot 1 \cdot v_{3}$
	v_{3}	\geq	4	+	$\gamma \cdot 0.1 \cdot v_{1}$	+	$\gamma \cdot 0.9 \cdot v_{2}$	$+$	$\gamma \cdot 0 \cdot v_{3}$
	v_{1}, v_{2}, v_{3}		R						

Rearranging the above equations to standard form, we get the following.

$$
\begin{array}{ccccccc}
\text { Minimize: } & v_{1}+v_{2}+v_{3} & & & & \\
\text { Subject to: } & (1-\gamma) v_{1} & & & & & \\
& v_{1} & - & 0.5 \gamma v_{2} & - & 0.5 \gamma v_{3} & \geq 2 \\
& & & (1-\gamma) v_{2} & & & \\
& -0.3 \gamma v_{1} & + & v_{2} & - & 0.7 \gamma v_{3} & \geq 3 \\
& & & & & \\
& & & & \\
& -0.1-\gamma) v_{3} & \geq 1 \\
& -0.9 \gamma v_{2} & + & v_{3} & \geq 4
\end{array}
$$

Now, let us write down the dual of this LP. Our variables will be $d_{i j}$ for $1 \leq i \leq 3$, $1 \leq j \leq 2$. The dual LP is the following.

$$
\text { Maximize: } \quad d_{11}+2 d_{12}+3 d_{22}+d_{31}+4 d_{32}
$$

Subject to: $\quad(1-\gamma) d_{11}+d_{12}+0 \cdot d_{21}-0.3 \gamma d_{22}+0 \cdot d_{31}-0.1 \gamma d_{32}=1$

$$
0 \cdot d_{11}-0.5 \gamma d_{12}+(1-\gamma) d_{21}+d_{22}+0 \cdot d_{31}-0.9 \gamma d_{32}=1
$$

$$
0 \cdot d_{11}-0.5 \gamma d_{12}+0 \cdot d_{21}-0.7 \gamma d_{22}+(1-\gamma) d_{31}+d_{32}=1
$$

$d_{11}, d_{12}, d_{21}, d_{22}, d_{31}, d_{32} \quad \geq 0$

0.3 Problem 3.

Problem Statement. We have seen the Bellman optimality operator B and its properties in class. Write down the definition of the operator and its two properties formally using the right notation. Prove the contraction property of B.

Solution. Let S be the set of states of the MDP in consideration. The Bellman optimality operator B is defined as a map $B: \mathbf{R}^{|S|} \rightarrow \mathbf{R}^{|S|}$ given by the following.

$$
B[V](s):=\max _{a \in A}\left[R(s, a)+\gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}(a) V\left(s^{\prime}\right)\right]=\max _{a \in A} Q^{V}(s, a)
$$

This operator satisfies the following two properties.
(1) (Monotonicity) If $u, v \in \mathbf{R}^{|S|}$ are such that $u \leq v$, then $B[u] \leq B[v]$.
(2) (Contraction) If $u, v \in \mathbf{R}^{|S|}$ are any vectors, then

$$
\|B[u]-B[v]\|_{\infty} \leq \gamma\|u-v\|_{\infty}
$$

where $\gamma \in(0,1)$ is the discount factor.
Let's prove the contraction property of B. Let $s \in S$ be any state. We will show that

$$
|B[u](s)-B[v](s)| \leq \gamma\|u-v\|_{\infty}
$$

Clearly, the contraction property will follow from this (since we are dealing with the $\|\cdot\|_{\infty}$ norm). Now, let a_{u} and a_{v} be actions such that $B[u](s)=Q^{u}\left(s, a_{u}\right)$ and $B[v](s)=$ $Q^{v}\left(s, a_{v}\right)$. We have the following two cases.
(1) In the first case, suppose $Q^{u}\left(s, a_{u}\right) \geq Q^{v}\left(s, a_{v}\right)$. Since $Q^{v}\left(s, a_{u}\right) \leq Q^{v}\left(s, a_{v}\right)$, in this
case we see that

$$
\begin{aligned}
|B[u](s)-B[v](s)| & =\left|Q^{u}\left(s, a_{u}\right)-Q^{v}\left(s, a_{v}\right)\right| \\
& \leq\left|Q^{u}\left(s, a_{u}\right)-Q^{v}\left(s, a_{u}\right)\right| \\
& =\left|R\left(s, a_{u}\right)+\gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}\left(a_{u}\right) u\left(s^{\prime}\right)-R\left(s, a_{u}\right)-\gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}\left(a_{u}\right) v\left(s^{\prime}\right)\right| \\
& =\left|\gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}\left(a_{u}\right)\left[u\left(s^{\prime}\right)-v\left(s^{\prime}\right)\right]\right| \\
& \leq \gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}\left(a_{u}\right)\|u-v\|_{\infty} \\
& =\gamma\|u-v\|_{\infty}
\end{aligned}
$$

(2) In the second case, we have $Q^{u}\left(s, a_{u}\right)<Q^{v}\left(s, a_{v}\right)$. But this case is similar to the first case, with the roles of u and v reversed.
This completes the proof.

