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Abstract

These are my supplementary notes for a course on Reinforcement Learning which I
took at CMI. The reference book used for the course was Reinforcement Learning:
An Introduction by Richard S. Sutton and Andrew G. Barto.
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1. Markov Decision Processes

1.1 Defining MDPs

1.1.1 Formal Definition. A Markov Decision Process is a tuple ⟨S,A, P,R⟩, where the
symbols mean the following.

• S is a finite set of states.
• A is a finite set of actions.
• P is a transition function

P : S ×A→ ∆(S)

Here ∆(S) is the set of all probability distributions on S. We use the notation
Ps,s′(a) to denote the probability of reaching state s′ from state s under the action
a.

• R is a reward function

R : S ×A→ R

We assume that R(s, a) ∈ [Rmin, Rmax] for all s, a ∈ S ×A.
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1 Markov Decision Processes Tuesday 3rd January, 2023, 06:05

1.1.2 Policies and Value Functions. A policy is a map π : S → A. Note that by our
assumptions on the finiteness of A and S, there are only finitely many policies.

We now define the notion of an optimal policy for an MDP. To do that, we first define
the value of a state. Let γ ∈ [0, 1) be any number, which we’ll call the discount factor.
Under a policy π, we define the value of a state s ∈ S by

V π(s) := E

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]

We use the notation V π to denote the vector whose components are V π(s) for s ∈ S.

1.1.3 Matrix equation for the value vector. In this section, we will derive a closed
form solution for the value vector V π.

First, we have the following by the linearity of expectation.

V π(s) = E

[ ∞∑
t=0

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]

= E

[
R(s0, π(s0)) +

∞∑
t=1

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]

= R(s, π(s)) +E

[ ∞∑
t=1

γtR(st, π(st))

∣∣∣∣∣ s0 = s

]

= R(s, π(s)) + γEs1∼P (s,π(s))

[ ∞∑
t=0

γtR(st+1, π(st+1))

]

= R(s, π(s)) + γ

(∑
s′∈S

Ps,s′(π(s))E

[ ∞∑
t=0

γtR(st+1, π(st+1))

∣∣∣∣∣ s1 = s′

])
= R(s, π(s)) + γ

∑
s′∈S

Ps,s′(π(s))V
π(s′)

In other words, if we treat V π(s) as an unknown, then we obtain S linear equations in S
unknowns, which we can solve easily. The above equation may be written in the following
matrix form.

V π = Rπ + γP πV π(1)

Here, V π ∈ R|S| is the vector whose components are the values under policy π of each
state; Rπ ∈ R|S| is the reward vector, whose sth component is R(s, π(s)) and P π is an
|S| × |S| matrix, whose sth row for s ∈ S is the probability vector whose entries are
Ps,s′(π(s)) for s

′ ∈ S.

From (1), we can see that

(I − γP π)V π = Rπ

where I is the |S| × |S| identity matrix. Clearly, if (I − γP π) was invertible, then we
would have

V π = (I − γP π)−1(Rπ)(2)

We will now show that this is indeed the case.
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Proposition 1.1. The matrix I − γP π where γ ∈ (0, 1) is invertible.

Proof. Suppose x ∈ Ker(I − γP π), i.e

(I − γP π)x = 0

This would imply that

x = γP πx

which would imply that 1/γ is an eigenvalue of pπ, if x ̸= 0. Note that 1/γ > 1. But
because P π is row-stochastic, all it’s eigenvalues have to be ≤1. So, it must be the case
that x = 0, i.e I − γP π is invertible. ■

1.1.4 Inverse of I − γP π. Consider the matrix

∞∑
t=0

γt(P π)t

This series converges, and infact this matrix is equal to (I−γP π). We denote this matrix
by Dπ. Intuitively, the entries of the matrix Dπ reflect the number of times we visit a
state if we start from a given state under the policy π. From (2), we see that

V π = DπRπ

1.1.5 The Bellman Backup Operator. In this section, we will define the so called
Bellman Backup Operator and prove some of it’s properties.

For a policy π, we define a map Bπ : R|S| → R|S| by the following.

Bπ(v) = Rπ + γP πv , v ∈ R|S|

As usual, γ ∈ (0, 1) is some number. We will now prove some properties of this map, in
the context of an MDP.

