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0.1 Problem 1.

Problem Statement. Let M = ⟨S,A, P,R⟩ be the same MDP as in Problem 1 of the
first homework. Let π be the stochastic policy that takes action a1 with probabiltiy 0.5
and action a2 with probability 0.5 in all the three states. In our notation, we have

π(a1|s1) = 0.5, π(a2|s1) = 0.5

π(a1|s2) = 0.5, π(a2|s2) = 0.5

π(a1|s3) = 0.5, π(a2|s3) = 0.5

Give the state-transition matrix and the reward vector for policy π.

Solution. Just for clarity, we recall that the transition-probability matrix is given by

s1 s2 s3
(s1, a1) 1 0 0

(s1, a2) 0 0.5 0.5

(s2, a1) 0 1 0

(s2, a2) 0.3 0 0.7

(s3, a1) 0 0 1

(s3, a2) 0.1 0.9 0

and the rewards are

a1 a2
s1 1 2

s2 0 3

s3 1 4

First, we compute the state-transition matrix P π for the stochastic policy π. Let s be any
state. As we have seen in class, the sth row of the matrix P π will be the weighted sum of
the rows of the transition matrix indexed by the state-action pairs (s, a)a∈A, where the
corresponding weights will be π(a|s)a∈A; in other words, if Ma denotes the ath row of
some matrix M , then we have

P π
s =

∑
a∈A

π(a|s)P(s,a)
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Using this, we can immediately compute the matrix P π to get the following.

P π
s1 = 0.5

[
1 0 0

]
+ 0.5

[
0 0.5 0.5

]
P π
s2 = 0.5

[
0 1 0

]
+ 0.5

[
0.3 0 0.7

]
P π
s3 = 0.5

[
0 0 1

]
+ 0.5

[
0.1 0.9 0

]
and hence we get

P π =

 0.5 0.25 0.25
0.15 0.5 0.35
0.05 0.45 0.5


Next, we compute the reward vector Rπ for the policy. Again, let s ∈ S be some state.
The formula for sth coordinate of Rπ is

Rπ(s) =
∑
a∈A

π(a|s)R(s, a)

and so we get the following.

Rπ(s1) = 0.5 · 1 + 0.5 · 2 = 1.5

Rπ(s2) = 0.5 · 0 + 0.5 · 3 = 1.5

Rπ(s3) = 0.5 · 1 + 0.5 · 4 = 2.5

So, the reward vector is Rπ = (1.5, 1.5, 2.5).

0.2 Problem 2.

Problem Statement. Write down the primal and dual LPs for the MDP given in
Problem 1. Let your LPs be in standard form with variables lined up on the left and
constants on the right of the constraints. Please use v1, v2 and v3 as primal variables and
dij as the dual variable for the constraint corresponding to state si and action aj .

Solution. We will have three primal variables v1, v2 and v3; the optimal values for these
variables will correspond to the coordinates V ∗(s1), V

∗(s2) and V ∗(s3) of the optimal
value vector. Since we have 3 × 2 = 6 state-action pairs, we will have a total of six
constraints. From class, we know that the constraints are of the form

V ∗(s) ≥ R(s, a) + γ
∑
s′∈S

Ps,s′(a)V
∗(s′) ∀s, a

and the objective is to minimize the sum
∑

s∈S V ∗(s). So, in our case, the primal LP is
the following.

Minimize: v1 + v2 + v3
Subject to: v1 ≥ 1 + γ · 1 · v1 + γ · 0 · v2 + γ · 0 · v3

v1 ≥ 2 + γ · 0 · v1 + γ · 0.5 · v2 + γ · 0.5 · v3
v2 ≥ 0 + γ · 0 · v1 + γ · 1 · v2 + γ · 0 · v3
v2 ≥ 3 + γ · 0.3 · v1 + γ · 0 · v2 + γ · 0.7 · v3
v3 ≥ 1 + γ · 0 · v1 + γ · 0 · v2 + γ · 1 · v3
v3 ≥ 4 + γ · 0.1 · v1 + γ · 0.9 · v2 + γ · 0 · v3

v1, v2, v3 ∈ R

Rearranging the above equations to standard form, we get the following.
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Minimize: v1 + v2 + v3
Subject to: (1− γ)v1 ≥ 1

v1 − 0.5γv2 − 0.5γv3 ≥ 2
(1− γ)v2 ≥ 0

−0.3γv1 + v2 − 0.7γv3 ≥ 3
(1− γ)v3 ≥ 1

−0.1γv1 − 0.9γv2 + v3 ≥ 4

Now, let us write down the dual of this LP. Our variables will be dij for 1 ≤ i ≤ 3,
1 ≤ j ≤ 2. The dual LP is the following.

Maximize: d11 + 2d12 + 3d22 + d31 + 4d32
Subject to: (1− γ)d11 + d12 + 0 · d21 − 0.3γd22 + 0 · d31 − 0.1γd32 = 1

0 · d11 − 0.5γd12 + (1− γ)d21 + d22 + 0 · d31 − 0.9γd32 = 1
0 · d11 − 0.5γd12 + 0 · d21 − 0.7γd22 + (1− γ)d31 + d32 = 1

d11, d12, d21, d22, d31, d32 ≥ 0

0.3 Problem 3.

Problem Statement. We have seen the Bellman optimality operator B and its prop-
erties in class. Write down the definition of the operator and its two properties formally
using the right notation. Prove the contraction property of B.