0.4 Problem 4.

Problem Statement. We have seen the definitions of $V^{\pi}(s), Q^{V}(s, a), B_{\pi}[V](s)$ and $B[V](s)$ several times in class. Review the definitions and answer the following questions.
(a) Give the equivalent Q-value and Bellman backup value for $V^{\pi}(s)$, i.e

$$
V^{\pi}(s)=Q^{?}(s, ?)=B_{?}[?](s)
$$

(b) Give the equivalent Q-value and Bellman backup value for $V^{*}(s)$, i.e

$$
V^{*}(s)=Q^{?}(s, ?)=B_{?}[?](s)
$$

(c) Let π and π^{\prime} be two policies of an MDP. We know that if π^{\prime} is such that $Q^{\pi}\left(s, \pi^{\prime}(s)\right) \geq$ $V^{\pi}(s)$ for all s, then $V^{\pi^{\prime}} \geq V^{\pi}$. What can we say about $V^{\pi^{\prime}}$ and V^{π} if $Q^{\pi}\left(s, \pi^{\prime}(s)\right) \leq$ $V^{\pi}(s)$ for all s ?

Solution. For part (a), we have

$$
\begin{aligned}
V^{\pi}(s) & =R(s, \pi(s))+\gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}(\pi(s)) V^{\pi}\left(s^{\prime}\right) \\
& =Q^{V^{\pi}}(s, \pi(s)) \\
& =B_{\pi}\left[V^{\pi}\right](s)
\end{aligned}
$$

For part (b), let π^{*} be an optimal policy. Then we have

$$
\begin{aligned}
V^{*}(s) & =R\left(s, \pi^{*}(s)\right)+\gamma \sum_{s^{\prime} \in S} \mathbf{P}_{s, s^{\prime}}\left(\pi^{*}(s)\right) V^{*}\left(s^{\prime}\right) \\
& =Q^{V^{*}}\left(s, \pi^{*}(s)\right) \\
& =B_{\pi^{*}}\left[V^{*}\right](s)
\end{aligned}
$$

Finally, we come to part (c). Note that the condition $Q^{\pi}\left(s, \pi^{\prime}(s)\right) \leq V^{\pi}(s)$ for all s implies that

$$
B_{\pi^{\prime}}\left[V^{\pi}\right](s) \leq V^{\pi}(s) \quad \forall s \in S
$$

which is just saying that

$$
B_{\pi^{\prime}}\left(V^{\pi}\right) \leq V^{\pi}
$$

Now, by the monotonicity of the operator $B^{\pi^{\prime}}$, this implies that for all $k \geq 1$ we have

$$
B_{\pi^{\prime}}^{k}\left(V^{\pi}\right) \leq V^{\pi}
$$

But, we also know that $V^{\pi^{\prime}}=\lim _{k \rightarrow \infty} B_{\pi^{\prime}}^{k}\left(V^{\pi}\right)$, and hence this clearly implies that $V^{\pi^{\prime}} \leq V^{\pi}$.

0.5 Problem 5.

Problem Statement. Let π be a greedy policy with respect to vector $V \in \mathbf{R}^{n}$. Show that if $\|B[V]-V\|_{\infty} \leq \epsilon$ then $\left\|V-V^{\pi}\right\|_{\infty} \leq \frac{\epsilon}{1-\gamma}$, where $\gamma \in(0,1)$.

Solution. Suppose $\|B[V]-V\|_{\infty} \leq \epsilon$. Since π is a greedy policy with respect to V, we know that

$$
\pi(s)=\operatorname{argmax}_{a \in A} Q^{V}(s, a)
$$

for each $s \in S$. Now, let $s \in S$ be any state. Then, note that

$$
\begin{aligned}
B_{\pi}[V](s) & =Q^{V}(s, \pi(s)) & & \text { (By definition of } \left.B_{\pi}\right) \\
& =\max _{a \in A} Q^{V}(s, a) & & \text { (Since } \pi \text { is greedy w.r.t } V) \\
& =B[V](s) & &
\end{aligned}
$$

where B_{π} is the Bellman backup operator of the policy π. Clearly, this means that

$$
B_{\pi}[V]=B[V]
$$

and hence we see that

$$
\begin{equation*}
\left\|B_{\pi}[V]-V\right\|_{\infty} \leq \epsilon \tag{1}
\end{equation*}
$$

Now, we know that V^{π} is a fixed point of B_{π}, i.e $B_{\pi}\left[V^{\pi}\right]=V^{\pi}$. So, by the contraction property of B_{π}, we see that

$$
\begin{equation*}
\left\|B_{\pi}[V]-V^{\pi}\right\|_{\infty}=\left\|B_{\pi}[V]-B_{\pi}\left[V^{\pi}\right]\right\|_{\infty} \leq \gamma\left\|V-V^{\pi}\right\|_{\infty} \tag{2}
\end{equation*}
$$

Also, by the triangle inequality, we know that

$$
\begin{align*}
\gamma\left\|V-V^{\pi}\right\|_{\infty} & \leq \gamma\left\|B_{\pi}[V]-V^{\pi}\right\|_{\infty}+\gamma\left\|B^{\pi}[V]-V\right\|_{\infty} \tag{3}\\
& \leq \gamma\left\|B_{\pi}[V]-V^{\pi}\right\|_{\infty}+\epsilon \gamma \tag{4}
\end{align*}
$$

Combining the above equation with (3), we obtain

$$
\gamma\left\|V-V^{\pi}\right\|_{\infty} \leq \gamma^{2}\left\|V-V^{\pi}\right\|_{\infty}+\epsilon \gamma
$$

Cancelling γ out from both sides, the claim follows.