Proposition 1.2 (Monotonicity). Let u, v ∈ R|S| and let ≤ be the partial order in R|S|

which compares vectors component wise. Then,

u ≤ v =⇒ Bπ(u) ≤ Bπ(v)

Proof. We have the following.

u ≤ v =⇒ P πu ≤ P πv (all entries of P π are non-negative)

=⇒ γP πu ≤ γP πv

=⇒ Rπ + γP πu ≤ Rπ + γP πv

=⇒ Bπ(u) ≤ Bπ(v)

■

Proposition 1.3 (Contraction). Let u, v ∈ R|S|. Then,

||Bπ(u)−Bπ(v)||∞ ≤ γ ||u− v||∞(3)
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Proof. We will show that for each s ∈ S, we have

|Bπ(u)(s)−Bπ(v)(s)| ≤ γ ||u− v||∞

Here, Bπ(u)(s) is the sth coordinate of the vector Bπ(u) (and similarly for Bπ(v)). We
have the following.

|Bπ(u)(s)−Bπ(v)(s)| =

∣∣∣∣∣γ∑
s′∈S

Ps,s′(π(s))u(s
′)− γ

∑
s′∈S

Ps,s′(π(s))v(s
′)

∣∣∣∣∣
= γ

∣∣∣∣∣∑
s′∈S

Ps,s′(π(s))[u(s
′)− v(s′)]

∣∣∣∣∣
≤ γ

∑
s′∈S

Ps,s′(π(s))
∣∣u(s′)− v(s′)

∣∣
≤ γ

∑
s′∈S

Ps,s′(π(s)) ||u− v||∞

= γ ||u− v||∞

Above, we used the fact that
∑

s′∈S Ps,s′(π(s)) = 1. This proves the claim. ■

Since R|S| is a complete space, we can use the contraction property of Bπ and conclude
by the Contraction Mapping Theorem that V π is the unique fixed point of Bπ, and
moreover for any vector v ∈ R|S| we have

V π = lim
n→∞

Bn
π (v)(4)

1.1.6 Q-values. In this section we will introduce another notation which will be a bit
convenient.

Let s ∈ S be any state, a ∈ A be any action and v ∈ R|S| be any vector. We define the
one step backup of action a at state s with respect to vector v by

Qv(s, a) := R(s, a) + γ
∑
s′∈S

Ps,s′(a)v(s
′)

If π is a policy, we also use the notation Qπ(s, π(s)) to refer to the quantity QV π
(s, π(s))

(recall that the vector V π is the unique fixed point of Bπ).

1.1.7 Existence of the best policy. We will now come to the one of the most impor-
tant results related to what we’ve seen thus far, which is the existence of the best policy
for an MDP.

As usual, let (S,A, P,R) be an MDP. On the space R|S|, consider the partial order ≤,
which compares two vectors componentwise. We will now show that

π∗ = argminπV
π

exists, where the minimum is taken with respect to the partial order ≤ we mentioned
above. In simple words, for any MDP, there is a policy π such that the value vector V π

associated to that policy has the property that all of it’s coordinates are greater than or
equal to the coordinates of any other value vector for any other policy. We will show this
as a sequence of results.
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Theorem 1.4. Let (S,A, P,R) be an MDP, and let π1, π2 be any two policies. Then,
there is a policy π such that

Vmax ≤ V π

where the vector Vmax is defined as

Vmax(s) = max(V π1(s), V π2(s))

for all s ∈ S.

Proof. Consider the following simple policy.

π(s) :=

{
π1(s) , if V π1(s) ≥ V π2(s)

π2(s) , otherwise

We will now show that the vector V π does the job.

To show this, first note that V π1 ≤ Vmax and V π2 ≤ Vmax. Using this, we will show that

Vmax ≤ Bπ(Vmax)(5)

Note that to show the above, it is enough to show that V π1 ≤ Bπ(Vmax) and V π2 ≤
Bπ(Vmax). Let’s show the first of these two inequalities, as the second one has the exact
same proof. So let s ∈ S. First, suppose V π1(s) ≥ V π2(s), and in that case we will have
that π(s) = π1(s). In that case, we have

V π1(s) = Bπ1(V
π1)(s) = R(s, π1(s)) + γ

∑
s′∈S

Ps,s′(π1(s))V
π1(s′)

= R(s, π(s)) + γ
∑
s′∈S

Ps,s′(π(s))V
π1(s′)

≤ R(s, π(s)) + γ
∑
s′∈S

Ps,s′(π(s))Vmax(s
′)

= Bπ(Vmax)(s)

In the other case, suppose that V π1(s) < V π2(s), which will mean that π(s) = π2(s). In
that case, we have the following.