Solution. Let S be the set of states of the MDP in consideration. The Bellman opti-
mality operator B is defined as a map B : R|S| → R|S| given by the following.

B[V ](s) := max
a∈A

[
R(s, a) + γ

∑
s′∈S

Ps,s′(a)V (s′)

]
= max

a∈A
QV (s, a)

This operator satisfies the following two properties.
(1) (Monotonicity) If u, v ∈ R|S| are such that u ≤ v, then B[u] ≤ B[v].
(2) (Contraction) If u, v ∈ R|S| are any vectors, then

||B[u]−B[v]||∞ ≤ γ ||u− v||∞

where γ ∈ (0, 1) is the discount factor.
Let’s prove the contraction property of B. Let s ∈ S be any state. We will show that

|B[u](s)−B[v](s)| ≤ γ ||u− v||∞

Clearly, the contraction property will follow from this (since we are dealing with the ||·||∞
norm). Now, let au and av be actions such that B[u](s) = Qu(s, au) and B[v](s) =
Qv(s, av). We have the following two cases.
(1) In the first case, suppose Qu(s, au) ≥ Qv(s, av). Since Qv(s, au) ≤ Qv(s, av), in this
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case we see that

|B[u](s)−B[v](s)| = |Qu(s, au)−Qv(s, av)|
≤ |Qu(s, au)−Qv(s, au)|

=

∣∣∣∣∣R(s, au) + γ
∑
s′∈S

Ps,s′(au)u(s
′)−R(s, au)− γ

∑
s′∈S

Ps,s′(au)v(s
′)

∣∣∣∣∣
=

∣∣∣∣∣γ ∑
s′∈S

Ps,s′(au)[u(s
′)− v(s′)]

∣∣∣∣∣
≤ γ

∑
s′∈S

Ps,s′(au) ||u− v||∞

= γ ||u− v||∞

(2) In the second case, we have Qu(s, au) < Qv(s, av). But this case is similar to the
first case, with the roles of u and v reversed.

This completes the proof.

0.4 Problem 4.

Problem Statement. We have seen the definitions of V π(s), QV (s, a), Bπ[V ](s) and
B[V ](s) several times in class. Review the definitions and answer the following questions.
(a) Give the equivalent Q-value and Bellman backup value for V π(s), i.e

V π(s) = Q?(s, ?) = B?[?](s)

(b) Give the equivalent Q-value and Bellman backup value for V ∗(s), i.e

V ∗(s) = Q?(s, ?) = B?[?](s)

(c) Let π and π′ be two policies of an MDP.We know that if π′ is such thatQπ(s, π′(s)) ≥
V π(s) for all s, then V π′ ≥ V π. What can we say about V π′

and V π if Qπ(s, π′(s)) ≤
V π(s) for all s?

Solution. For part (a), we have

V π(s) = R(s, π(s)) + γ
∑
s′∈S

Ps,s′(π(s))V
π(s′)

= QV π
(s, π(s))

= Bπ[V
π](s)

For part (b), let π∗ be an optimal policy. Then we have

V ∗(s) = R(s, π∗(s)) + γ
∑
s′∈S

Ps,s′(π
∗(s))V ∗(s′)

= QV ∗
(s, π∗(s))

= Bπ∗ [V ∗](s)

Finally, we come to part (c). Note that the condition Qπ(s, π′(s)) ≤ V π(s) for all s implies
that

Bπ′ [V π](s) ≤ V π(s) ∀s ∈ S
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which is just saying that

Bπ′(V π) ≤ V π

Now, by the monotonicity of the operator Bπ′
, this implies that for all k ≥ 1 we have

Bk
π′(V π) ≤ V π

But, we also know that V π′
= limk→∞Bk

π′(V π), and hence this clearly implies that
V π′ ≤ V π.

0.5 Problem 5.

Problem Statement. Let π be a greedy policy with respect to vector V ∈ Rn. Show
that if ||B[V ]− V ||∞ ≤ ϵ then ||V − V π||∞ ≤ ϵ

1−γ , where γ ∈ (0, 1).

Solution. Suppose ||B[V ]− V ||∞ ≤ ϵ. Since π is a greedy policy with respect to V , we
know that

π(s) = argmaxa∈AQ
V (s, a)

for each s ∈ S. Now, let s ∈ S be any state. Then, note that

Bπ[V ](s) = QV (s, π(s)) (By definition of Bπ)

= maxa∈AQ
V (s, a) (Since π is greedy w.r.t V )

= B[V ](s)

where Bπ is the Bellman backup operator of the policy π. Clearly, this means that

Bπ[V ] = B[V ]

and hence we see that

||Bπ[V ]− V ||∞ ≤ ϵ(1)

Now, we know that V π is a fixed point of Bπ, i.e Bπ[V
π] = V π. So, by the contraction

property of Bπ, we see that

||Bπ[V ]− V π||∞ = ||Bπ[V ]−Bπ[V
π]||∞ ≤ γ ||V − V π||∞(2)

Also, by the triangle inequality, we know that

γ ||V − V π||∞ ≤ γ ||Bπ[V ]− V π||∞ + γ ||Bπ[V ]− V ||∞(3)

≤ γ ||Bπ[V ]− V π||∞ + ϵγ (By (1))(4)

Combining the above equation with (3), we obtain

γ ||V − V π||∞ ≤ γ2 ||V − V π||∞ + ϵγ

Cancelling γ out from both sides, the claim follows.
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