V π1(s) < V π2(s) = Bπ2(V
π2)(s) = R(s, π2(s)) + γ

∑
s′∈S

Ps,s′(π2(s))V
π2(s′)

= R(s, π(s)) + γ
∑
s′∈S

Ps,s′(π(s))V
π2(s′)

≤ R(s, π(s)) + γ
∑
s′∈S

Ps,s′(π(s))Vmax(s
′)

= Bπ(Vmax)(s)

So we’ve shown that V π1 ≤ Bπ(Vmax) and V π2 ≤ Bπ(Vmax) and hence (5) follows.

Now, by the monotonicity (Proposition 1.2) ofBπ, we see that the sequence {Bn
π (Vmax)}n∈N

is a non-decreasing sequence. So, this implies that

Vmax ≤ lim
n→∞

Bn
π (Vmax) = V π

and this completes the proof of the claim. ■
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Theorem 1.5. Let (S,A, P,R) be an MDP. Then, there is a policy π∗ such that for all
policies π

V π ≤ V π∗

Proof. Since there are only finitely many policies, we can enumerate them; let {π1, π2, ..., πK}
be all the policies. The claim follows by a simple application of Theorem 1.4. More pre-
cisely, define π′

1 := π1, and for each 2 ≤ k ≤ K define π′
k to be the policy that is ≥ πk

and π′
k−1 (possible because of Theorem 1.4). Then, the policy π′

K will be the desired
policy. ■

1.1.8 Bellman Optimality Conditions. From what we’ve seen till now, the optimal
value vector V ∗ satisfies the following equations.

V ∗(s) = max
a∈A

{
R(s, a) + γ

∑
s′∈S

Ps,s′(a)V
∗(s′)

}
= max

a∈A
QV ∗

(s, a)

This is true because, if there is some state s such that V ∗(s) is not equal to the given max-
imum, then we can find a better policy by using the action which attains the maximum,
and thereby we will obtain a value vector which is strictly larger than V ∗, which will be
a contradiction. These equations are known as the Bellman Optimality Conditions.

Similarly, an optimal policy π∗ satisfies the following.

π∗(s) ∈ argmaxa∈A

{
R(s, a) + γ

∑
s′∈S

Ps,s′(a)V
∗(s′)

}
= argmaxa∈AQ

V ∗
(s, a)

1.1.9 Bellman Optimality Operator and the Value Iteration Algorithm. Like
like the Bellman Backup Operator, we will now define the Bellman Optimality Operator ;
it is a map B : R|S| → R|S| defined by the following.

B[V ](s) := max
a∈A

{
R(s, a) + γ

∑
s′∈S

Ps,s′(a)V (s′)

}
= max

a∈A
QV (s, a)

As before, B also satisfies the properties of monotonicity and contraction.

Proposition 1.6. Let B be the Bellman Optimality Operator as defined above. Then, B
satisfies the properties of monotonicity and contraction (w.r.t the ||·||∞ norm) as men-
tioned in Proposition 1.2 and Proposition 1.3.

Proof. These are not hard to prove, and can be done similar to the proofs in Proposition
1.2 and Proposition 1.3. ■

Just like before, we can apply the contraction property to see that for any v ∈ R|S|, we
have

V ∗ = lim
k→∞

Bk(v)

The above fact leads to the following simple algorithm algorithm to compute V ∗, which
is called the Value Iteration Algorithm.
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Algorithm 1 Value Iteration (VI) Algorithm

V0 ← 0.
i← 0.
while Vi ̸= Vi−1 do
For each s ∈ S, Vi+1(s)← maxa∈S QVi(s, a)
i← i+ 1

end while
return Vi.

1.1.10 Stopping early in the VI algorithm. In practice, instead of stopping when
Vi = Vi−1, the usual stopping criterion is

||Vi − Vi−1||∞ ≤ ϵ

where ϵ > 0 is some tolerance level. We now bound the distance of Vi from V ∗ if such a
stopping criterion is used.

Proposition 1.7. Suppose the VI algorithm stops at a point when ||Vi − Vi−1||∞ ≤ ϵ.
Then

||Vi − V ∗||∞ ≤
ϵγ

1− γ

where V ∗ is the optimal value function.

Proof. Note that Vi = B[Vi−1], where B is the Bellman Optimality Operator. Moreover,
we know that B[V ∗] = V ∗. So, by the contraction property, we see that

||Vi − V ∗||∞ = ||B[Vi−1]−B[V ∗]||∞ ≤ γ ||Vi−1 − V ∗||∞

Also, by the triangle inequality we have that

γ ||Vi−1 − V ∗||∞ ≤ γ ||Vi − V ∗||∞ + γ ||Vi − Vi−1||∞
≤ γ ||Vi − V ∗||∞ + ϵγ

So, combining the last two inequalities, we see that

||Vi − V ∗||∞ ≤ γ ||Vi − V ∗||∞ + ϵγ

and from here the claim follows. ■

Definition 1.1 (Greedy policy with respect to a vector.). Let V ∈ R|S| be any
vector. A greedy policy with respect to V is a policy πV such that

πV (s) ∈ argmaxa∈AQ
V (s, a)

for all s ∈ S.

We will now see how good the greedy policy of the output vector of VI algorithm is, if we
use the stopping criterion with tolerance ϵ.

Proposition 1.8. Suppose the VI algorithm stops at the vector Ṽ , and suppose
∣∣∣∣∣∣Ṽ − V ∗

∣∣∣∣∣∣
∞
≤

δ. Let π̃ be a greedy policy with respect to Ṽ . Then,∣∣∣∣V π̃ − V ∗∣∣∣∣
∞ ≤

2δγ

1− γ
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Proof. First, we claim that

B[Ṽ ] = Bπ̃[Ṽ ]

But this is easy to see by the definition of the Bellman Optimality Operator and since π̃
is a greedy policy with respect to Ṽ . Now, using this fact we have the following.∣∣∣∣V π̃ − V ∗∣∣∣∣

∞ ≤
∣∣∣∣∣∣V π̃ −B[Ṽ ] +B[Ṽ ]− V ∗

∣∣∣∣∣∣
∞

=
∣∣∣∣∣∣Bπ̃[V

π̃]−Bπ̃[Ṽ ] +B[Ṽ ]− V ∗
∣∣∣∣∣∣
∞

(V π̃ is a fixed point of Bπ̃)

≤
∣∣∣∣∣∣Bπ̃[V

π̃]−Bπ̃[Ṽ ]
∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣B[Ṽ ]− V ∗

∣∣∣∣∣∣
∞

≤ γ
∣∣∣∣∣∣V π̃ − Ṽ

∣∣∣∣∣∣
∞

+
∣∣∣∣∣∣B[Ṽ ]−B[V ∗]

∣∣∣∣∣∣
∞

(V ∗ is a fixed point of B)

≤ γ
∣∣∣∣∣∣V π̃ − Ṽ

∣∣∣∣∣∣
∞

+ γ
∣∣∣∣∣∣Ṽ − V ∗

∣∣∣∣∣∣
∞

≤ γ
∣∣∣∣∣∣V π̃ − Ṽ

∣∣∣∣∣∣
∞

+ γδ

= γ
∣∣∣∣∣∣V π̃ − V ∗ + V ∗ − Ṽ

∣∣∣∣∣∣
∞

+ γδ

≤ γ
∣∣∣∣V π̃ − V ∗∣∣∣∣

∞ + γ
∣∣∣∣∣∣V ∗ − Ṽ

∣∣∣∣∣∣
∞

+ γδ

≤ γ
∣∣∣∣V π̃ − V ∗∣∣∣∣+ 2γδ

From this, the claim follows. ■

1.1.11 Stochastic Policies. A stochastic policy π is a policy which assigns a probability
distribution over the actions to each state; formally, for each a ∈ A and s ∈ S, the
probability of taking action a in state S under the policy π has probability π(a|s), and
hence we must have ∑

a∈A
π(a|s) = 1

For a stochastic policy π, we define the immediate reward starting from a state by∑
a∈A

π(a|s)R(s, a)

So in this setting, the equation for the value vector V π becomes the following.

V π(s) =
∑
a∈A

π(a|s)

[
R(s, a) + γ

∑
s′∈S

Ps,s′(a) · V π(s′)

]

Again, we can write the above equation in matrix form.

V π = Rπ + γP πV π

Let’s see what the vector Rπ and the matrix P π are in this case. The sth entry of the
reward vector Rπ is simply ∑

a∈A
π(a|s)R(s, a)

Similarly, the sth row of the matrix P π will be just be the weighted sum of the rows
indexed by the state-action pairs (s, a)a∈A, where the weights will be π(a|s)a∈A.
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1.1.12 MDPs as Linear Programs. MDPs can also be written as LPs. In this section,
we will see how to do this.

Since we want to solve for V ∗, the variables for our LP will be V ∗(s1), ..., V
∗(sn), where

s1, ..., sn are the states. The constraints of the LP will be a consequence of the Bellman
Optimality conditions; in particular, for each s ∈ S and a ∈ A, we will have a constraint
that specifies

V ∗(s) ≥ Q∗(s, a) = R(s, a) +
∑
s′∈S

Ps,s′(a)V
∗(s′)

So, there will be nm constraints, if |S| = n and |A| = m. Finally, our objective will be to
minimize the quantity ∑

s∈S
V ∗(s)
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